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csDMA: an improved bioinformatics 
tool for identifying DNA 6 mA 
modifications via Chou’s 5-step rule
Ze Liu1,2, Wei Dong1,2, Wei Jiang1,2 & Zili He1,2

DnA n6-methyldeoxyadenosine (6 mA) modifications were first found more than 60 years ago but 
were thought to be only widespread in prokaryotes and unicellular eukaryotes. With the development 
of high-throughput sequencing technology, 6 mA modifications were found in different multicellular 
eukaryotes by using experimental methods. However, the experimental methods were time-
consuming and costly, which makes it is very necessary to develop computational methods instead. 
In this study, a machine learning-based prediction tool, named csDMA, was developed for predicting 
6 mA modifications. Firstly, three feature encoding schemes, Motif, Kmer, and Binary, were used to 
generate the feature matrix. Secondly, different algorithms were selected into the prediction model 
and the ExtraTrees model received the best AUC of 0.878 by using 5-fold cross-validation on the training 
dataset. Besides, the ExtraTrees model also received the best AUC of 0.893 on the independent testing 
dataset. Finally, we compared our method with state-of-the-art predictors and the results shown that 
our model achieved better performance than existing tools.

DNA N6-methyldeoxyadenosine (6 mA) modifications were first discovered in Bacteria in 19551. However, it had 
not received much attention as 5-methylcytosine (5mC) did. One important reason is that 6 mA modifications 
were thought to be only widespread in prokaryotes and unicellular eukaryotes, but rarely in multicellular eukar-
yotes2,3. Researchers have proposed several experimental methods to identify 6 mA modifications in the past few 
decades. The first method, developed by Dunn et al. in 1955, is a combination of ultraviolet absorption spectra, 
electrophoretic mobility, and paper chromatographic movement, but this method is relatively insensitive and 
cannot be used to detect 6 mA modifications in animals1. Then a restriction enzyme method was used to dis-
cover 6 mA modifications in 1978. However, this method can only find modified adenosines that occurred in the 
restriction enzyme target motifs4. With the development of high-throughput sequencing technology, thousands 
of 6 mA modifications were found in different multicellular eukaryotes. In 2015, Fu et al. found 6 mA modifica-
tions in 84% genes of Chlamydomonas by using 6 mA immunoprecipitation sequencing (6mA-IP-Seq)5. In 2016, 
Koziol et al. used dot blots, HPLC, and methyl DNA immunoprecipitation followed by sequencing (MeDIP-seq) 
to detect 6 mA modifications in vertebrates including Xenopus laevis, mouse and human6. In 2017, Mondo et 
al. observed that up to 2.8% of all adenines were methylated in early-diverging fungi by using single-molecule 
real-time (SMRT) sequencing7. In 2018, Zhou et al. found that about 0.2% of adenines in the rice genome were 
6 mA methylated by using mass spectrometry, immunoprecipitation, and SMRT, and Zhang et al. observed that 
the 6 mA distribution in the rice and Arabidopsis genome were very similar by using 6mA-IP-seq8,9. As the exper-
imental methods are time-consuming and costly, researchers are trying to predict DNA 6 mA modifications 
by using computational methods. Two prediction tools are reported up to now, i.e., iDNA6mA-PseKNC10 and 
i6mA-Pred11. iDNA6mA-PseKNC is the first prediction tool for predicting 6 mA modifications in the Mus mus-
culus genome and i6mA-Pred is the first identification method in the rice genome.

Predicting DNA 6 mA modifications based on computational algorithms is still in the infancy. However, in 
the parallel study of prediction of post-translational modification (PTM) sites, there are many PTM-predicting 
papers published by the previous researchers12–22. Although there is some detailed difference for each of the indi-
vidual PTMs, the basic core is about the same. Thus, the feature extraction and classification methods proposed 
in these studies provide a valuable basis for the prediction of DNA 6 mA modifications. In this research, we aim 
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to develop a prediction tool that can be used to predict DNA 6 mA modifications across species. The benchmark 
datasets created in the iDNA6mA-PseKNC and i6mA-Pred predictors were used and different algorithms were 
implemented to generate the final optimized model. 5-fold cross-validation was performed and the prediction 
results demonstrated that our model achieved a better performance than existing 6 mA prediction tools.

As demonstrated by a series of recent publications10,13–19 and summarized in two comprehensive review 
papers23,24, to develop a really useful predictor for a biological system, one needs to follow Chou’s 5-steps rule 
(more detailed description can be found in https://en.wikipedia.org/wiki/5-step_rules.) to go through the follow-
ing five steps: (1) construct a gold standard dataset to train and test the model; (2) encode samples with effective 
formulations; (3) conduct the prediction model with a powerful classifier; (4) evaluate model performance by 
using cross-validation tests and standard measures; (5) establish a user-friendly web-server for the predictor that 
can be accessible to the public. Below, we are to address these points one by one, making them crystal clear in 
logic development and completely transparent in operation.

Method
Dataset generation. Feng et al. created a DNA 6 mA benchmark dataset of the M. musculus genome in 
201810. The benchmark dataset includes 1,934 positive samples and 1,934 negative samples. Chen et al. launched 
a 6 mA benchmark dataset of the rice genome in 201911. The benchmark dataset consists of 880 positive samples 
and 880 negative samples. The above two benchmark datasets were used to create the cross-species dataset and 
the CD-HIT-EST software25 with different threshold was used to reduce sequence redundancy in the original 
datasets (Table 1). Finally, the cross-species dataset consists of 2,768 positive samples and 2,716 negative samples 
with the most rigorous threshold at 0.80, and the length of each sample is 41nt. To build a cross-species 6 mA pre-
diction model, the stratified selection method was used and we random selected 80% samples for model training 
and the left 20% for independent testing. Finally, the training dataset consists of 2,214 positive samples and 2,214 
negative samples, while the independent testing dataset includes 554 positive samples and 502 negative samples.

Feature encoding scheme. To construct a DNA 6 mA predictor, one of the most important but also most 
difficult issue is how to encode feature vector for each sequence, yet still retains most of the key patterns. The 
pseudo amino acid composition (PseAAC) was proposed by Chou et al. and has been widely used in nearly all 
the areas of computational proteomics26,27. Based on the PseAAC, four powerful software, such as ‘PseAAC’28, 
‘PseAAC-Builder’29, ‘propy’30, and ‘PseAAC-General’31, were established: the former three are for generating var-
ious modes of Chou’s special PseAAC32; while the 4th one for those of Chou’s general PseAAC23. Encouraged by 
the successes of using PseAAC to deal with protein/peptide sequences, the concept of Pseudo K-tuple Nucleotide 
Composition (PseKNC)33 was developed for encoding features of DNA/RNA sequences34–36 that have proved 
very useful as well. Particularly, recently a very powerful web-server called ‘Pse-in-One’37 and its updated version 
‘Pse-in-One2.0’38 have been established that can be used to generate any desired feature vectors for protein/pep-
tide and DNA/RNA sequences according to the need of users’ studies.

K-mer pattern. K monomeric units (k-mers), are simply patterns of k consecutive nucleic acids37 and have a 
total of 4k kinds of nucleotide patterns for DNA/RNA. Such as 1-mer has 4 and 2-mer has 16 kinds of nucleotide 
patterns. To calculate the frequencies of k-mer nucleotide patterns, the length range L of the scanning region 
must be determined at first, and then the absolute frequencies of the k-mer nucleotide patterns are calculated 
from the start position to the L-k-1 position. Finally, the relative frequencies of k-mer patterns are calculated for 
each region. In this study, we set k as 2, 3, 4, and extracted 42 + 43 + 44 = 336 kinds of k-mer nucleotide patterns 
for feature encoding.

KSNPF frequency. The KSNPF frequencies are nucleotide pairs separated by k arbitrary nucleotides and have 
been successfully employed for the prediction of mucin-type O-glycosylation sites39 and phosphotase-specific 
dephosphorylation sites40. The KSNPF can be calculated using the following equation:

=
− −

f n Gap k n( 1 ( ) 2) S(n1Gap(k)n2)
L k 1 (1)

where n1 and n2 represent a pair of sequence elements. For nucleotide, n stands for any one of A, C, G, T/U. Thus, 
there are 42 = 16 combinations in each pair. Gap(k) stands for k arbitrary elements at intervals and S(n1Gap(k)n2) 
indicates the number of occurrences of the element pair. In this study, L represents the length of the nucleotide 
sequence, and the k was set as 1, 2, 3, 4, and the dimension of the KSNPF can be calculated by 42 × 4 = 64.

Species Dataset

Sequence identity threshold

0.95 0.90 0.85 0.80

Mouse
Positive 1,931 1,924 1,914 1,892

Negative 1,885 1,866 1,844 1,836

Rice
Positive 880 879 878 876

Negative 880 880 880 880

cross-species
Positive 2,811 2,803 2,792 2,768

Negative 2,767 2,746 2,724 2,716

Table 1. Reduce sequence redundancy in the different datasets by using the CD-HIT-EST software.
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Nucleic shift density. Nucleic shift density encoding can be used to calculate the density of any nucleo-
tide at the current position in its prefix string and has been used to encode nucleotide sequences in the iDNA-
6mA-PseKNC predictor10. A nucleic shift density feature at any position can be defined as follows:
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where q represents of any nucleotide at current position i, Ni is the length of the ith prefix string in the sequence. 
For example, the DNA sequence “CAGCTG”. The Nucleic shift density of ‘C’ at the position 1, 2, 3, 4, 5 or 6 is 
1/1 = 1, 1/2 = 0.5, 1/3 ≈ 0.33, 2/4 = 0.5, 2/5 = 0.4 or 2/6 ≈ 0.33, respectively. In this study, the length of each sam-
ple is 41nt. Thus, 41 Nucleic shift density features were generated for each sample.

Binary code. Binary encoding scheme is used to predict 6 mA modifications in the iDNA6mA-PseKNC pre-
dictor10. For the nucleotide in position i, the Binary features can be defined as following:
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In this research, the Binary encoding scheme generates a vector with 3 × 41 = 123 elements by characterizing 
each nucleotide, “A”, “C”, “G”, or “T”, with (1, 1, 1), (0, 0, 1), (1, 0, 0), or (0, 1, 0), respectively.

Motif score matrix. The MEME Suite (http://meme-suite.org/) consists of several motif-based sequence 
analysis tools. In this study, the MEME tool with differential enrichment mode was used and the maximum num-
ber of motifs was set to 10. The most enriched motifs were selected based on E-value and the motif matrixes were 
used for generating motif scores of each sample.

Performance evaluation. Five different classifiers, Random Forest, GradientBoosting, AdaBoost, 
ExtraTrees and SVM, were implemented by using Python. For Random Forest, GradientBoosting, AdaBoost, 
ExtraTrees Classifiers, 1,000 trees were selected for each of them. For SVM, grid research was used to search the 
best combination of C and gamma parameters. 5-fold cross-validation was used to evaluate the performance of 
our model. In a different fold of cross-validation, each subset was iteratively selected as a testing set, while the left 
4 subsets were used to train the model. The mean results of the five experiments were finally used as the perfor-
mance estimates of the algorithms.

Based on the Chou’s symbols introduced for studying signal peptides41,42, Four standard measures were 
derived and have been adopted by several recent publications43–45. The measures can be defined as follows:
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where N+ and N− refer to the number of positive samples or negative samples, respectively. −
+N  stands for the 

number of positive samples that were predicted to be negatives, +
−N  refers to the number of negative samples that 

were predicted to be positives. However, these measures are valid only for single-label learning issues. For the 
multi-label learning problems, whose appearances are more common in system biology46, system medicine47 and 
biomedicine16, a completely different set of standard measures is needed48. Besides, the receiver operating char-
acteristic curve (ROC) combined with the area under the ROC curve (AUC), the Precision-Recall curve com-
bined with the average precision (AP), and the F1 score49 were also used to evaluate the performance of different 
classifiers.

Using graphic approaches to study biological and medical systems can provide an intuitive vision and useful 
insights for helping analyze complicated relations therein as shown in the systems of enzyme fast reaction50, 
graphical rules in molecular biology51, and low-frequency internal motion in biomacromolecules (such as protein 
and DNA)52. Particularly, what happened is that this kind of insightful implication has also been demonstrated 
in53 and many follow-up publications54–56. The framework of csDMA is shown in Fig. 1.
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As pointed out by Chou et al.57 and demonstrated in a series of recent publications16–18, publicly accessible 
web-servers or online bioinformatics tools have significantly increased the impacts of bioinformatics on medical 
science58, driving medicinal chemistry into an unprecedented revolution59. Accordingly, the datasets and online 
tool involved in this paper are all available at https://github.com/liuze-nwafu/csDMA.

Results
Differential enrichment motifs discovery. To find the enriched motifs in the flank of 6 mA 
sites, the MEME tool with differential enrichment mode was used and the maximum number of motifs 
was set to 10. We used the positive samples in the cross-species dataset as the input and treated the neg-
ative samples as the control sequences. The detailed information of the enriched motifs can be found in the 
supplementary materials. Consider the statistical significance of the motifs, the E-value lower than 0.05 
was used to find the most statistically significant motifs and two motifs were selected. The first motif, 
NNNNNNNHHNHHNHWNTNTNWNNNWNYNNNNNNNNNNNNNN, with an E-value of 3.3e-18 was 
the most statistically significant. And the third motif ACCGATCSA, with an E-value of 2.9e-2, was also selected. 
The probability matrixes can also be downloaded from the MEME website which can be used to build motif score 
matrixes in the training process.

Model training with different feature subsets. To find the best combination of feature subsets, different 
feature subsets were selected into the Random Forest classifier and 5-fold cross-validation was used on the train-
ing dataset to evaluate the performance of our model. As shown in Fig. 2, the classifier received an AUC value of 
0.866 only by using the Binary code features, which means that the Binary code features were the most significant 
features that can be used to distinguish positive samples from negative samples. Interestingly, this result was even 
slightly higher than using combined feature subsets, such as Motif and Binary, Ksnpf and Binary, which achieved 
an AUC value of 0.861 and 0.862, respectively. Besides, the model achieved the best AUC value of 0.871 when 

Figure 1. The framework of csDMA.

https://doi.org/10.1038/s41598-019-49430-4
https://github.com/liuze-nwafu/csDMA


5Scientific RepoRtS |         (2019) 9:13109  | https://doi.org/10.1038/s41598-019-49430-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

three feature subsets Motif, Kmer, and Binary feature subsets were selected into the classifier. This result was even 
a little better than the model performance by using all feature subsets. Thus, we used the Motif, Kmer, and Binary 
encoding scheme to generate the optimized feature matrix.

Performance evaluation with different classifiers. Five different algorithms were implemented in this 
research. For the Random Forest, GradientBoosting, AdaBoost, ExtraTrees Classifiers, 1,000 trees were selected 
for each of them. For the SVM classifier, grid research was used to search the best combination of C and gamma 
parameters and the SVM classifier achieved the best performance with C of 0.98 and gamma of 0.01. To compare 
the performance of different classifiers, 5-fold cross-validation was used and each classifier was trained with the 
same fold. As shown in Fig. 3, the ExtraTrees classifier received the best ACC of 0.799 and Sn of 0.864, while the 
AdaBoost got the lowest ACC of 0.715, Sn of 0.713, Sp of 0.718. However, the ExtraTrees classifier performed 
not very well for predicting negative samples and received an Sp of 0.735, but it is only a little lower than those 
of other methods. A more detailed comparison of different classifiers is also shown in Table 2. What’s more, the 

Figure 2. Model performance based on the different feature subsets. 1,000 decision trees were selected into the 
Random Forest classifier and 5-fold cross-validation was used to evaluate the performance of csDMA.

Figure 3. The model performance of different classifiers. The Motif, Kmer, and Binary feature subsets were 
selected into each classifier and the optimized parameters were used for model training. To evaluate the 
performance of each classifier, 5-fold cross-validation was used and Standard measures such as ACC, Sn and Sp 
were used to evaluate the performance of our model.

Algorithm Sn Sp ACC MCC AUC F1

RandomForest 0.853 0.735 0.794 0.593 0.871 0.806

GradientBoosting 0.743 0.762 0.752 0.506 0.818 0.750

AdaBoost 0.713 0.718 0.715 0.431 0.777 0.715

ExtraTrees 0.864 0.735 0.799 0.603 0.878 0.811

SVM 0.807 0.764 0.785 0.572 0.858 0.790

Table 2. Model performance of each algorithm on the training dataset. The highest value of each column is 
marked in bold.

https://doi.org/10.1038/s41598-019-49430-4
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ExtraTrees classifier also achieved the highest MCC of 0.603, AUC of 0.878 and F1 of 0.811. Thus, we used the 
ExtraTrees algorithm to train the optimized model.

The independent testing dataset was also used to further evaluate the performance of each classifier. Each 
classifier was trained on the whole training dataset and evaluated on the independent testing dataset. As shown 
in Table 3, the ExtraTrees classifier received the best Sn of 0.888, AUC of 0.893 and F1 of 0.832, while the SVM 
model got the highest Sp of 0.761. Interestingly, the performance of each classifier on the independent testing 
dataset was even a little higher than that on the training dataset, which suggests that the classifier will receive 
better performance with a larger training dataset.

Comparison with existing 6 mA predictors. The SVM-based tool iDNA6mA-PseKNC was also imple-
mented in this research. Grid research was used to find the best C and gamma, and the iDNA6mA-PseKNC 
achieved the best performance with C of 0.336 and gamma of 0.02. The same fold used for training csDMA 
was also used for training iDNA6mA-PseKNC. The iDNA6mA-PseKNC predictor received Sn of 0.767, Sp of 
0.769, ACC of 0.767, MCC of 0.536, and F1 of 0.767. Most of the measures were lower except Sp is higher than 
our model with the ExtraTrees classifier. To further compare the performance of the two algorithms. The ROC 
and Precision-Recall curves were also plotted in Fig. 4. Our model received an AUC of 0.893, while iDNA-
6mA-PseKNC got an AUC of 0.840, which also demonstrates that our model achieved better performance than 
the iDNA6mA-PseKNC predictor.

To test the performance of our model across species, we compared the performance of csDMA and iDNA-
6mA-PseKNC on the different datasets, i.e., Cross-species, rice, and M. musculus datasets. For each dataset, 5-fold 
cross-validation was performed and the previously optimized parameters were used. We used the same fold for 
training on different datasets. The five-round results of each measure were averaged and shown in Table 4. For the 
Cross-species dataset, iDNA6mA-PseKNC got an AUC of 0.844, while our model received a higher AUC of 0.879. 
For the rice dataset, iDNA6mA-PseKNC received an AUC of 0.896, while our model achieved a higher AUC of 
0.923. For the M. musculus dataset, both models got the same AUC values, but our model also received higher 
MCC and F1 than those of iDNA6mA-PseKNC. All these results show that the proposed method is very accurate 
and can be used to predict 6 mA sites in different species.

Discussion
Unlike the prediction of m6A modifications in mRNA, the identification of 6 mA modifications in DNA is still 
at the beginning. In this study, we developed an improved tool, called csDMA, for predicting 6 mA modifica-
tions in different species. Three feature encoding strategies were used to generate the feature matrix and different 
algorithms were selected into the model. For performance evaluation, 5-fold cross-validation and independent 
test were used and the ExtraTrees classifier received the best performance on the training and independent test 

Algorithm Sn Sp ACC MCC AUC F1

RandomForest 0.875 0.747 0.814 0.630 0.884 0.832

GradientBoosting 0.765 0.757 0.761 0.522 0.854 0.771

AdaBoost 0.776 0.719 0.749 0.496 0.814 0.764

ExtraTrees 0.888 0.729 0.813 0.628 0.893 0.832

SVM 0.843 0.761 0.804 0.607 0.875 0.819

Table 3. Model performance of the different algorithms on the independent testing dataset. The highest value 
of each column is marked in bold.

Figure 4. Performance comparison of csDMA and iDNA6mA-PseKNC. (A) The ROC curves of csDMA and 
iDNA6mA-PseKNC. (B) The Precision-Recall curves of csDMA and iDNA6mA-PseKNC.
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datasets. We also compared the performance of our tool with that of iDNA6mA-PseKNC. And the results showed 
that our model improved the recognition performance of DNA 6 mA modifications effectively.

The i6mA-Pred predictor is another of the two existing tools for DNA 6 mA prediction. However, the 
research paper is still in the corrected proof phase and their method cannot be reached until our work finished. 
Fortunately, we acknowledge from their online abstract that the method received an ACC of 0.831 by using a jack-
knife test. As jackknife test will generate a fixed ACC on the same dataset and their dataset was also downloaded 
as the rice dataset in this study. Thus, we also evaluated the performance of our model on the rice dataset by using 
a jackknife test and our model received an ACC of 0.859, which is also higher than that of i6mA-Pred.

Although our model received a high performance on the M. musculus dataset, the performance on the rice 
and cross-species datasets were relatively low. In the future, more feature encoding schemes, such as genomic and 
structural features, will be used to improve the performance of csDMA. And also we will extend csDMA to other 
species, such as human and Arabidopsis thaliana.
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