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non-canonical transcriptional 
regulation of heme oxygenase in 
Aedes aegypti
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Boris c. Dunkov3, pedro L. oliveira  1 & Gabriela o. paiva-Silva  1

Heme oxygenase (Ho) is a ubiquitous enzyme responsible for heme breakdown, which yields carbon 
monoxide (co), biliverdin (BV) and ferrous ion. Here we show that the Aedes aegypti heme oxygenase 
gene (AeHO – AAEL008136) is expressed in different developmental stages and tissues. AeHO 
expression increases after a blood meal in the midgut, and its maximal transcription levels overlaps with 
the maximal rate of the further modified A. aegypti biglutaminyl-biliverdin (AeBV) pigment production. 
Ho is a classical component of stress response in eukaryotic cells, being activated under oxidative stress 
or increased heme levels. Indeed, the final product of HO activity in the mosquito midgut, AeBV, exerts 
a protective antioxidant activity. AeHo, however, does not seem to be under a classical redox-sensitive 
transcriptional regulation, being unresponsive to heme itself, and even down regulated when insects 
face a pro-oxidant insult. in contrast, AeHo gene expression responds to nutrient sensing mechanisms, 
through the target of rapamycin (toR) pathway. this unusual transcriptional control of AeHo, together 
with the antioxidant properties of AeBV, suggests that heme degradation by Ho, in addition to its 
important role in protection of Aedes aegypti against heme exposure, also acts as a digestive feature, 
being an essential adaptation to blood feeding.

Aedes aegypti is a vector of important human viral diseases such as yellow fever and dengue, and more recently 
has also been associated with the large-scale emergence of viruses such as Chikungunya1 and Zika2. Both adult 
males and females feed on nectar, but only females require the ingestion of large amounts of vertebrate blood, as 
a nutritional source for oogenesis. Blood is a protein-rich diet that elicits rapid signaling responses that include 
nutritional and endocrine regulation3. Since hemoglobin is the main blood protein, like other hematophagous 
animals, mosquitoes face a unique circumstance regarding its digestion, resulting in the formation of large 
amounts of heme4. Besides its relevance in many physiological processes, free heme is able to amplify formation 
of reactive oxygen species (ROS)5 and to destabilize the membrane structure leading to cell lysis6. Due to the 
potential toxicity of free heme, the intracellular levels of this molecule are strictly controlled by the balance of the 
specific biosynthesis and degradation pathways7.

In most eukaryotic cells, heme oxygenase (HO) catalyzes the degradation of heme, cleaving its alpha-meso 
carbon bridge to yield equimolar quantities of biliverdin IX alpha, CO and free iron7. Free iron is promptly 
sequestered into ferritin and, in mammals, biliverdin is subsequently converted to bilirubin through the action of 
biliverdin reductase8. Thus, heme oxygenase is a major component of cellular response against stress.

Very little is known about the cellular mechanisms involved in heme degradation in blood-feeding insects. The 
heme degradation pathway has only been described in the mosquito A. aegypti9 and in the hemipteran Rhodnius 
prolixus10, vector of Chagas disease. In both cases heme degradation process displays several peculiarities when 
compared to vertebrates pathway. In general, these distinctive features relate to the regular ingestion of heme 
associated with reproduction. Further modifications of biliverdin, with the conjugation of hydrophilic molecules, 
facilitates the completion of heme degradation and the removal of massive amounts of otherwise hydrophobic 
biliverdin molecules4.
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In R. prolixus, we have previously shown the existence of a unique pathway for oxidative heme degradation, 
which produces a modified dicysteinyl-biliverdin IX gamma as the main end-product10, and not the BV IX alpha 
as in the vertebrates. In the mosquito A. aegypti, heme enzymatic degradation has also been shown to occur and, 
differently from all other previously studied organisms, the produced biliverdin is further modified by conjuga-
tion of two glutamine residues, leading to the formation of an excretable biglutaminyl-biliverdin IX alpha (or 
Aedes aegypti biliverdin, AeBV)9.

Thus far, three isoforms of HO, HO-1, HO-2 and HO-3 have been described. HO-2 isoform is constitutively 
expressed, HO-1 is induced by multiple stress stimuli whereas HO-3, only described in Rattus novergicus, is 
considered to be catalytically inactive11. In insects, HO have only been functionally analyzed in the fruit fly 
Drosophila melanogaster12 and the hematophagous mosquito Anopheles gambiae13. However, the physiological 
relevance of HO and of its product BV IX as antioxidant components and the regulation of HO expression in the 
context of adaptation to hematophagy have not been investigated so far.

Taking into account that heme degradation is a priority for cells that are exposed to its high levels, the present 
study sets to fill the gap in the characterization of this relevant pathway pathway in the blood feeding mosquito A. 
aegypti. Here we examined, for the first time in a hematophagous insect, the expression of the Heme oxygenase, 
the key enzyme responsible to the heme degradation. The A. aegypti HO (AAEL008136) gene encodes a predicted 
protein with high degree of similarity with classical heme oxygenase sequences. The transcriptional profile was 
evaluated in parallel with the formation of AeBV, its antioxidant product. Against all odds, our results show that 
the A. aegypti HO gene is transcriptionally regulated by a nutrient-sensing pathway and not by stress or heme 
imbalance, as described for other organisms up to now.

Results
the Aedes aegypti heme oxygenase (AeHo). The gene sequence for heme oxygenase from A. aegypti 
(GenBank accession number AAEL008136) has a 988 bp ORF, which encodes a predicted 233 amino acid poly-
peptide (Fig. 1a). Only one HO-1 predicted ortholog was found in the A. aegypti genome (VectorBase Genome 
Assembly: AaegL5), suggesting that this mosquito expresses only one isoform of HO. No evidences of more than 
one transcript were found in the microarrays and RNA-Seq experiments results deposited in the VectorBase data-
base (www.vectorbase.org). The deduced amino acid sequence of AeHO showed high similarity to sequences of 
heme oxygenases from other insects and also to the inducible human isoenzyme HO-1 (Fig. 1b). The percentage 
of identities/similarities between AeHO and HO amino acid sequences in other insects and humans are shown 
in Fig. 1c. From the alignment we were able to identify conserved residues relevant for enzymatic activity and for 
building of the heme pocket of the catalytic site14, such as the proximal heme ligand His25. Most of the residues 
involved in the interaction with the heme propionate residues localized in the amino terminal portion are also 
conserved. In HO-1, a hydroxyl group is the distal heme ligand and establishes hydrogen bonding to Gly139 and 
Gly143, which are conserved in insect HOs, with the exception of Drosophila melanogaster HO. The fly HO lacks 
a proximal heme ligand resulting in the production of a broad spectrum of BV isomers (α, β, δ)12.

the AeHo expression and heme degradation. In order to address the importance of this gene 
in the mosquito A. aegypti, we initially investigated its broad transcriptional profile, that included the 
non-hematopagous stages (larvae, pupae and adult males) of mosquito, as HO is expressed in many tissues in 
vertebrates, including the ones that are not intensively involved in heme detoxification. AeHO is expressed at dif-
ferent developmental stages as well as in many tissues of blood fed females (Fig. 2a,b). As the trigger of oogenesis 
event is strictly dependent of blood ingestion and digestion in this insect, we compared the expression of AeHO 
in midguts and ovaries of blood-fed females. The AeHO transcript levels increased in midgut and ovaries after 
a blood meal (Fig. 2c,d). In the midgut, AeHO transcripts increased between 24 h and 42 h after the blood meal 
(Fig. 2c), a period of maximum heme concentration in the midgut lumen15, whereas the maximal expression of 
AeHO in the ovary occurred between 48 h and 72 h, when the oogenesis is getting into the end in females mos-
quitoes (Fig. 2d). The amount of AeBV, the end product of the heme degradation pathway, increased in the gut 
until 24 h after the blood meal, then declined (Fig. 2e) as a result of its appearance in the insect feces (Fig. 2f). Due 
to the relevance of biliverdin production as a result of HO activity after blood ingestion, we confined the further 
analyses to the midgut of blood-fed females.

Antioxidant activity of AeBV. It is well known that biliverdin (BV) and bilirubin (BR) are reducing mol-
ecules, acting as antioxidants in vitro and in vivo. Since in mammals BV is rapidly converted to BR by biliver-
din reductase, most studies have been performed with BR. However, in A. aegypti, BV produced by cleavage of 
the heme porphyrin ring is further converted to a biglutaminyl-biliverdin IX alpha (AeBV)9. Similarly to BV 
IXα, AeBV showed antioxidant activity, as demonstrated by the delay of fluorescence decay caused by B-PE 
oxidation induced by the addition of the pro-oxidant ABAP. (Fig. 3a). The antioxidant activity of AeBV was also 
dose-dependent (Fig. 3b).

Considering that the midgut epithelium is potentially subjected to an oxidative challenge imposed by blood 
digestion and the release of high amounts of heme in the lumen, the antioxidant capacity of AeBV could be vital 
to protect midgut proteins from oxidation. In fact, as shown in Fig. 3c, protein oxidation was very extensive in 
the midgut extracts incubated in the presence of t-BOOH and heme, when compared to non-incubated samples. 
However, it could be partially reduced by the presence of AeBV at both tested concentrations. Similar reductions 
were observed with the samples treated in the presence of BV IXα and TROLOX, two well-known antioxidants. 
These results suggest that AeBV may represent a physiological antioxidant system, protecting midguts against 
protein oxidation generated by heme.
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non-canonical transcriptional control of AeHo. HO is one of the major components of the response 
against several types of cellular stress. As a rule, mammalian HO-1 is induced by various stimuli such as oxidative 
stress and inflammation16. Surprisingly, in mosquito midguts, addition of paraquat, a compound that results in 
increased intracellular formation of superoxide anion17, leads to a decrease in AeHO gene expression (Fig. 4a). In 
addition, depletion through RNAi of the Nrf2, a master eukaryotic redox-active transcriptional regulator18 that 
has been extensively related to the induction of HO-1 expression19 (Fig. S1), has no effect on the AeHO mRNA 
levels (Fig. 4b).

Since AeHO transcript levels increase following a blood meal, we sought to verify if heme itself would 
account for this upregulation. To test this, we fed the insects with a protein-rich chemically defined artificial diet 
(Substitute Blood Meal, SBM), supplemented or not with heme20. Also unexpectedly, heme was not able to induce 
AeHO expression at these conditions (Fig. 4c).

In mammalian cells, induction of HO-1 has been recently recognized as a mediator of cellular protection 
against Zika virus (ZIKV) infection21. However, in the midgut of ZIKV-infected mosquitoes, AeHO gene expres-
sion remains unaltered (Fig. 4d).

Since AeHO in not canonically regulated, yet it is still induced throughout blood digestion, we investigated 
whether a nutrient sensor – such as the kinase Target of Rapamycin (TOR) – mechanism would be involved. 
In fact, the blood-meal increase in AeHO expression is partially blocked when protein digestion is impaired 
by ingestion of SBTI, a trypsin inhibitor (Fig. 5a). We further tested whether the amino acid-sensing target of 
rapamycin (TOR) pathway is involved in the control of AeHO transcription. In fact, inhibition of TOR, either by 

Figure 1. Heme oxygenase amino acid sequence. (a) Alignment of HOs from several insects and human 
HO-1, comparing the most important residues in the heme interaction. Residues that contact to heme (red); 
hydrophobic residues wall (blue); residues that exhibit interaction with propionates (green box) and polar 
residues clusters (yellow box). (b) Neighbor-Joining phylogenetic tree for insects and human HOs. The optimal 
tree with the sum of branch length = 3.03131229 is shown. The tree is drawn to scale, with branch lengths (next 
to the branches) in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The 
evolutionary distances were computed using the Poisson correction method and are in the units of the number 
of amino acid substitutions per site. (c) Percent identity matrix based on alignment (Clustal Omega).
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rapamycin (Fig. 5b) or by RNAi specific TOR depletion (Figs 5c and S1) was able to decrease blood-meal induced 
AeHO expression. These findings indicate that amino acid stimulation of the TOR regulatory cascade increases 
AeHO levels in the mosquito midgut upon blood digestion.

Discussion
HO belongs to a large family of stress proteins whose transcriptional regulation also responds to varied types of 
adverse environmental conditions16. HO catalyzes the first and rate-limiting step in the oxidative degradation of 
heme (Fe-protoporphyrin-IX) to produce carbon monoxide, free iron, and biliverdin-IXα22. Large amounts of 
heme are produced in the gut of hematophagous insects, due to proteolysis of dietary hemoglobin. Given that 
proper heme degradation is essential to avoid pro-oxidizing environments in cells, it is expected that HO may 

Figure 2. Aedes aegypti heme oxygenase - expression profile and production of biliverdin. (a) Reverse 
transcription PCR (RT-PCR) revealing heme oxygenase expression from early developmental stages to adults. 
(b) RT-PCR showing HO expression in female tissues dissected 24 h after the blood meal. Gel images were 
cropped and processed to improve clarity – original full-length gels are presented in Supplementary Fig. S2.  
(c) Quantitative PCR (Real time qPCR) showing the time course of HO expression in the midgut and (d) in  
the ovary. Rp49 was used as endogenous control (n = 4). (e) Time course of AeBV production in the midgut.  
(f) Appearance of AeBV in mosquito feces. Results of (e) and (f) are pools of at least 3 independent experiments 
– mAU, 1000x arbitrary units. Error bars indicate the standard error of the mean; one-way ANOVA with 
Dunnett’s post-test with multiple comparisons for (c), (d), (e) and (f), where 0 h or 0–24 h after the blood meal 
samples served as control.
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be relevant in the adaptation of blood-feeding organisms to their heme-rich diet. Upon binding to the HO apo-
protein, the heme molecule serves as the substrate and catalytic cofactor in its own degradation, and is generally 
considered as the prototypical inducer of HO expression23. Here we show that the transcriptional profile of AeHO 
matches the appearance of biliverdin – that has antioxidant properties – in the mosquito midgut. However, AeHO 
appears to be under an unexpected mode of transcriptional control, being regulated by a nutrient-sensing path-
way instead of the canonical stress-response pathway.

While three isoforms of HO have been identified in mammals8, only a single gene coding for a HO is found in 
the Aedes aegypti genome. The identified gene AAEL008136, here named Aedes aegypti heme oxygenase (AeHO), 
encodes a polypeptide with basic residues that are considered essential to allow enzymatic cleavage of the por-
phyrin ring (Fig. 1). There is a high degree of evolutionary conservation of the heme-degrading enzymes with 
HO homologues identified in bacteria, fungi, and plants24–26. Generally, the mechanism of HO-catalyzed heme 
cleavage into an α-isoform of biliverdin, CO and iron is conserved between mammals and these organisms19. 
Among insects, however, there are some notable differences. The D. melanogaster HO-1 homolog (dHO), in 

Figure 3. Antioxidant activity of AeBV. B-Phycoerythrin (B-PE) oxidation, in a prooxidant system, can be 
measured by the loss of its natural fluorescence in a fluorimeter. (a) Biliverdin IX-α and AeBV inhibit B-
Phycoerythrin (B-PE) oxidation initiated by 4 mM ABAP, at the same concentration (250 nM). (b) Effect of 
AeBV is dose-dependent. (C) AaBV protects the midgut against protein oxidation in vitro. Midgut homogenates 
were incubated with heme and t-butyl hydroperoxide in the presence or absence of AaBV (evidenced in dashed 
square) – western-blot of A. aegypti midguts homogenate after incubations, using specific antibodies against 
protein carbonyl-DPNH products. Gel image was cropped and processed to improve clarity – original full-
length blot/gel is presented in Supplementary Fig. S2.
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contrast to mammalian HOs, is not alpha-specific, producing also the IX beta and IX delta isomers of biliverdin. 
Furthermore, the reaction rate is slower than that of mammalian HOs12. In blood-feeding insects, the tetrapyrole 
end products of heme degradation have acquired unique features important to facilitate their elimination. After 
a blood meal, in the gut of R. prolixus and A. aegypti, biliverdins conjugated to specific amino acids, cysteine and 
glutamine, respectively, are generated9,10. These further modified structures increase the solubility of biliverdin, 
converting it to a molecule easier to excrete. This suggests that heme degradation in blood-feeding insects evolved 
to be specialized in the production of massive amounts of biliverdin, generated upon blood digestion. We have 
demonstrated that heme degradation produces high amount of AeBV molecules that show significant antioxidant 
activities in vitro (Fig. 3). Considering that AeBV is produced and excreted in the midgut lumen during the course 
of digestion (Fig. 2e), we can suggest that heme degradation by HO represents a primary defense mechanism 
against heme toxicity: first, by reduction of the prooxidant heme levels and second by the production of a hydro-
soluble antioxidant compound that may protect the gut epithelium against the oxidative challenge triggered by 
blood digestion.

HO is expressed even in stages and tissues that do not face high levels of heme in the diet or environment 
(Fig. 2a,b), suggesting that it is required to basal heme metabolism of that stage/tissue, probably been involved in 
the controlled of the intracellular free iron levels or in the production of CO that can act as a second messenger16. 
A similar result was obtained by a previous group, revealing that HO expression is required to the normal devel-
opment of the non-hematophagous fruit fly D. melanogaster27.

Figure 4. AeHO expression is not increased upon oxidative and viral challenges. Midgut expression of HO by 
real-time qPCR in (a) mosquitoes fed with blood supplemented or not with 500 µM paraquat; (b) paraquat-fed 
(1 mM) dsNrf2-injected mosquitoes; (c) mosquitoes fed with substitute blood meal (SBM) with or without 
50 μM heme; (d) mosquitoes infected with ZIKV (compared to mock control). Results are pools of at least 
3 independent experiments. Error bars indicate the standard error of the mean. Statistical analyses were 
performed by Student’s t-test.
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Maximal expression of AeHO in the midgut occurs from 24 h to 42 h after the blood meal (Fig. 2c), when most 
of the ingested protein has already been degraded28. Monitoring the production of AeBV showed that this end 
product of the heme degradation pathway increased in the gut almost linearly until 24 h, when it starts to decline, 
which can be explained by its appearance in the feces (Fig. 2e,f). The total amount of AeBV (in the midgut content 
and in the feces) remains relatively constant after 24 h post blood meal, suggesting that the period of most intense 
enzymatic activity of the AeHO is, in fact, occurring simultaneously with the release of heme from dietary hemo-
globin. The peritrophic matrix (PM) is a protective barrier with heme-binding activity, secreted by the midgut 
epithelium, composed by chitin, acidic polysaccharides and proteins, which are synthesized de novo in response 
to blood feeding29,30. During the initial hours of blood digestion, it is possible that the growing PM is not able to 
keep pace with the rate of hemoglobin hydrolysis due to elevated trypsin activity. Therefore, if the PM has not 
yet fully developed its capacity to isolate heme during the initial steps of digestion, a significant amount of heme 
would reach the midgut epithelium and AeHO activity would be responsible for counteracting heme toxicity. 
Unfortunately, all attempts to produce AeHO gene silencing by RNAi were unsuccessful (not shown).

Recent work has confirmed the existence of an enzyme with HO activity in An. gambiae, and its functional 
inhibition in adult females (by means of chemical inhibitors) has led to a dose dependent decrease in oviposi-
tion13. This correlates well with the data presented here, which show an ovary-specific peak of HO expression at 
the termination of oogenesis (Fig. 2d). Together with our recent report that silencing of HO shows a deleterious 
effect on oviposition and egg viability in the hematophagous insect R. prolixus31, we hypothesize that the protec-
tive role for HO in blood-feeding insects goes beyond digestion, being crucial for their adaptation to anautogeny 
as a reproductive strategy.

It is well known that the expression of mammalian HO-1 is induced by its substrate, heme, but its expression 
can also be strongly up-regulated in response to various stimuli related to cellular stress and pro-oxidant signals 
(reviewed in32). In the mosquito midgut, transcription of the HO gene is regulated both by ingestion of the meal 
and by formation of digestion products, as trypsin inhibition decreases HO transcript levels (Fig. 5a). However, 
unexpectedly, the ingested heme is not the trigger in this regulatory cascade (Fig. 4c). While this unresponsive-
ness of HO to heme has been briefly described in cultured Drosophila cells before27, here we consolidate this 
feature as part of an intricate physiological regulation of the blood digestion process that couples spatiotemporal 
hemoglobin catabolism, heme degradation and PM formation in the mosquito midgut.

Another unique feature of AeHO is that, in contrast to mammalian HO-1 which is over expressed upon 
ROS stimuli, AeHO showed an opposite profile when the blood meal was supplemented with a ROS genera-
tor molecule, paraquat (Fig. 4a). Nrf2, a basic leucine zipper transcription factor, is a master regulator of the 
transcriptional response to oxidative stress that, upon activation, regulates the expression of genes coding for 
anti-oxidant, anti-inflammatory and detoxifying proteins. For most organisms it is generally accepted that HO is 
one of the key Nfr2 pathway-regulated genes (reviewed in18). In A. aegypti, silencing of the Nrf2-homolog did not 
impair AeHO transcription (Fig. 4b) but significantly altered other stress-related genes33. Aside from a possible 
post-transcriptional regulation of this enzyme, as observed for mammals34, these results support the hypothesis 
of multi-transcriptional control of AeHO expression.

The mosquito heme degradation system seems to follow some canonical aspects in its operation, but also 
involves a unique expression control, that seems related to the pressure imposed by a blood feeding habit. A blood 
meal provides a surplus of heme and iron (an important micronutrient for mosquitoes), coupled with a wide 
range of changes in the expression of genes related to iron/heme homeostasis. Ferritin (an iron-storage protein) 

Figure 5. Amino acid-induced TOR regulatory cascade increases AeHO levels upon blood digestion. Midgut 
expression of HO by real-time qPCR in (a) mosquitoes fed with blood supplemented or not with 100 µM SBTI; 
(b) mosquitoes fed with blood supplemented or not with 20 µM rapamycin, and (c) blood-fed dsTOR-injected 
mosquitoes. Results are pools of at least 3 independent experiments. Error bars indicate the standard error of 
the mean. Statistical analyses were made by Student’s t-test.
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is transcriptionally induced after a blood meal, contributes to sequester iron released from heme digestion, and 
accumulates into the eggs, preventing oxidative damage during embryo development (reviewed in35). Therefore, 
heme degradation is supposed to be protective only when coupled to efficient iron sequestration by ferritin, in 
order to avoid production of reactive oxygen species by Fenton reaction5. In fact, in the mosquito, genes encoding 
ferritin and catalase, that counteract the production of hydroxyl radicals, respectively by isolating iron and scav-
enging hydrogen peroxide, are differentially regulated in the midgut up to 24 hours after a blood meal36 and are 
proposed to be part of a heme and paraquat-induced response37. Accordingly, a negative feedback loop seems to 
be operating in the mosquito - in the presence of high levels of ROS, the midgut cells can decrease heme degrada-
tion, by inhibiting HO expression. This might offer some adaptive value, by avoiding increase in the intracellular 
levels of free iron formed during HO catalysis, which can take part in deleterious reactions. Otherwise, with an 
impaired redox balance, cleavage of the heme ring by HO would represent a pro-oxidant event for the insect.

The highly conserved target of rapamycin (TOR) pathway plays a critical role in regulation of translation by 
conveying extracellular nutritional conditions as an amino acid-sensing system38,39. TOR signaling is a key path-
way linking blood digestion and egg development in A. aegypti40,41. This regulation is finely tuned to the nutri-
tional requirements of the mosquito, and occurs at transcriptional and post-translational levels42,43. Since blood 
digestion impairment (Fig. 5a) is able to suppress AeHO gene expression, we tested whether this nutrient-sensing 
pathway could act upstream in the transcriptional regulation of AeHO. In fact, the use of rapamycin together with 
the blood meal, and the specific TOR depletion by RNAi (Fig. S1) were both effective in down regulating AeHO 
after feeding (Fig. 5b,c). This amino acid-dependent nutrient signaling has been associated with regulation of 
transcripts linked to mosquito vitellogenesis and digestion, in the fat body and the midgut, respectively40,41. The 
TOR-mediated cascade includes a GATA factor, which is the specific transcriptional activator of the vitellogenin 
gene. GATA binds specifically to GATA-binding sites in the proximal promoter region of the vitellogenin gene 
to activate its expression44. Indeed, we also found putative GATA-binding motifs in the promoter region of the 
AeHO gene (Fig. S1), which could indicate that this factor is the final downstream step in the TOR-mediated 
regulation of AeHO. Despite the fact that HO-1 in mammals is induced by rapamycin in injury models45–47, we 
consider that in such examples this enzyme mediates the protective effects of rapamycin, exerting its expected 
cytoprotective role. However, TOR signaling in hematophagous insects has a fundamental role in supporting 
metabolic adaptations important for blood feeding. For instance, in R. prolixus, blood meal amino acids decrease 
ROS levels in the midgut immediately after feeding, through the TOR pathway48. In A. aegypti, this ROS mini-
mizing event is mediated by heme itself49, which strongly indicates that coupling the transcriptional regulation of 
AeHO with protein digestion can be an additional element in the intricate heme-driven response that occurs in 
the mosquito midgut upon blood feeding.

In mammals HO-1 expression and activity have been associated with anti-inflammatory, antioxidant, 
anti-apoptotic, and anti-proliferative effects that underlie tissue-protective responses under pro-inflammatory 
conditions (reviewed in32). Additionally, during viral infections, HO-1 has been reported to display noteworthy 
antiviral activity against a wide variety of viruses, including Zika and dengue viruses (Huang et al., 2017 and 
reviewed in50). Despite the fact that ZIKV infection was not capable of altering AeHO gene expression (Fig. 4d), 
further genetic knockdown studies are required to directly investigate the role of AeHO in the context of mos-
quito infection and its influence on the redox homeostasis and vectorial adaptation of A. aegypti.

Taken together, our results suggest a fundamental and novel role for HO in the mosquito. It is well established 
that heme degradation has an antioxidant role, not only by removal of the pro-oxidant free heme but also due 
to the antioxidant properties of biliverdin. Furthermore, we show that in the A. aegypti midgut, the heme deg-
radation after a blood meal is fine-tuned through a nutrient-sensing regulation, being as essential as the blood 
digestion itself. The enzymatic heme degradation by AeHO seems to play a key role in the adaptation of A. aegypti 
to blood feeding, and its unusual transcriptional regulation may act as an evolutionary response to compensate 
for the massive ingestion of heme (Fig. 6).

Methods
ethics statement. All animal care and experimental protocols were conducted in accordance with the guide-
lines of the Committee for Evaluation of Animal Use for Research (Federal University of Rio de Janeiro, CAUAP-
UFRJ) and the National Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals (ISBN 
0-309-05377-3). Dedicated technicians in the animal facility at the Instituto de Bioquímica Médica Leopoldo de 
Meis (IBQM) carried out all protocols related to rabbit husbandry under strict guidelines to ensure careful and 
consistent animal handling. The protocols were approved by CAUAP-UFRJ under registry #IBQM155/13.

Ho sequence analyses. Multiple sequence alignment was constructed using the Clustal Omega web tool 
(http://www.ebi.ac.uk/Tools/msa/clustalo/). The evolutionary history was inferred using the Neighbor-Joining 
method51 and the analyses were conducted in MEGA752.

Mosquitoes. Aedes aegypti (Red Eye strain) were raised in a mosquito rearing facility at the Federal University 
of Rio de Janeiro, Brazil, under a 12 h light/dark cycle at 28 °C and 70–80% relative humidity. Larvae were fed with 
dog chow20, and adults were maintained in a cage and given a solution of 10% sucrose ad libitum. Four to seven 
day-old females were used in the experiments.

Mosquito meals. Female mosquitoes were artificially fed with the following different diets: (1) 
heparinized-rabbit blood with or without 500 µM paraquat or 20 µM rapamycin; (2) Substitute Blood Meal 
(SBM)20 with or without 50 µM heme. Feeding was performed using water-jacketed artificial feeders maintained 
at 37 °C sealed with parafilm membranes. For RNA sample preparation, midguts (15–20) were dissected 24 h after 
feeding.
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Mosquito gene knock-down by RnAi. Double-stranded RNA (dsRNA) was synthesized from fragments 
amplified from cDNA of whole mosquitoes using specific primers containing a T7 tail. The in vitro dsRNA tran-
scription reaction was adapted from a tRNA transcription protocol53. Briefly, it was performed at 37 °C for 12 h in 
a buffer containing 40 mM Tris•HCl (pH 8.0), 22 mM MgCl2, 5 mM DTT, 2 mM spermidine, 0.05% BSA, 15 mM 
guanosine monophosphate, 7.5 mM of each nucleoside triphosphate, PCR amplified template DNA (0.1 μg/μL) 
and 5 µM of a previously purified T7 RNA polymerase. The transcribed dsRNA was treated with DNAse at 37 °C 
for 30 minutes and precipitated using 1:10 (v/v) 3 M Sodium acetate pH 5.2 and 1 (v/v) of isopropanol. The pellet 
was washed twice with 70% ethanol and then eluted in water to reach a final concentration of 3 µg/µL. Mosquitoes 
were injected in the thorax with the double-stranded RNA (0.4 µg) and were blood-fed 48 h post injections. LacZ 
gene was used as a non-related dsRNA control and was amplified from a plasmid containing a cloned LacZ frag-
ment. The oligonucleotides sequences used in dsRNA synthesis of Nrf2 and TOR can be found elsewhere33,40.

Viral infections. Infection procedures were performed as described previously (Bottino-Rojas et al., 2018). 
Briefly, Zika viral stocks (ZIKV-BRPE

54) were propagated in C6/36 cells maintained in Leibovitz-15 medium sup-
plemented with 5% fetal bovine serum, 1% nonessential amino acids, 1% penicillin/streptomycin and tryptose 
(2.9 g/liter). Females were infected in an artificial blood meal containing a 1:1 mix of rabbit red blood cells and L-15 
medium containing Zika virus. Midguts were dissected at 5 days post-blood meal and subjected to RNA isolation.

RnA isolation, conventional and quantitative pcR analysis. Total RNA was isolated from 20–30 
insects at different developmental stages (first and third instars larvae, and pupae), whole bodies of adult males 
and females and from midgut epithelium, ovary, head, Malpighian tubules, thorax and abdomen (carcass) of 
blood fed females using TRIzol (Thermo Fisher Scientific, Waltham, MA USA) according to the manufactur-
er’s protocol. Complementary DNA was synthesized using the High-Capacity cDNA Reverse transcription kit 
(Thermo Fisher Scientific, Waltham, MA USA). PCR was performed using Taq DNA polymerase (Thermo Fisher 
Scientific, Waltham, MA USA) for 35 cycles (30 seconds at 94 °C, 30 seconds at 60 °C and 30 seconds at 72 °C) 

Figure 6. Overview of the non-canonical and coupled with digestion transcriptional regulation of heme 
oxygenase in Aedes aegypti midgut. Schematic representation of a female of A. aegypti mosquito after a blood 
meal and in detail, the inside of a midgut cell – amino acids activate target-of-rapamycin (TOR) pathway, which 
induces the transcription of AeHO (presumably through the GATA factor) resulting in heme degradation and 
production of AeBV, thus contributing to gut homeostasis and hematophagic adaptation.
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in a thermocycler GeneAmp PCR System 2400 (Thermo Fisher Scientific, Waltham, MA USA). Both fragments 
obtained were about 100 bp in length. PCR products were separated on a 2% agarose ethidium bromide stained gel.

The Real time qPCRs were performed with the StepOnePlus Real Time PCR System (Thermo Fisher Scientific, 
Waltham, MA USA) using the Power SYBR-green PCR Master Mix (Thermo Fisher Scientific, Waltham, MA 
USA). The Comparative Ct Method (Livak and Schmittgen, 2001) was used to compare the changes in the gene 
expression levels. The A. aegypti ribosomal protein 49 gene (RP49) was used as reference gene, based on previous 
data55. All oligonucleotides sequences used in qPCR assays are available in the Supplementary Material.

pigment extraction. For AeBV pigment identification and purification, females were fed with rabbit blood. 
Fifty midguts were dissected under 50% ethanol, transferred to 10 mM sodium phosphate, 0.15 M NaCl, pH 7.4 
(PBS), homogenized and centrifuged for 15 minutes at 12,000 × g. Supernatants were dried under vacuum, kept 
protected from light, and stored at −20 °C until analysis and purification by HPLC.

HpLc fractionation. HPLC was performed on a Shimadzu CLC-ODS C18 column (15 mm × 22 cm) using a 
Shimadzu LC-10AT device (Tokyo, Japan), equipped with a diode array detector (SPD-M10A). Chromatography 
analysis was performed using 5% acetonitrile with 0.05% trifluoroacetic acid (TFA) as solvent, at a flow rate of 
0.4 mL/minutes. Before injection, dried samples were diluted in 10% acetonitrile with 0.05% TFA and centrifuged 
for 15 minutes at 12,000 × g. Ten minutes after sample injection a 40 minutes linear acetonitrile gradient (5–80%) 
was applied, followed by 20 minutes of 80% acetonitrile. Supernatants were dried under vacuum, and stored at 
−20 °C protected from light until use as described above. AeBV peak area data were taken for statistical analyses.

B-phycoerythrin oxidation protection assay. Loss of B-phycoerythrin (B-PE) fluorescence as a result 
of oxidation by peroxyl radicals generated by thermal decomposition of ABAP (2,2′-azobis (2-amidinopropane) 
dihydrochloride) was performed with a protocol modified from56. B-PE (Sigma) stocks were prepared in 0.01 M 
NH4HCO3 pH 5.0 to a final concentration of 2.08 × 10−6 M and stored at 4 °C under light protection. Stock solu-
tions of the pro-oxidant ABAP (40 mM), and of the water soluble antioxidants ascorbic acid, TROLOX (Sigma), 
and AeBV (1 mM) were freshly prepared in 0.075 M NaH2PO4/KH2PO4 buffer pH 7.0. BV IXα solution (1 mM) 
was prepared in DMSO (Sigma). For B-PE oxidation assays with BV IXα, AeBV was also dissolved in DMSO. 
The B-PE oxidation reaction was started by addition of 10 µL of ice-cold ABAP stock solution to a cuvette con-
taining the reaction mixture (1 mL) composed of B-PE (1,65 × 10−8 M) and the antioxidants (250 nM) in 0.075 M 
NaH2PO4/KH2PO4 buffer pH 7.0, at 37 °C. Control samples were prepared in the absence of antioxidants. DMSO 
was added to the controls of BV IXα assays. Fluorescence was monitored in a VARIAN Cary Eclipse Fluorescence 
Spectrophotometer (Agilent Technologies, CA, USA) Fluorimeter for 60 minutes, excitation was measured at 
540 nm and emission at 565 nm. For data analyses, fluorescence emission values were expressed as percentage of 
the initial fluorescence of B-PE.

Detection of protein carbonylation by western blot. Heme stock solutions (5 mM) were prepared 
as following: 3.27 mg of hemin was dissolved in 200 µL of 0.1 N NaOH and vigorously vortexed for 10 min-
utes. 800 µL of PBS pH7.4 was added followed by vigorous vortexing for 5 minutes. The solutions of 10 mM 
tert-butylhydroperoxide (t-BOOH) (Sigma) and TROLOX were prepared in Milli-Q water. Biliverdin IX alpha 
(BV IXα) stocks were prepared in 0.1 M of NaOH. The AeBV stock was prepared as described above. All the 
solutions were freshly prepared.

A single homogenate (female midguts extract) from 40–50 midguts was prepared as described in the item 
pigment extraction. We challenged midgut extract samples with a reaction mixture, composed by t-BOOH in 
the presence of heme, a system that is able to produce alkyl and peroxyl radicals. Carbonyl groups derived from 
oxidation of midgut proteins were subjected to derivatization with DPNH (2,4-dinitrophenylhydrazine) and 
detected by western-blot using anti-DPNH antibodies.

Samples of the guts homogenate (30 µg of total protein content) were incubated in PBS, pH 7.4 with 500 µM 
t-BOOH and 100 µM heme, in the absence or presence of AeBV (25 or 100 µM), for 60 minutes at 37 °C. Samples 
from the same homogenate were also incubated with 500 µM t-BOOH and 100 µM heme, in the absence or pres-
ence of Biliverdin IXa (25 or 100 µM), and the antioxidant TROLOX as controls. The oxidation reactions were 
stopped by addition of 50 mg/mL of the antioxidant butyl-hydroxytoluene (BHT) and SDS-PAGE loading buffer. 
BSA incubated with heme and t-BOOH or non-incubated midgut homogenates and BSA samples were used 
as positive and negative controls, respectively. Samples were subjected to 15% SDS-PAGE and transferred to 
PVDF membranes. Proteins were derivatized by treatment with 0.1 mg/mL DNPH in 2 N HCL for 30 minutes at 
RT. After incubation, membranes were washed 3 times with 2 N HCL and 5 times with 100% Methanol. Finally, 
membranes were rinsed with PBS and incubated with rabbit anti-DPNH antibody (Thermo Fisher Scientific, 
Waltham, MA USA) diluted 1:5000. Sequentially, anti-rabbit IgG conjugated to horseradish peroxidase and ECL 
Western blotting detection system was used (Thermo Fisher Scientific, Waltham, MA USA) according to the 
manufacturer’s instructions. This analysis was followed by visualization on X-ray film (Amersham Hyperfilm 
ECL, Buckinghamshire, United Kingdom). Membranes were kept under light protection during all procedures 
described above (modified from Wehr and Levine, 2012). BSA (about 2 µg) was used as positive control for the 
oxidation system. BV IXα and TROLOX (25 or 100 µM) (Sigma) were used as standard antioxidants for this 
antioxidant capacity assay.

Statistical analysis. All analyses were performed with GraphPad Prism Statistical Soſtware Package (Prism 
6.0, GraphPad Soſtware, Inc., San Diego, CA). Asterisks indicate significant differences (***p < 0.001; **p < 0.01; 
*p < 0.05; ns = non-significant) and each used post-test analysis is described in its respective figure legend.
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Data Availability
All data generated or analyzed during this study are included in this published article (and its Supplementary 
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