
1Scientific Reports |         (2019) 9:10780  | https://doi.org/10.1038/s41598-019-47351-w

www.nature.com/scientificreports

Assessment of Choroidal Thickness 
Inside and Outside of Vascular 
Arcade in Diabetic Retinopathy 
Eyes Using Spectral-Domain 
Optical Coherence Tomography
Kyeong Do Jeong1, Jae Yong Park2, Bo Na Kim3, Jae Suk Kim2, Min Ji Kang2 & Je Hyung Hwang   2

This study aimed to characterise the distribution of choroidal thickness (CT) in diabetic retinopathy 
eyes, inside and outside of the vascular arcade, as well as at the fovea, using spectral-domain optical 
coherence tomography (OCT). Forty-nine healthy eyes, 80 diabetic retinopathy (DR) eyes (59 non-
proliferative diabetic retinopathy (NPDR) eyes and 21 proliferative diabetic retinopathy (PDR) eyes) 
were examined with OCT to obtain nine horizontal lines (far superotemporal, near superotemporal, 
central, near inferotemporal, far inferotemporal, far superonasal, near superonasal, near inferonasal, 
far inferonasal) inside and outside of the vascular arcade. Nine points were chosen in 0.5-mm intervals 
to calculate CT, which was measured at 81 points in each patient. In the DR group, CT decreased 
significantly, compared with the control group, in all nine horizontal lines except central and near 
inferotemporal (−29.74 to −36.97 μm, p < 0.05 for all). In the PDR group, CT decreased compared 
with the NPDR group, in all nine horizontal lines (−6.18 μm to −34.58 μm), but this difference was not 
significant. In DR eyes, an overall significant reduction of CT was observed inside and outside of the 
vascular arcade; CT showed a non-significant decrease in PDR eyes, compared with NPDR eyes.

Diabetic retinopathy (DR) is a complication of diabetes mellitus (DM) and a leading cause of blindness world-
wide1. DR is generally thought to be caused by abnormalities of retinal microvasculature, but recent studies have 
shown that the choroid plays an important role in the progress of DR2,3. The choroid is a layer of the eye that pro-
vides 95% of the ocular blood flow; it supplies oxygen and nutrients to the outer retina, including photoreceptors 
and retinal pigment epithelium, and is the sole provider of blood flow to the avascular fovea4. This function of the 
choroid is affected in DR, in association with choroidal vasculopathy3,5,6.

Many studies have been conducted to investigate the relationship between DR and choroidal thickness 
(CT). In the past, CT was measured using ultrasonography, but this method was characterised by an inability 
to measure the exact thickness or detect small changes7. In recent years, optical coherence tomography (OCT) 
has become the gold standard for retinal imaging, and the enhanced depth imaging (EDI) mode has enabled 
acquisition of images of the choroid below the retina8. OCT has thus been used to investigate the relationship 
between DR and CT. Thus far, changes have been assessed in subfoveal, parafoveal, and parapapillary CT, among 
DR patients, regardless of severity. In the present study, we used the EDI mode of spectral domain-OCT to char-
acterise changes in CT in the periphery of the macula, as well as outside of the vascular arcade, in DR patients. 
Moreover, we assessed variations in peripheral CT according to the degree of DR severity.
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Results
This study included 49 subjects in the control group (26 men, 23 women), 59 in the non-proliferative DR (NPDR) 
group (30 men and 29 women), and 21 in the proliferative DR (PDR) group (10 men and 11 women). The mean 
ages of subjects in the three groups were 59.67 ± 10.01 years, 61.20 ± 11.11 years, and 63.29 ± 9.40 years, respec-
tively; age did not significantly differ among the groups (p = 0.405) (Table 1). Intraclass correlation coefficient 
between the two independent observers was 0.990 (P < 0.001).

Comparison of CT between the control and DR groups revealed that CT significantly decreased in all nine 
horizontal lines, except centre (Cf) and near inferotemporal (ITn). Notably, the CT also decreased in Cf and 
ITn, but these differences were not statistically significant (p = 0.092, p = 0.051) (Table 2). Comparison of NPDR 
and PDR groups (i.e., subgroups within the DR group) revealed that the CT of the PDR group decreased in all 
nine horizontal lines, but these differences were not statistically significant (Table 3). Comparison of the control, 
NPDR, and PDR groups showed that CT continuously decreased in all nine horizontal lines, in accordance with 
the progression of DR (Fig. 1).

Comparison of the CT reduction rate based on the progress of DR for each of the nine horizontal lines showed 
that the CT reduction rate was greater for the far lines than for the near lines; however, there was no particular 
tendency in the comparison between NPDR and PDR groups. The NPDR group showed a reduction of 5–18.1% 

Control group NPDR group PDR group

Number of 
subjects 49 59 21

Sex (M/F) 26/23 30/29 10/11

Age (years, 
mean ± SD) 59.67 ± 10.01 61.20 ± 11.11 63.29 ± 9.40

Table 1.  Baseline characteristics. M, male; F, female; SD, standard deviation; NPDR, non-proliferative diabetic 
retinopathy; PDR, proliferative diabetic retinopathy.

Horizontal 
lines Control DR p-value

STf 262.40 ± 45.98 229.93 ± 65.18 0.001

STn 286.60 ± 50.71 251.37 ± 83.23 0.003

Cf 268.73 ± 49.52 246.26 ± 99.78 0.092

ITn 243.56 ± 55.91 218.45 ± 89.04 0.051

ITf 209.40 ± 55.76 172.43 ± 64.42 0.001

SNf 226.22 ± 50.44 196.48 ± 62.12 0.005

SNn 213.21 ± 50.06 192.46 ± 67.18 0.048

INn 194.78 ± 51.50 163.10 ± 66.90 0.003

INf 175.40 ± 48.10 142.49 ± 47.03 <0.001

Table 2.  Comparison of choroidal thickness between control and DR groups in nine horizontal lines. In 
control and DR columns, values are mean ± standard deviation (in μm). DR, diabetic retinopathy; STf, far 
superotemporal; STn, near superotemporal; Cf, central; ITn, near inferotemporal; ITf, far inferotemporal; SNf, 
far superonasal; SNn, near superonasal; INn, near inferonasal; INf, far inferonasal.

Horizontal 
lines NPDR PDR p-value

STf 234.24 ± 62.10 217.83 ± 73.43 0.325

STn 256.75 ± 85.79 236.24 ± 75.45 0.335

Cf 255.34 ± 105.94 220.76 ± 76.50 0.174

ITn 220.08 ± 88.09 213.88 ± 93.69 0.786

ITf 175.79 ± 56.07 163.01 ± 84.54 0.525

SNf 198.11 ± 59.49 191.92 ± 70.34 0.721

SNn 200.16 ± 64.86 170.84 ± 70.43 0.086

INn 169.71 ± 65.50 144.52 ± 68.88 0.139

INf 143.63 ± 47.38 139.29 ± 47.01 0.719

Table 3.  Comparison of choroidal thickness between NPDR and PDR groups in nine horizontal lines. In 
NPDR and PDR columns, values are mean ± standard deviation (in μm). NPDR, non-proliferative diabetic 
retinopathy; PDR, proliferative diabetic retinopathy; STf, far superotemporal; STn, near superotemporal; Cf, 
central; ITn, near inferotemporal; ITf, far inferotemporal; SNf, far superonasal; SNn, near superonasal; INn, near 
inferonasal; INf, far inferonasal.
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in CT, relative to that of the control group, while the PDR group showed a reduction of 3–14.8% in CT, relative to 
that of the NPDR group (Table 4).

Discussion
Previous studies measured the CT around the fovea to determine its correlation with DR. Endo et al.9, Rewbury 
et al.10, and Eliwa et al.11 only measured subfoveal CT. In contrast, Tavares Ferreira et al.12, Unsal et al.13, Tavares 
Ferreira et al.14, and Kim et al.15 measured CT within 1.5 mm from the fovea. Regatieri et al.16 measured CT within 
2.5 mm from the fovea, while Sheth et al.17 measured CT within 3 mm from the fovea. Lains et al.18 performed a 
12-mm × 9-mm volume scan using swept-source OCT, and Esmaeelpour et al.19 observed the CT change in a 
36° × 36° field around the fovea using three-dimensional 1060-nm OCT. Notably, all of these preceding studies 
observed CT changes inside the vascular arcade. The present study is clinically meaningful because—to the best 
of our knowledge—it is the first to investigate CT changes outside of the vascular arcade in DR patients.

The overall CT distribution in DR patients is similar to that in normal subjects. Park et al.20 reported that 
the CT in normal subjects is thickest near the superotemporal aspect of the temporal area and becomes thinner 
toward the periphery. In the nasal area, the CT is thickest near the superonasal aspect and becomes thinner in the 
caudal direction. In the present study, both NPDR and PDR groups exhibited a normal CT distribution, similar 

Figure 1.  Changes in choroidal thickness with the progression of diabetic retinopathy in nine horizontal lines. 
NPDR, non-proliferative diabetic retinopathy; PDR, proliferative diabetic retinopathy; STf, far superotemporal; 
STn, near superotemporal; Cf, central; ITn, near inferotemporal; ITf, far inferotemporal; SNf, far superonasal; 
SNn, near superonasal; INn, near inferonasal; INf, far inferonasal.

Control/NPDR NPDR/PDR Control/PDR

STf 0.893 0.930 0.830

STn 0.896 0.920 0.824

Cf 0.950 0.865 0.822

ITn 0.904 0.972 0.878

ITf 0.839 0.927 0.778

SNf 0.876 0.969 0.848

SNn 0.939 0.854 0.801

INn 0.871 0.852 0.742

INf 0.819 0.970 0.794

Table 4.  Comparison of reduction rate of choroidal thickness with progression of diabetic retinopathy in nine 
horizontal lines. NPDR, non-proliferative diabetic retinopathy; PDR, proliferative diabetic retinopathy; STf, far 
superotemporal; STn, near superotemporal; Cf, central; ITn, near inferotemporal; ITf, far inferotemporal; SNf, 
far superonasal; SNn, near superonasal; INn, near inferonasal; INf, far inferonasal.
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to that of previous studies. Previous studies have shown that the central CT becomes thinner in patients with 
DR than in normal subjects. Querques et al.21 reported that the subfoveal CT decreased more in patients who 
had diabetes with retinopathy than in those who had diabetes without retinopathy. However, there is contro-
versy regarding changes in CT around the macula, depending on the progress of DR. Vujosevic et al.22 reported 
that macular and peripapillary CTs decreased as DR progressed. Moreover, Regataeri et al.16 reported that the 
PDR and diabetic macular edema (DME) groups showed a significant reduction in CT compared to that of the 
control group, whereas the NPDR group did not show a significant difference in CT compared to that of the 
control group. However, Shen et al.14 reported that the CTs measured with cirrus OCT in patients with mild to 
moderate NPDR significantly decreased when compared to those of the control group. Kim et al.15 and Rewbury 
et al.10 reported that the CT increased from moderate-severe NPDR to untreated PDR, and that the DME group 
had thicker CT than did the non-DME group. In this study, when the DR group was divided into two groups 
(NPDR and PDR), the CT decreased as DR progressed to PDR; however, there was no significant difference in CT 
between NPDR and PDR groups.

The results of the present study confirm that CT decreases in the central region of the choroid, and reveal that 
CT decreases outside of the vascular arcade; this latter finding has not been described in previous reports. In the 
PDR group, the CT decreased by approximately 12.2–25.8%, compared to the CT in the control group. This sug-
gests that changes in CT due to DR are reduced throughout the choroid, as well as in the subfoveal and parafoveal 
portions of the choroid. It is reasonable to hypothesise that the reduction of choroidal circulation due to DR is the 
underlying cause of a reduction in peripheral macular CT in patients with DR. Previous histological studies have 
reported increased blood vessel tortuosity, local vasodilatation and stenosis, formation of nonperfusion area, and 
loss of choriocapillaris in DM patients3,23–25. In the prior studies, the authors also reported the use of laser dop-
pler flowmetry to observe that choroidal changes in choriocapillaris caused choroidal changes in early choroidal 
vessels, rather than in large choroidal vessels. Indocyanine green angiography showed that choroidal vascular 
filling delay increases with progression of DR; in patients with DME, choroidal circulation showed further reduc-
tion26–28. These changes occurred in the vascular arcade and throughout the choroid (i.e., outside of the vascular 
arcade). Therefore, as shown in the present study, the peripheral CT will be reduced with the progression of DR. 
In the future, further studies are needed regarding peripheral choroidal blood flow.

There were some limitations in this study. First, a group of patients with DME was not clearly defined. Previous 
studies have shown that subfoveal CT depends on the presence of DME. Kim et al.15 reported that the DME group 
had increased subfoveal CT, compared to the non-DME group; furthermore, Sheth et al.17 reported that subfoveal 
CT increased in DM patients without macular ischemia. However, Unsal et al.13 and Nagaoka et al.26 reported that 
the DME group had lower CT than the control group. Understanding of DR will be enhanced by more thorough 

Figure 2.  Representative model of the study on choroidal thickness in and outside of the vascular arcade using 
spectral-domain optical coherence tomography. Choroidal thickness was measured along far superotemporal, 
near superotemporal, centre, near inferotemporal, far inferotemporal, far superonasal, near superonasal, near 
inferonasal, and far inferonasal lines. From each of the nine lines, nine points were chosen at 0.5-mm intervals 
to calculate choroidal thickness.
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characterisation of the correlation between peripheral CT and the presence of DME. Furthermore, a group of 
patients who had DM without DR was not considered separately, in contrast to the approach of other studies. 
Shen et al.14 reported that the DM without DR group exhibited reduced subfoveal CT, compared to that in the 
control group. Because DM can affect the choroid regardless of the presence of DR, further studies regarding 
peripheral choroid may facilitate understanding of the effect of DM on the choroid. The duration of diabetes and 
diabetic retinopathy were not confirmed by retrospective review of medical records. The choroidal thickness may 
vary according to the duration of the disease, so future studies will need to reflect this. In addition, studies are 
needed regarding changes in CT that occur in mild, moderate, and severe stages of NPDR.

In the present study, we did not examine the relationship between CT and blood glucose levels, including 
HbA1c. Unsal et al.13 argued that HbA1c and central CT have a weak-moderate negative correlation. Thus, fur-
ther research is needed to clarify the relationship between blood glucose level and peripheral CT. Spectral-domain 
OCT can be used to measure central and peripheral choroidal thickness outside the vascular arcade. Compared 
to normal subjects, CT decreases in both central and peripheral areas in patients with DR; notably, CT tends to 
decrease in accordance with the progression of DR.

Methods
This was a retrospective review of medical records, based on data acquired at Sanggye Paik Hospital during the 
period from June 2012 to December 2012. Data acquisition and analysis were approved by the institutional review 
board of Inje University, and the institutional review board waived the requirement for informed consent because 
this study constituted a reanalysis of data from previously approved studies. This study was performed in accord-
ance with the Declaration of Helsinki.

Subjects.  All recruited patients underwent dilation and then completed the following examinations: fundu-
scopic examination, funduscopic photography, funduscopic fluorescent photography, and OCT with a slit-lamp 
microscope. The degree of DR was graded in accordance with the Early Treatment of Diabetic Retinopathy Study 
grading system. The patient group consisted of adults with DR who were over the age of 40 years. The control 
group also consisted of adults over the age of 40 years, because age can affect CT. Exclusion criteria were as fol-
lows: (1) a history of laser photocoagulation or intravitreal injection (anti-vascular endothelial growth factor and/
or steroid treatment) or retinal surgery; (2) the presence of more than 3 dioptres of myopia; (3) the presence of 
macular oedema; (4) a history of age-related macular degeneration, choroidal neovascular membranes, retinal 
vein occlusion, or other retinal disorders; (5) a history of optic neuropathy, including glaucoma; (6) a history of 
any neurodegenerative disease known to affect retinal nerve fibre layer thickness; (7) the presence of systemic 
hypertension (blood pressure >140/90 mmHg); and (8) difficulty in observing a subject’s retina due to opaque 
media, or difficulty in conducting OCT for a given subject. We studied the right eyes of all subjects. The DR group 
was compared with the control group that was not diagnosed with DR; in addition, the DR group was divided into 
the NPDR and PDR groups, based on the progress of DR.

OCT protocols.  Spectral-domain OCT (Heidelberg Engineering, Heidelberg, Germany) with EDI mode 
and eye-tracking system was used to capture OCT images; one skilled examiner captured images of all subjects. 
Images of the subjects’ eyes were obtained while subjects were gazing at superior, middle, inferior, superonasal, 
and inferonasal spots using a built-in fixation point system in the OCT.

A 25-horizontal line posterior pole scan (30° × 20°, 240-μm intervals) was performed while subjects were 
gazing at the superior, middle, and inferior spots. In the superior gazing spots, the first and thirteenth lines were 
selected for analysis; in the middle gazing spots, the 13th line was selected; and in the inferior gazing spots, the 
25th line was selected. From the top, the lines were designated as the far superotemporal line (STf), near supero-
temporal line (STn), central (Cf), near inferotemporal (ITn) and far inferotemporal line (ITf).

A 25-horizontal line posterior pole scan (20° × 20°, 240-μm intervals) was performed while subjects were gaz-
ing at the superonasal and inferonasal spots. While gazing at the superonasal spot, the temporal end of the line of 
the scan area was manually aligned with the temporal margin of the optic disc; the 25th line was manually aligned 
with the inferior margin of the optic disc. Similarly, while gazing at the inferonasal spot, the temporal end of 

Figure 3.  An example of choroidal thickness measurement along the centre line (Cf). Choroidal thickness was 
measured from the retinal pigment epithelium to the choroidoscleral junction at 0.5-mm intervals.

https://doi.org/10.1038/s41598-019-47351-w


6Scientific Reports |         (2019) 9:10780  | https://doi.org/10.1038/s41598-019-47351-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

line of the scan area was manually aligned with the temporal margin of the optic disc; the first line was manually 
aligned with the superior margin of the optic disc. From the top, the first and 13th lines of the superonasal gazing 
spots, and the 13th and 15th lines of the inferonasal gazing spots, were designated as the superonasal line (SNf), 
near superonasal line (SNn), near inferonasal line (INn), and far inferonasal line (INf) (Fig. 2).

CT was measured manually by two skilled examiners(KDJ and JYP), using a built-in calliper within the OCT 
software. The average of the two measured values was used for analysis. CT was defined as the distance from the 
outer portion of the hyperreflective line corresponding to the retinal pigment epithelium, to the hyperreflective 
line between the large vessel layer of the choroid and the sclera. CTs were measured at the central point of each 
line, as well as at 0.5 mm, 1.0 mm, 1.5 mm, and 2.0 mm from the centre. The average CT of the nine choroidal lines 
was determined as the CT of each line (Fig. 3).

Statistical analysis.  For statistical analysis, Student’s t-test was performed to compare CT between groups. 
All analyses were performed on all nine lines mentioned above, using IBM SPSS Statistics version 25 (SPSS Inc., 
Chicago, IL, USA); differences were considered to be statistically significant when p < 0.05. Reliability analysis was 
done to calculate the intraclass correlation coefficient in order to evaluate the credibility of the CT measurement.

Data Availability
The data are not available for public access because of patient privacy concerns, but are available from the corre-
sponding author on reasonable request.
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