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evaluating link prediction by 
diffusion processes in dynamic 
networks
Didier A. Vega-Oliveros  1,2, Liang Zhao  2 & Lilian Berton3

Link prediction (LP) permits to infer missing or future connections in a network. The network 
organization defines how information spreads through the nodes. In turn, the spreading may induce 
changes in the connections and speed up the network evolution. Although many LP methods have 
been reported in the literature, as well some methodologies to evaluate them as a classification task 
or ranking problem, none have systematically investigated the effects on spreading and the structural 
network evolution. Here, we systematic analyze LP algorithms in a framework concerning: (1) different 
diffusion process – Epidemics, Information, and Rumor models; (2) which LP method most improve the 
spreading on the network by the addition of new links; (3) the structural properties of the LP-evolved 
networks. From extensive numerical simulations with representative existing LP methods on different 
datasets, we show that spreading improve in evolved scale-free networks with lower shortest-path 
and structural holes. We also find that properties like triangles, modularity, assortativity, or coreness 
may not increase the propagation. This work contributes as an overview of LP methods and network 
evolution and can be used as a practical guide of LP methods selection and evaluation in terms of 
computational cost, spreading capacity and network structure.

The emergence of social media has attracted considerable attention from researchers and companies. New 
platforms are continually emerging, e.g., Facebook and Flickr (2004), YouTube (2005), Twitter (2006), Sina 
Micro-blog (2009), among others. Given the relevance for different domains and areas, research topics such as 
Link Prediction (LP)1–3 and information diffusion4–6 have received substantial attention in complex and social 
networks area during the last years2–4. However, they are topics mostly studied in separated, even that their results 
are applied in similar domains, like viral marketing, political campaigns, and business process modeling.

The problem of recommending links has several applications, like suggesting missing and probable connec-
tions in noisy data7 or influential node identification8. In particular, the prediction of future links is helpful for 
the understanding of the network and communication evolution9,10. For example, in social media platforms, 
promising connections that not exist yet can promote engagement and interaction among users9, which also 
affects the network structure. In turn, the network structure impacts on the communication or the spread of 
information4,5,11.

LP methods estimate the new edges according to some connection strategies, like the distance and shortest 
paths among nodes, the triangles or triadic closure, the similarity with mutual neighbors, among others1,2,7–9. 
These structural factors are vital in interpreting networks evolution. For example, famous and influential users 
tend to gain more connections, creating traffic-based shortcuts and improving the efficiency of information 
spreading on the network9. Thus, analyzing the diffusion process can help to understand the impact of users 
interaction, e.g., how re-posting a message affects the spread of memes, videos, or fake news (rumors) on the 
networks. Users, in online social networks, not only make new friends but also seek and share information. When 
a user shares a message, his/her contacts can be influenced to re-post that information, driven by the homophily 
property that generates a diffusion process6,9.

On the other hand, diffusion processes on networks are essential for social science research, viral market-
ing applications, and epidemiology. Understanding how information spread has attracted much interest over 
the recent years, mainly because of the convenience of such predictions for effective marketing and political 

1School of informatics, computing and engineering, indiana University, Bloomington, in, USA. 2Department 
of computing and Mathematics, University of São Paulo, Ribeirão Preto, SP, Brazil. 3institute of Science and 
technology, federal University of São Paulo, São José dos campos, SP, Brazil. correspondence and requests for 
materials should be addressed to D.A.V.-O. (email: davo@icmc.usp.br)

Received: 18 April 2019

Accepted: 12 July 2019

Published: xx xx xxxx

opeN

https://doi.org/10.1038/s41598-019-47271-9
http://orcid.org/0000-0001-9569-3775
http://orcid.org/0000-0002-1502-6604
mailto:davo@icmc.usp.br


2Scientific RepoRts |         (2019) 9:10833  | https://doi.org/10.1038/s41598-019-47271-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

campaigns. Works in the area investigate which factors affect the reach of the diffusion4, how to effectively dis-
seminate information5,11, which network properties promote a fast propagation12, and the influential capacity of 
nodes13,14. Although the previous studies helped to identify valuable insights into the diffusion processes, they 
disregard the effects of the dynamic evolution of connections.

Articles and methodology evaluations available on the literature focus on accurately estimate the classification 
performance over missing links1–3, but not the impact on the spreading capacity of the network. An initial study9 
found clear evidence, in a meme dataset, that the spread of information affects the network evolution. Similar, in 
a micro-blogging platform, it was found that information diffusion affects the creation of new links10. The authors 
conclude, based on their data analysis, that including the diffusion process as a feature in the recommendation 
of new links performs better than only using topological properties. However, both works did not consider or 
evaluate LP strategies, neither a general method of evaluation or characterize the evolved networks. In the LP 
area, it was reported a measure based on the geometric mean of the AUC for evaluating the accuracy of LP meth-
ods15. They denominated ‘dynamic link prediction’ the problem of adding or removing recommended edges. 
Still, they did not consider any diffusion process, network evolution or structural characterization. In the line of 
the diffusion processes, two rewiring models were proposed to compare the effects on information spreading in 
scale-free and small-world networks16. However, the authors did not consider the addition of new edges, nor the 
effects on the structure of the networks. To the best of our knowledge, there have not been prior studies analyzing 
the role that LP methods, by the addition of new edges, have in the network and spreading capacity. Even more, 
a methodology that evaluates the LP methods concerning the information diffusion and structural evolution of 
the network. The evolutional behavior of adding links is common in complex networks9,10,15. For instance, online 
social networks are not static, growing over time through the addition of new edges, i.e., new friendships and 
collaborations are created continuously.

Here, we aim to investigate how the addition of new connections, guided by the LP methods, influence the 
information diffusion and structural evolution of the network. The addition of links can be associated with the 
speed up in the network evolution9, given that it impacts in the spreading capacity and topology of the network. 
We provide a comprehensive analysis of some representative local and global LP strategies, evaluating the struc-
ture of the evolved networks and, consequently, the effects on the diffusion process. Then, we categorize the LP 
methods based on their network structure and spreading, pointing the properties and strength of the methods.

We perform extensive simulations on two artificial network models and six real-world datasets (Fig. 1, box A), 
employ seven link prediction methods (Fig. 1, box B), and evaluate the spreading capacity of the network under 
three diffusion models (Fig. 1, box C). The list of LP methods is not exhaustive, due to the objective here is not 
to identify the best LP algorithm in the literature, but a method for evaluating the role that LP strategies have in 
the diffusion and structural evolution of the network. The main contributions of this work can be summarized 
as follow:

•	 To the best of our knowledge, this is the first study to evaluate the spreading capacity on evolving networks by 
LP methods. Moreover, our method is a new evaluation approach to the performance that LP methods have 
in the spreading and structural evolution of the network.

Figure 1. Workflow of the proposed method. (A) The employed datasets with two artificial–Barabási-Albert 
(BA)21 and Erdös-Rényi (ER)20 network models–and six real-world networks. (B) The evaluated LP methods: 
Common Neighbors (CN)29, Jaccard Coefficient (JC)30, Adamic Adar (AA)31, Rooted Pagerank (RP)1,2, 
SimRank (SR)32, Graph Distance (GD)1,2, and Random selection (RN); moreover, we produce LP-evolved 
networks with 1, 5, 10, and 20% of new edges. (C) The adopted diffusion models4,17 and the respective diffusion 
parameters: the epidemic Susceptible-Infected-Recovered (SIR), the information Independent Cascade (IC), 
and the rumor Maki-Thompson (MT) models. (D) The spreading capacity is the average size of outbreaks in 
terms of each node; the analyses and statistical test are performed in the evolved networks with respect to the 
original version. (E) The topological properties used for characterize the evolved networks: largest hub 
(max(k)), the complexity (C)33, the entropy (∼H)34 and second moment (〈k2〉) of degree distribution, the network 
assortativity (ρ)22, the modularity ()22, clustering coefficient (CC)35, the average of betweenness centrality 
(B)33, K-Core (KC)4, structural holes (SH)36, and shortest paths (〈 〉 ), and the diameter ( max( )) of the network.
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•	 We find by statistical tests that RP method enhances the spreading capacity with a significant difference, con-
sidering the evolved versions of the original networks. On the other hand, CN and AA are the worst methods 
for improving the spreading capacity.

•	 We characterize the evolved networks by the LP methods considering several centrality measures (Fig. 1 box 
E), showing that AA, CN, and GD generate new versions with higher degree complexity and triangles. On the 
other hand, RP has a minor impact on the complexity and assortativity of the evolved networks and a higher 
impact on the shortest paths and structural holes.

•	 We analyze the interplay between the network evolution and the diffusion process. The results indicate that 
evolved networks with lower shortest paths and structural holes have a higher spreading capacity.

Results
We generate evolved versions of the original networks by adding a percentage of new predicted edges: 1, 5, 10, 
and 20%. The adopted LP methods produce the evolved versions (please, see Fig. 1, box B) for evaluating how the 
addition of edges improves the spreading capacity and affects the topological properties concerning the original 
network. Also, we consider as the baseline the random addition of links (RN).

For each node i ∈ V, with |V| = N the set of N nodes in the network, it is calculated the final fraction of 
informed individuals per node (ϕi) according to some diffusion process. This ϕi means the information reach 
when i is the initial spreader, and it is an average over 1000 realizations. The spreading capacity of the network 
(ϕV) is the average size of outbreaks for all nodes, i.e.,

∑ϕ ϕ=
∈N

1 ,
(1)

V

i V

i

which values are between [0, 1]. The spreading capacity quantifies the reach of the diffusion process on the 
network.

LP methods can serve as tools for enhancing and predicting the growth of social networks, e.g., satisfying 
user’s connectivity preferences and improving the spreading as the network evolves. For this reason, to under-
stand the implications of how the evolution by adding new edges affect the network structure and spreading 
capacity, and how suitable are the LP methods to model this evolution, we divide the results into spreading and 
topological analyses.

Spreading analysis. We consider the epidemic SIR, the rumor MT, and information Independent Cascade 
IC models4,17, according to Algorithm 1 in the Methods section. The transmission strength λ = β/μ is the ratio of 
the probability to inform over the probability to become stifler12. The λ can be seen as the maximum spreading 
potential of information. Without loss of generality, for SIR and MT simulations we adopt the λ = β/μ values 
[{0.25 = 0.2/0.8}, {0.5 = 0.4/0.8}, {1.0 = 0.4/0.4}]. For the IC simulations, we consider a global transmission prob-
ability between the nodes, with βij = λ = [0.1, 0.2, 0.3]. The spreading capacities are calculated as follows:

•	 Calculate the spreading capacity of the original networks according to each diffusion model.
•	 For each LP method, generate the evolved versions by including the respective percentage of new edges.
•	 Calculate the spreading capacity for each evolved network regarding each diffusion model.

Spreading results. The results for the artificial and real-world datasets are presented in Figs 2 and 3, respectively. 
In the ER networks, i.e., networks with more homogeneous degree distribution, the spreading capacities have a 
growing tendency when increasing the percentage of new edges, which is the expected behavior. On the other 
hand, in the BA networks, with more heterogeneous degree distribution, does not always happen the expected 
growing behavior, specifically for CN, and AA methods. The RP and JC methods always increase the spreading 
capacity in the presence of new edges. The increase in the spreading capacity is more evident for lower λ values 
(λ = 0.1 or 0.25 of Fig. 2). The before indicates that the diffusion dynamics for higher λ values are more likely to 
the saturation of spreaders in artificial networks, reaching very similar spreading results.

For real-world datasets (Fig. 3), in AA and CN methods the spreading capacity on the networks remains 
almost invariant. Different, the other methods show increasing results on the network spreading in the presence 
of new edges for most of the cases. The diffusion models show similar patterns of spreading among the LP meth-
ods, although the reached values are different. Even though SIR and MT use the same λ parameters, they obtain 
different spreading results. For example, in the MT simulations, with λ between 0.5 to 1.0, they have a much lower 
increment compared to SIR in the same cases. This result is due to the high number of informed nodes that cause 
the spreaders in MT turn inactive more quickly than SIR, then, the not significant growth. Opposite, the spread-
ers in the MT are longer activated than in the SIR case for the same low λ values, due to the smaller presence of 
informed individuals. Thereby, the simulations reach higher spreading capacity when λ = 0.25.

One may notice that the random addition of new links (RN) always improves the propagation of the network, 
outperforming, most of the times, the spreading capacity among all the discussed LP methods. Given that the LP 
methods recommend the edges according to some high-similarity criteria between nodes, we evaluate the case 
of adding the most unlikely new links for each method, i.e., the links with the lowest recommendation scores. In 
Fig. 4 are the results of the spreading capacities and the normalized distribution of the 1, 5, 10, and 20% lowest 
LP-scores for the artificial networks, concerning the IC model with λ = 0.3. We show this particular case due to, as 
pointed in Figs 2 and 3, the diffusion models and parameters show similar patterns of spreading capacity among 
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the sub-figures. However, in the Supplementary information section are reported the results for the remaining 
real-world datasets.

We observe that both inverse rankings iAA and iCN little affect the spreading capacity, and the RN results are 
better than the inverse LP-scores ranking approach. Figure 4(c) shows the density distribution of the 20% inverse 
LP-scores for the BA network, in which the scores of iCN, iAA, and iGD are only one value. The iSR, iRP, and 
iJC also show low score dispersion, with most of the values centered on the median. This result indicates that the 
similarity-node criteria of the discussed LP methods, especially for iAA and iCN, neglect the scores for the worst 
edges recommendations, at least until the 20% of unlikely new links. However, iSR, iRP, and iJC present more 
notable dispersion scores in the inverse case. These results are similar to the remaining networks, which we also 
report in the Supplementary information section.

Statistical test. We perform statistical analyses over the spreading results of the LP methods to better under-
stand the ranking and possible significant differences. We execute the Nemenyi post-hoc test18 grouping by diffu-
sion models and separating between artificial and real-world networks, for all LP methods and evolved versions. 
The results for SIR, MT, and IC are shown in Fig. 5, where the figures in the top are for artificial and down for 
real-world networks. On the top of the diagrams is the critical difference (CD) and in the axis are plotted the aver-
age ranks of the LP methods, where the lowest (best) positions are on the left side. When a set of methods have no 
significant difference, they are connected by a black line in the diagram.

For the artificial networks, according to the Friedman test19 using the F-statistics with 6 and 138 degrees of 
freedom and at 95 percentile, the critical value is 2.16 and the null-hypothesis that all methods behave similarly 
should be rejected. Running the Nemenyi post-hoc test to detect differences among the LP methods, the CD for 
comparing the average ranking of two different LP methods at 95 percentile is 1.84. For the real-world networks, 
the critical value of the F-statistics with 6 and 426 degrees of freedom at 95 percentile is 2.12 and, the null hypoth-
esis that all methods behave similarly should be rejected. In the Nemenyi statistics, the CD for comparing the 
mean-ranking of two different methods at 95 percentile is 1.06. Mean-rankings differences above the CD value 
are significant.

According to the Nemenyi results for the artificial networks, Fig. 5(a–c), the JC and RP methods are the 
best-ranked for improving the spreading capacity of the evolved versions, with JC been the best ranked in SIR and 
MT diffusion models. Besides, the AA, CN, and SR are the worst positioned with statistical ranking differences 
compared to JC and RP. In the case of real-world networks, Fig. 5(d–f), RN and RP are always the best ranked 
with no significant difference between them, but to other methods. The JC, SR, and GD are in the ranking group 
of second best spreading capacity, which perform significantly better to the third and last group, the AA and CN 
methods.

We observe that the order of the methods in the ranking changes depending on the diffusion model. However, 
in general, the first places ranked methods are the same. The intervals of significant difference connecting the 
methods and some positions change in the ranking with respect to the diffusion models. For instance, the JC and 
SR are both in the third place of the ranking for the MT model, but JC and GD are both in the fourth place for the 
IC model. Finally, what is a consensus in the statistical tests is that CN and AA are the latest classified, with the 
worse ranking positions.

We summarize the effects of adding new edges on the networks according to LP methods concerning the 
spreading capacity results, as follow:

Figure 2. Effects on the network spreading capacity when adding new edges in the artificial networks. (a) to 
(c) correspond to the Erdös-Rényi networks, and (d) to (f) correspond for the Barabási-Albert networks. The 
spreading dynamics are the epidemic SIR, rumor MT, and information IC models. The edges increment are 
1, 5, 10, and 20% of the original number of edges. The LP methods are the SimRank (SR), Rooted Pagerank 
(RP), Random Selection (RN), Common Neighbors (CN), Jaccard Coefficient (JC), Graph Distance (GD), and 
Adamic Adar (AA).
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•	 The LP methods that seem no affect the spreading capacity are AA and CN. Both are local methods that con-
sider the common neighbors between pairs of nodes. In this case, the addition of new edges little or nothing 
improves the spreading capacity of the network.

•	 The LP methods that most of the times have an increasing pattern in the spreading capacity are SR, GD, and 
JC. The first two are global methods, and the last is a local similarity index. They show increases or holds in 
the spreading capacity of networks when adding new edges.

•	 The LP method that always increases the spreading capacity is RP, which is a global index. In this case, the 
higher the percentage of new edges, the greater the spreading capacity. Also, the random addition of connec-
tions always performed well in the diffusion models.

Here was performed an exhaustive analysis producing four evolved versions for each network of box A from 
Fig. 1, and for each of the seven LP methods; the simulations concerning the three diffusion models and the 
three λ parameter combinations lead to a total of 2016 spreading capacity simulations. However, we show that 
the results are similar in terms of the diffusion model, λ parameters, and percentage of new edges. Thus and in 

Figure 3. Effects on the spreading capacity when increasing the edges in the real-world networks in 1, 5, 
10, and 20% with: the epidemic SIR, rumor MT, and information IC models; and the SimRank (SR), Rooted 
Pagerank (RP), Common Neighbors (CN), Jaccard Coefficient (JC), Graph Distance (GD), Adamic Adar (AA) 
and Random (RN).
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practical terms, the evaluation can be led by selecting a lower λ parameter, one of the diffusion model, and a par-
ticular percentage of new edges.

We also observed that the spreading capacity is affected in different ways, depending on the LP method. It is 
known that the structure of the network plays an essential role in the dynamical diffusion processes4, where some 
properties, like the node localization12, communities or network assortativity5,11, make the spreading more viral 
or slow by a fire-wall effect4,12. This way, the LP methods can be biased to produce evolved versions tending to a 
specific network organization. In the next Section, we analyze the structural properties of the original, and the 
LP generated networks.

Topological analysis. We analyze the central-point increase of the structural properties comparing the new 
version with the original network, i.e., for a particular topological property, we have the increase (xe − xo)/xo, 
where xe is the measurement of the evolved network and xo of the original. We have the following considerations:

•	 The number of nodes is constant and the percentage of new edges is the same in all the cases. Thereby, we can 
obtain constant values of average degree in each edge increment among the LP methods.

•	 We consider the set of topological properties described in the box E of Fig. 1. For more details of the network 
measures and selection, please see the Supplementary information section.

•	 For each original and evolved network, we measure its structure according to the set of topological properties. 
Then, we analyze the central-point increase on the LP-evolved networks.

Given that we have the same set of points in the x-axis (percentages) and all the cases start in (0, 0) (the origi-
nal network), we calculate the linear regression between the central-points obtaining the slope of the curves. After 
that, we measure the angle from the slope in radians into the range (−1, 1), in the way:

πΘ = .arctan(slope)/( /2) (2)

Figure 4. Effects on the spreading capacity according to the information IC model with λ = 0.3, when adding 1, 
5, 10, and 20% of new links in the artificial networks. We consider the edges with the lowest, or inverse ranking, 
recommendation score from the methods: SimRank (iSR), Rooted Pagerank (iRP), Common Neighbors (iCN), 
Jaccard Coefficient (iJC), Graph Distance (iGD), and Adamic Adar (iAA). (a) Correspond to the Erdös-Rényi 
(ER) network; (b) correspond to the Barabási-Albert (BA) network; (c) shows the normalized distributions of 
the 20% worst LP-scores for the case of the BA network, where markers in between represent the median value 
of the distribution.

Figure 5. Statistical Nemenyi test for comparing the mean-ranking of the spreading capacity for the LP 
methods. The critical differences (CD) at 95 percentile are on top of the diagrams, where mean-ranking with 
significant differences are unconnected: (a) to (c) diagrams are for the artificial networks and (d) to (f) diagrams 
are for the real-world data sets. Methods in the lowest (best) positions are on the left side.
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Thereby, we obtain a representation of the slopes in the same range measuring the tendency of how “not flat” 
are the curves, with a positive or negative growing inclination.

Topological results. Figure 6 shows the structural evolution for the artificial networks, with the complexity 
(Fig. 6(a,e)), clustering coefficient (Fig. 6(b,f)), average betweenness centrality (Fig. 6(c,g)), and modularity of the 
best community division (Fig. 6(d,h)). Excepting the modularity evolution, the methods present similar patterns 
of increasing/decreasing behavior, but with different intensity. When adding new edges, the methods affect in dif-
ferent ways the modularity of the artificial networks, and the patterns are not always the same between the ER and 
BA networks. For example, SR has a positive increase in the ER, but negative in BA. In general, C and CC increase 
and B decreases in the network evolution according to the LP methods. RN and JC methods little increase the net-
work complexity when adding new edges. The growth in C implies a more extensive degree heterogeneity, i.e., an 
increase of the second moment of the degree distribution that leads to a strong presence of hubs on the network. 
However, we can see that the random addition of edges little increases the C property. The before is given the low 
probability to randomly select a hub on the network to assign it a new edge. RN and GD are the methods that 
least impact in the CC of the evolved versions. Besides, we notice the substantial increase of the methods in the 
CC. The high increase is due to the low proportion of triangles in the artificial networks, as described in Table 2 
of the Methods section.

In the real-world datasets (Fig. 7), RN is the only one that always has decreasing patterns in the structural 
properties. AA and CN are those that more increase the network complexity (The C column in Fig. 7), opposite to 
JC with a little increase in most of the networks. Regarding the proportion of triangles, except for RN, all methods 
have a positive tendency of increasing the CC when adding the recommended edges, with SR and RP the ones 
that increased the most. Besides, a drop pattern of B happens when adding the predicted edges. The before implies 

Figure 6. Evolution of the topological properties for artificial networks. (a) to (d) are for Erdös-Rényi (ER) and 
(e) to (h) are for Barabási-Albert (BA) artificial models. The networks evolve by favoring new connections 
between nodes according to the LP methods. The percentages of new edges (x-axes) are 1, 5, 10, and 20%. Each 
figure shows the increase/decrease pattern for a specific measure, which are: network complexity (C) ((a,e)), 
clustering coefficient (CC) ((b,f)), average betweenness centrality (B) ((c,g)), and network modularity () 
((d,h)). The increase/decrease values are with respect to the original network property.

Method
Computational 
cost C CC B  SH ρ Spreading capacity

CN O(N〈k〉2) +++ ++ − − ° + Ultra low increase

AA O(N〈k〉2) +++ ++ − − ° + Ultra low increase

GD O(N2) ++ + − − − −− Low increase

JC O(N〈k〉2) − ++ ° + − + Medium increase

SR O(N3) ++ +++ −− − − ° Medium increase

RP O(N3) + +++ −− + − ° High increase

RN O(1) − −−− −− −− −− −− High increase

Table 1. Summary of LP methods and effects in the structure and spreading capacity of the network. +++ 
High increase tendency. −−− High decrease tendency. ++ Medium increase tendency. ° No pattern. −− 
Medium decrease tendency. + Low increase tendency. − Low decrease tendency.
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that the number of shortest paths distributes more homogeneously in the network, decreasing the importance of 
nodes with high betweenness centrality. JC is one of the least affect B of the evolved networks. On the other hand, 
SR is one of the most decreases the B, and most increase the CC. We could suppose that higher the number of 
triangles, lower the average betweenness centrality of the network. However, this is not true, and the counterex-
ample is JC, where it considerable increases CC on the Advogato and Email networks (Fig. 7(b,n)) but the impact 
on the B was minimal.

Figure 7. Evolution of the topological properties for the real-world network datasets: the networks evolve by 
favoring new connections between nodes according to the LP methods. The x-axes are the percentage of new 
edges. Each figure is a data set that shows the increase/decrease pattern for a specific measure according to the 
LP method and the central-point to the original network.
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Topological characterization. The results in Fig. 7 indicate that the LP methods affect in different ways the net-
work structure by the addition of the recommended edges. For a better understanding of the topological char-
acteristics that each LP methods favor in the evolved networks, we calculate the slope tendency (Eq. 2) for all 
the set of topological properties and real-world datasets. Then, with the box plots, we show the distribution of 
tendencies, grouping by network property (Fig. 8). Inside the boxes, the median is the continuous line and the 
dotted line is the arithmetic mean.

First, we observe that the KC and ∼H  of the evolved networks do not change. We identify groups of methods 
that tend to produce networks with similar structural tendencies. The AN, CN, and GD tend to highly increase 
the complexity of the network and 〈k2〉. They are the group that less impact the modularity and the structural 
holes, together with SR. Also, this group together with JC have similar increasing patterns in the shortest paths 
and betweenness centrality, with low decreasing tendency; in CC and ρ, they have a low increasing tendency, but 
GD has an opposite behavior to the group in the assortativity.

In the evolution of network connectivity (first column of fig. in 8), JC and RN produce networks with the low-
est or negative growing tendency in the 〈k2〉 and C, and no changes in the maximum degree of the network. On 
the other hand, RP and SR have an intermediate impact on the connectivity of the network compared to the other 
methods. For the shortest path evolution, (second column of fig. in 8), RN, RP, and SR have the lowest median 
and mean values. This result indicates that in the evolved networks, the nodes are more close to each other, with 
lower diameter, shortest path, and betweenness centrality average. Similar, JC, RN, and RP are the methods with 
the lower structural holes mean and median values (SH in Fig. 8).

In the CC measure, RP and SR highly increase, and RN most decreases CC. The decreasing effect by RN is due 
to the random recommendation of edges that not follows any connectivity pattern of the nodes. Thus, the new 
edges impact negatively in the average proportion of triangles of the nodes. In the modularity , JC and RP have 
certain increase tendency; and RN and SR present negative tendency. In the assortativity, RN has a low increase 
tendency; RP and SR, on average, little affect the degree correlation, but RP has higher dispersion than SR. These 
results demonstrate that each LP method generates networks with different topological characteristics.

The interplay between network evolution and spreading. We summarize in Table 1 the results 
obtained in the spreading and topological analysis, together with the time complexity of each LP method. The 
columns of table are: C, as the measure that resumes the effects on network connectivity by the LP methods; CC, 
the measurement that shows the impact in the proportion of triangles among the nodes; B, representing the influ-
ence in the shortest-path-oriented measures on the network; , showing the evolution in the community division; 
SH, which shows the average of all possible structural holes; and the ρ, which brings how the LP methods influ-
ence in the degree-degree correlation.

Figure 8. Distribution of the increase tendencies for the LP methods grouped by topological measures. In the 
BoxPlots, the dotted lines are the arithmetic mean, and the continuous lines are the median. In each figure, 
methods with a similar pattern of increase tendency are encapsulated in the same frame.
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In contrast to what is expected, including more edges on the networks will not necessarily improve the 
spreading capacity. All the methods included the same amounts of new links, but CN and AA reached ultra low 
increases in the spreading capacity. Opposite, RP and RN are the both that more increase the spreading of the 
evolved networks. Seeking a better understanding between the structure evolution and the diffusion dynamic, we 
describe the structural properties that increment the spreading capacity in terms of the LP methods:

•	 More homogeneously distributed networks: RN, JC, and RP are the methods with lower central tendencies in 
C. They are the methods that less enlarge the 〈k2〉. The maximum degree (hub) of the network is not affected 
by JC and RN.

•	 The lower distance among the nodes: RN, RP, and SR present the lower central tendencies in B, 〈 〉 , and max( ). 
The before indicates that lowering the average distance between the nodes can prone the information diffu-
sion in the network. However, the increase in the number of triadic closure properties did not show an incre-
ment pattern with the spreading capacity of the network.

•	 The lower average of structural holes: The LP methods with lower central tendencies in the SH are in a similar 
order than the ranking of spreading capacity enhancers (Fig. 5(d,f)). Thus, decreasing the SH of the evolved 
network can improve the reach of the spreading process.

Besides, some structural properties do not increase/decrease the spreading. The measures CC, , and ρ do not 
show a clear pattern concerning the improvement of the spreading capacity of the networks. For instance, increas-
ing the number of triangles did not improve the spreading results for the AA. Moreover, RP and RN have opposite 
tendency behavior in CC. The measures that are not affected at all for the LP methods, neither characterize any 
pattern for improving the spreading results are the KC and ∼H . Additionally, concerning the computational cost of 
the methods, the local measures tend not to affect the spreading capacity, while global methods, such as RP, SR, 
and GD, always increase the spreading capacity. A particular case is JC, which takes into consideration local infor-
mation for predicting the links. It obtained a remarkable performance in the artificial networks, but in the real 
datasets its performances are behind SR. However, JC is less time-consuming.

Discussion
More and more LP methods are being developed and reported in the literature. Each of them has its particu-
larities and may lead to different prediction results. Therefore, how to choose a suitable LP method to achieve 
a specific global network structure and dynamics turns out to be a critical issue in real applications. This work 
presents an endeavor in this direction, analyzing how the network evolution by the addition of new edges affects 
the spread of information. For this purpose, we consider the most representative LP methods for increment the 
edges (please, see Fig. 1). Note that our aim is not necessarily to identify the most accurate LP method, but rather 
to establish a mechanism and a set of general recommendations for future considerations.

Using the proposed framework in two artificial and six real-world networks, and with three diffusion 
approaches–epidemic SIR, rumor MT, and information IC models–the experimental results reveal that methods, 
like RP, RN, JC, and SR always lead to an increase in the spreading capacity. RP is one of the most increases the 
spreading on the network. Contrary with expected, the inclusion of more edges may not improve the spread-
ing capacity of the evolved versions. For instance, CN and AA little impact on the spreading results, with per-
formances worst than the random addition of edges and all other methods. Concerning the computational 
cost, RP obtained better spreading results than JC, but the more suitable option would be JC given that it is less 
time-consuming.

In terms of structural properties, LP methods that retain or decrease the network complexity obtain better 
spreading results. The increase in the number of triangles, changes in the modularity or assortativity regarding 
the original network do not show any pattern concerning the spreading capacity. This result is also in contrast to 
what is expected. The measures that are not affected at all for the LP methods are the K-Core and the entropy of 
degree distribution. The results also indicate that evolved networks with lower shortest paths and structural holes 
averages present a higher spreading capacity.

The proposed method is suitable as a methodology for comparing the diffusion potential that LP methods 
have when predicting future edges. This evaluation is relevant in network sciences, given that the recommen-
dation of links directly affects the propagation process due to the changes in the network structure. In turn, the 
diffusion process may provoke changes in the connections and speed up the network evolution. Therefore, the LP 

Network N 〈k〉 max(ki) C 〈k2〉 B CC 

BA 10000 11.9 777 48.4 581.5 11572,7 0.015 0.25

ER 10000 12.0 27 13.0 156.1 14823,6 0.001 0.24

Email 1133 9.60 71 18.6 179.8 1475.2 0.22 0.49

Hamsterster 2000 16.1 273 43.7 704.7 2587.7 0.54 0.46

Facebook 4039 43.7 1045 106.6 4656.1 5436.1 0.60 0.78

Advogato 5054 15.6 807 82.8 1290.4 5747.7 0.25 0.34

Astrophysics 14845 16.1 360 45.4 732.3 28190,4 0.66 0.63

GooglePlus 23613 3.30 2761 377.2 1251.6 35804.7 0.17 0.74

Table 2. Topological properties of the adopted networks.
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methods impact in different ways the structure and spreading capacity of the network. Most studies and evalua-
tion proposals in LP methods ignore this point, and here, we make a contribution in this direction. Furthermore, 
the proposed methodology can be applied in other works as an alternative for evaluating current and new LP 
methods.

Finally, we contribute to the understanding of how to spread information more widely on the network when 
adding new connections, and the interplay between the evolution of the structure and the diffusion process. As 
future works, novel and more accurate LP methods that improve the spreading capacity of the networks opens a 
new path of studies and possibilities for higher performance in evolutionary networks.

Methods
We introduce some basic definitions about LP methods and the diffusion models employed for measuring the 
spreading capacity of the networks.

Problem definition. Given a network G = (V, E), where V is the set of |V| = N nodes and E is the set of links 
connecting pairs of nodes, the LP method calculates the likelihood of new edges for each node pair (i, j) ∉ E at 
future time. The methods recommend the links based on higher score or predicted likelihood. We consider the 
original network in the last observed discrete state. The performed task seeks to predict new edges in a future state 
of the network, i.e., the evolved network contains an increment of edges concerning its previous state. We perform 
the network evolution considering fixed fractions of new predicted edges by some LP method, as shown in Fig. 1 
box B. Then, we analyze the spreading capacity and structural properties of the evolved versions, verifying statis-
tical differences and characterizing the methods.

Dataset. We adopt the Erdös-Rényi (ER)20 and Barabási-Albert (BA)21 models as artificial networks. These 
two models are representative regarding networks characteristics. The ER networks present Poisson degree dis-
tribution, while the BA networks have power-law degree distribution. For the same input of nodes and edges, 
both models generate similar artificial networks concerning average degree, modular structure, and triangles 
proportion. However, artificial networks have an absence of important properties present in real-world networks, 
like the clustering and the community structure22.

We adopt six real-world network datasets: Email23, Hamsterster24, Facebook24, Advogato25, Astrophysics26, 
and GooglePlus27. Email represents a social network of information exchanged by emails between members of 
the Rovira i Virgili University, Tarragona. The Hamsterster, an undirected and unweighted network based on the 
user-user friend and family social network website data from hamsterster.com. Facebook contains friendship data 
of Facebook users from New Orleans regional network. The Advogato, nodes are users of an online community 
platform for developers of free software, and the edges represent trust relationships. GooglePlus, an user-user 
social network that denotes when a user has the other in his circles. Also, Astrophysics, a collaborative network 
between scientists on previous studies of astrophysics reported in arXiv. We considered the main component of 
datasets as undirected and unweighted for the simulations.

The topological characteristics of these networks are summarized in Table 2, with the measures: number of 
nodes (N), average degree (〈k〉), largest degree (max(ki)), network complexity (C), second moment of degree 
distribution (〈k2〉), average betweenness centrality of the network (B), clustering coefficient (CC), and modularity 
().

Link prediction methods. LP methods recommend potential links in the network using the topological 
information represented by the adjacent matrix AN×N. The result is a link similarity score matrix SN×N, where sij 
indicates the probability of the existence of links between nodes i and j. The higher the sij, the higher the likeli-
hood of the link between the nodes. When the similarity sij is based only on network structure, it is called struc-
tural similarity2. Authors usually classified the methods on local or global information techniques2,3.

Here, we employ three of the more representative local and global LP methods (please, see box B of Fig. 1), as 
classical approaches recommended by some reviews and surveys1,2: from local measures, we select CN, JC, and 
AA; from global measures, we select the RP, SR, and GD. These are also the most well-known LP methods in the 
area, and they represent main strategies across many other methods, i.e., triangle, paths, or neighborhood opti-
mization. Moreover, exploring mechanisms underlying network evolution, we can analyze the influence of main 
strategies to increase the links in the networks and how these strategies influence the network topology and the 
information diffusion. We briefly describe the adopted methods in the Supplementary information.

Diffusion process. The common epidemic spreading approach is the Susceptible-Infected-Recovered 
(SIR)4,17 model. A pathogen spreads from infected users to susceptible users, as information is dispersed from 
communicators to recipients in a similar fashion. In the SIR model, the recovered individuals are those infected 
that obtained immunity to the pathogen. In information diffusion, it means those that spontaneously do not 
spread the information anymore4. In this context, the propagation of rumors or information can be approached as 
a psychological contagion where an idea “contaminates” the mind of other people4. The psychological contagion 
reflects the several factors in which an individual is predisposed to adopt and disseminate a message, like social 
reinforcement, homophily phenomenon, curiosity, etc.6,11,17.

In the case of the Maki-Thompson (MT) rumor model4,12,28, in the ignorant or inactive state (S) remain those 
who are unaware of the rumor, in the spreader (I) or active state are those who disseminate the message, and the 
recovery or stifler (R) state are those who know the rumor but lose the interest in spreading it. Rumor models 
are a variant of the SIR model in the sense that a rumor disperses intentionally and the recovery process does not 
occur spontaneously, but the transition between states is a consequence of contact interaction4.
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Moreover, we have the Independent Cascade (IC) model for information spreading, which is an inhomoge-
neous SIR approach4. This model assumes that the spreading process is an informational cascade of activation17. 
Such cascades consist of the successive activation of nodes that know the information and subsequently contact 
their neighbors according to an activation rule. In the IC model, whenever a node becomes active (I), it tries to 
activate its inactive neighbors (S) according to some probability βij and then stops. An active node cannot be 
deactivated; however, it does not participate anymore in the remaining steps of the process (as the recovery state 
for epidemic spreading).

We summarize in general terms the dynamical rules of the three previous diffusion models as follow:

+ → +
β

I S I I , (3)i j i j
ij

where i and j are neighbors and the operator “+” means the contact action between them. In the diffusion models, 
whenever an active spreader Ii contacts an inactive neighbor Sj, the latter will become active with a fixed proba-
bility βij. This probability for activation/infection can be global, for all the nodes (βij = β), or specific for each pair 
(i, j)12,17.

Algorithm 1. General diffusion process algorithm.
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Otherwise, in Eq. 4 for the SIR and IC models4,17, the active spreader Ii stops propagating the information 
according to a spontaneous probability μ. In particular, for the IC model the active node stops immediately after 
contacting all its neighbors17, i.e., with μ = 1.

→
μ

I R (4)i i

On the other hand, in Eq. 5 for the MT rumor model, when an active spreader Ii makes contact with a neigh-
bor j that knows about the rumor, i.e., j is a spreader (Ij) or a stifler (Rj), the Ii node will turn into a stifler with 
probability μ. This stopping behavior means that the information is assumed too much known (by contacting 
spreaders) or without novelty (by contacting stifler) by the spreader12,28.








+ → +

+ → +

μ

μ

I R R R

I I R I

,

(5)

i j i j

i j i j

Let us consider a constant population of N nodes in all time steps. Each node can be only in one state, i.e., node 
i is a spreader at time t Ii(t) = 1 if i ∈ I in t, otherwise Ii(t) = 0, and the states are discrete with Si(t) + Ii(t) + Ri(i) = 1. 
Therefore, we describe the macroscopic state of the system over time with the spreaders (φ(t)) and stifler (ϕ(t)) 
fractions,

∑

∑

φ

ϕ

=

=

∈

∈

t
N

I t

t
N

R t

( ) 1 ( ),

( ) 1 ( ),
(6)

i V
i

i V
i

where the fraction of ignorant subjects (ψ(t)) always fulfill ψ(t) = 1 − (φ(t) + ϕ(t)). Moreover, the end of the 
propagation occurs when achieved the absorbing state of the system, i.e., when no more spreaders exist in the 
dynamic with φ = 0 for t → ∞. We assume a synchronous dynamical process, in which infection and recovering 
do not occur during the same step.

We present in Algorithm 1 a general approach employed for simulating the SIR, MT, and IC models. The algo-
rithm receives as inputs the network G, the set of initial states of the nodes S(0), I(0) and R(0), the propagation 
probabilities, and the type of model to be simulated. The sets of node states can be addressed as structured lists 
at a specific time. At each time step, each spreader node tries to activate or infect its neighbors (in lines (7–9) of 
Algorithm 1). After that, the spreader evaluates if will become recovery or inactive in the diffusion process. The 
simulations run until the end of the propagation process is reached, when φ(t) = 0. The Infect-Node procedure 
is the general rule of activation/infection in the diffusion models (Eq. 3), in which the probability of propagation 
β can be a general or specific value. The Recover-Node procedure handles the inactivation rule for the spreader 
according to the particular diffusion model, as explained in Eqs 4 and 5.

For illustrative purposes, steps (18–19) and (38–39) in Algorithm 1 are the similar procedure of updating the 
state of the nodes, which can be generalized in a separate updating function. Moreover, the algorithm can be 
easily optimized by only counting the number of infected/recovery individuals disregarding the time evolution 
arrays. The computational cost of the algorithm is ⟨ ⟩O TN k( ) (similar to6), where T represents the number of 
required steps for convergence. However, T tends to be low, which means the computational cost can be approx-
imated to ⟨ ⟩O N k( ).

Data Availability
The datasets analyzed during the current study are available at http://konect.uni-koblenz.de.
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