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Systems biology and network 
pharmacology of frailty reveal 
novel epigenetic targets and 
mechanisms
J. C. Gomez-Verjan   1, R. Ramírez-Aldana1, M. U. Pérez-Zepeda1,2, R. Quiroz-Baez1,  
A. Luna-López1 & L. M. Gutierrez Robledo1

Frailty is an age-associated condition, characterized by an inappropriate response to stress that results in 
a higher frequency of adverse outcomes (e.g., mortality, institutionalization and disability). Some light 
has been shed over its genetic background, but this is still a matter of debate. In the present study, we 
used network biology to analyze the interactome of frailty-related genes at different levels to relate them 
with pathways, clinical deficits and drugs with potential therapeutic implications. Significant pathways 
involved in frailty: apoptosis, proteolysis, muscle proliferation, and inflammation; genes as FN1, APP, 
CREBBP, EGFR playing a role as hubs and bottlenecks in the interactome network and epigenetic factors 
as HIST1H3 cluster and miR200 family were also involved. When connecting clinical deficits and genes, we 
identified five clusters that give insights into the biology of frailty: cancer, glucocorticoid receptor, TNF-
α, myostatin, angiotensin converter enzyme, ApoE, interleukine-12 and −18. Finally, when performing 
network pharmacology analysis of the target nodes, some compounds were identified as potentially 
therapeutic (e.g., epigallocatechin gallate and antirheumatic agents); while some other substances 
appeared to be toxicants that may be involved in the development of this condition.

As we age, physiological functions deteriorate, and these changes lead our organism to become vulnerable and 
to express age-associated disorders1. Among them, frailty, an age-associated condition resulting in an inappro-
priate response to stress and a higher frequency of adverse outcomes including, mortality, institutionalization 
and disability2. This condition results from the complex nature of Homo sapiens and a lifetime of environmental 
influences2. Light has been shed over the possible genetic factors involved in the origins of this condition; how-
ever, to what extent the heritability and genetic background affect an individual’s frailty status is still a matter 
of debate, mainly because of the multifactorial nature of this condition3. For instance, Dato et al. found that the 
genetic component was higher in men than in females4; nevertheless, the genetic background is not always the 
same and depends on several genes associated with the organism’s homeodynamic mechanisms as well as with an 
environmental relationship yet unknown.

Novel approaches are needed in order to disentangle the different characteristics of frailty and to narrow the 
gap in knowledge about this condition with a systemic view. The latest technological advances in genomics allow 
to use different approaches to analyze complete biological systems at different levels of complexity. In this context, 
systems biology, often referred as network biology5, has emerged over the last years as a novel paradigm in the 
field of big data biology aiming to improve our understanding of system-level molecular interactions (interactom-
ics) underlying complex cellular processes, which lead to organ dysfunction; and eventually to clinical expression. 
These phenomena can be better analyzed using biological networks due to the fact that they possess several ele-
ments interacting with each other at different levels and emerging properties6. Biological networks; represented 
as molecular diagrams of the cell and its functions, enable to visualize several molecular interactions. Moreover, 
network analysis allows us to advance into the discovery of novel potential relationships and previously undis-
covered paths through non-related molecules, enabling to figure the complete framework of multilevel cellular 
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functions6. Network analysis is the newest available approach to the analysis of the system as a whole, aiming to 
elucidate the molecular mechanisms of complex age-related diseases and conditions such as frailty7.

Network pharmacology is another application tool in systems biology, aiming to mitigate the time-consuming 
process of drug discovery8. It helps to understand drug interactions with different targets and diseases from a 
network point of view9. These approaches, combined with other chemoinformatic methods synergize the drug 
repurposing process, since they allow to discover the therapeutic potential of already known compounds with 
novel indications10. These approaches are often used to discover new mechanisms of action and possible adverse 
effects of drugs8. Several research groups have used network pharmacology for different application, for instance, 
to explore bioactive ethnobotanical compounds with known use and to repurpose them for other pharmacolog-
ical use11,12. Other example is metformin that has been repurposed as a chemo-preventive drug and is already on 
clinical trials13. So, these methods are useful to help reposition already used drugs (which have already proved to 
be safe in clinical trials) and to reveal possible novel mechanisms of action.

In the present study, we contribute both: to improve the understanding of the biology of frailty using different 
network biology analysis, and in therapeutics through network pharmacology analysis discovering novel possible 
targets and compounds (drugs and toxicants) that could be useful in this condition.

Results
In Fig. 1, is presented the network image showing the frailty-related genes14,15 (Supplementary Table 1S), along 
with highly related genes according to different types of interactions (physical interactions, shared common sig-
naling pathways, and co-expression information of frailty-related genes).Through enrichment analysis of such 
genes, using different databases of pathways and diseases (Table 1), we observed that the most enriched pathways 
were apoptosis, proteolysis, smooth muscle proliferation, cytokines, interleukins signaling and the inflammatory 
process that happened to be the most related pathway. Interestingly, nervous system diseases and proteostasis 
deficiencies seem to be also highly related (Table 1).

Figure 1.  Network biology of the interactions among the genes highly related to frailty. To build the network, 
we use frailty-related genes along with novel genes obtained by GeneMANIA38 prediction server. Central 
genes (black) highly related genes (grey). Orange lines show physical interactions. Blue lines show interactions 
shared by common signaling pathways. Purple lines indicate co-expression. Isolated nodes are genes with no 
interaction.
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In Fig. 2, is presented the interactome network corresponding to the protein-protein interactions (PPI) as 
well as protein-miRNA interactions with frailty-genes14,15. Network analysis identifies the more critical hubs and 
bottlenecks in the network (Table 2). Remarkably, there are transcription factors and proteins as Histone cluster 1 
H3 family member H as hubs and bottlenecks. The second section of Table 2 shows the miRNAs hubs involved in 
the network and disorders related with them, where mir200 is among the most connected family of miRNAs (the 
complete list of miRNAs is in Supplementary Table 2S).

Since the frailty index has been reported to be a clinically useful construct, integrated by a number of deficits 
from multiple body systems, we used it, in order to relate such deficits (Supplementary Table 3S) with potential 
frailty-related genes (Supplementary Dataset 1). Figure 3 shows the network topology of such relation, ordered 
counterclockwise from less to more related nodes, interestingly, cancer and five target genes (IL-8, IL-12, ACE, 
GR, ApoE, TNF) are the most connected nodes in the network. Besides, in search of new associations and poten-
tial mechanisms of interaction, we performed a clustering analysis (see methodology section) since we were 
searching for new associations and mechanisms. Figure 4 and Supplementary Table 4S, present results for such 
clustering analyses, as well as the behavior of the primary network properties, in which we identified 5 clusters of 
deficits and genes.

In order to advance in the proposal of possible therapeutic alternatives, from our results, we explored the 
druggability values of the potential targets, identified because of their connectedness in the network (Figs 3, 4). 
As presented in Fig. 5, GR and ACE were the targets with more potential, according to their values of druggability 
and tractability. Therefore, in the next step, we used such targets in a network pharmacology analysis to find any 
possible related drug molecules. Results on Table 3 and Supplementary Table 5S show different molecules that 
interact with both GR and ACE. Interestingly, antirheumatic agents (mainly small molecules) already used in 
clinical practice could modulate both receptors. Additionally, a set of toxic compounds may be showing potential 
interaction with these two targets.

Discussion
A better understanding of molecular pathways involved in frailty and its clinical outcomes may contribute to 
improving the likelihood of a healthy aging. However, there is still controversy about the molecular mechanisms 
and pathways involved in this complex process due to its multifactorial nature. Therefore, in the present study, to 
contribute to a better understanding of the complexity of the systems involved in frailty biology, we used network 
biology analysis. Different types of centrality measures were used to strengthen results. These results allowed 
additional analyses such as drug repurposing through network pharmacology, identifying possible candidates for 
the intervention of this condition.

The most enriched pathways of frailty-related genes (Table 1)14,15, have a strong association with homeostatic 
mechanisms which are known to be affected both in aging and frailty. For example, failure in apoptosis could lead 
to errors in several regulatory processes that remove damage and aberrant cells from the body; with the accumu-
lative damage during aging an increased apoptotic activity increasing tissue damage. Besides, apoptotic activity 
increases proteolysis signaling, leading to tissue atrophy and a pro-inflammatory response16. A low-grade chronic 
pro-inflammatory response seems to contribute to several age-related pathologies including cancer, cardiovascu-
lar diseases, neurodegenerative disorders, and rheumatoid arthritis among others. Interestingly, these disorders 
were enriched significantly in the pathways related with the genes17.

Pathway Enrichment Analysis Pathway ID Corrected P-value Annotated Genes DB

Regulation of the apoptotic process GO:0042981 1.04E-4 13 DAVID

Positive regulation of proteolysis GO: 0045862 1.91E-4 6 GSEAPY

Regulation of smooth muscle proliferation KEGG 1.26E-4 6 GSEAPY

Death-inducing signalling complex assembly GO: 0071550 2.62E-5 8 GSEAPY

Cytokine signalling in the immune system REACT: HSA-1280215 3.09E-5 9 CTD

Signalling by Interleukins REACT: HSA-449147 2.88E-5 8 CTD

Cellular response to organic cyclic compounds GO:0071407 4.5E-5 5 DAVID

Disease Enrichment Analysis Disease ID Corrected P-value Annotated Genes 
Quantity  DB

Nervous System Disease CNS-diseases MESH: D009422 1.53E-6 16 CTD

Hypertrophy Pathology (anatomical condition) MESH: D006984 1.11E-5 6 CTD

Cardiovascular disease Cardiovascular diseases MESH: D002318 3.36E-5 11 CTD

Proteostasis deficiencies Metabolic diseases MESH: D057165 6.40E-5 5 CTD

Neoplasms Cancer MESH: D009369 7.75E-5 16 CTD

Brain diseases Nervous system disease MESH: D001927 1.15E-4 10 CTD

Autoimmune diseases Immune system disease MESH: D001327 6.10E-4 7 CTD

Urologic diseases Urogenital disease MESH: D014570 7.9E-4 8 CTD

Table 1.  Pathway and disease enrichment analysis of genes resulted from interactome analysis of frailty-related 
genes accordingly to CTD, GEASPY and DAVID databases. The table highlights the most significantly enriched 
pathways and diseases chosen accordingly to p-value < 0.05 corrected by the Benjamini-Hochberg procedure 
and separated accordingly with Pathways and Diseases. Frailty-related genes, along with novel genes obtained 
by GeneMANIA38 were used.
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Environment and diet can influence lifespan through several epigenetic mechanisms known to be altered dur-
ing the normal aging process18. Epigenetic studies associated with frailty are still growing, and most of them have 
focused on DNA methylation patterns in blood samples. For instance, Bellizi et al.,19, found that the frailty status 
was associated with a significant decrease in the global DNA methylation levels. An apparent association between 
CpG island methylation and frailty was also found20. Other studies have also found a strong correlation between 
the epigenetic clock and frailty21. In this context, our findings are in the same direction, as there is evidence of 
epigenetic changes occurring at various levels, including reduced bulk levels of core histones, histone posttrans-
lational modifications, replacement with histone variants and altered non-coding RNA molecules22. Moreover, 
our results showed that HIST1H3 cluster family genes and miR200 family could act both as hubs and bottlenecks. 
Dysregulation of HIST1H3 histone cluster family (which is particularly susceptible to acetylation)23, has been 
suggested as a driver mechanism of gliomas24. In addition, phosphorylation to H2A histone family member X 
(H2AX) could provide information regarding frailty severity25. On the other hand, posttranslational histone mod-
ifications do not affect DNA nucleotide sequence but can modify its availability to the transcriptional machinery. 
MiRNAs are a large family of small non-coding RNA’s that regulate gene expression post-transcriptionally via 
base pairing. Recently, they have been implicated in several regulatory networks relevant to aging, for instance, 
miR200 family which is highly expressed within epithelial cells and known to play crucial roles in cancer initia-
tion and metastasis24, they have also been involved in atherosclerosis, Diabetes mellitus, kidney disease and other 
age-related diseases26.

Figure 2.  Network biology for protein-protein interactions (PPI) and miRNA-Protein interactions constructed 
with frailty-related genes as seeds. To build the network, we used BisoGenet40 plugin for Cytoscape (v. 3.7). 
Nodes represent proteins and miRNAs. Orange nodes represent those frailty-related genes (seeds). White nodes 
represent the first neighbor’s protein of the seeds, and yellow nodes represent miRNAs. Edges (green) represent 
PPI and miRNA-protein interactions.
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Five well-defined clusters (Fig. 3) were recognized, regarding deficits associated with frailty and already 
mentioned genesets by Viña et al., and Hangelbroek et al.14,15. Cluster 1 corresponds to the homeostatic pro-
cess of apoptosis signaling and immune system pathways and points to the possible link between frailty and 
“inflammaging” (i.e., the hypothesis that states that systemic increases of pro-inflammatory mediators are related 
with the frailty process, inducing metabolic dysfunction)17. A possible explanation of such is the induction of 
senescence-associated secretory phenotype (SASP), which contributes to damage of aging tissues and facilitates 
the progression of several age-related disorders.

Cluster 2 corresponds to genes related with Notch pathway, meaning that this transcription pathway could 
play a role in the development of frailty since CREBBP has an essential role in chromatin remodeling27; KAT2B 
regulate the balance between cell cycle arrest and apoptosis, and MTR activity is associated with hypomethylation 
and increased DNA damage28. Notch pathway defects have been reported in different human tissue, like muscles 
and brain diseases.

Regarding cluster 3, it includes genes involved in the central metabolic pathways of different tissues and 
organs, such as: striated muscle contraction, adrenaline and noradrenaline biosynthesis, cytoskeletal regulation, 
and nicotinic acetylcholine receptor signaling pathway. Alterations in these pathways can modify the physiology 
of the muscle tissue, consequently generating the development of sarcopenia. Interestingly, the signaling pathway 
ACVR1B/ACTN3/MSTN is related to the loss of skeletal muscle mass, and this may be correlated with cluster 1 

Top Hubs Top Bottlenecks

Name Functions/Related pathway Name Functions

FN1
Fibronectin-1/ERK signaling pathway(involved in cell 
adhesion and motility, wound healing, essential for osteoblast 
mineralisation)

FN1
Fibronectin-1/ERK signalling pathway
(involved in cell adhesion and motility, wound healing, 
essential for osteoblast mineralisation)

NTRK1 Neutrophic receptor tyrosine kinase 1/MAPK pathways
(insensitivity in pain and Thyroid carcinoma) EGFR Epidermal Growth Factor Receptor/ERK signalling pathway

(Cancer)

CUL3 Cullin-3/MHC-1 mediated pathway
(associated with ubiquitin-protein transferase activity) APP Amyloid beta precursor protein/TLR4 signalling

(Alzheimer Disease)

TP53 Tumour protein P53/cell cycle, apoptosis senescence, DNA repair
(Cancer) FBXW11 F-box protein and WD repeat domain containing 11/Cell cycle 

and mitosis

HIST1H3H Histone cluster 1 H3 family member H/Cell cycle and mitosis
(Glioma) COMMD3-BMI1 COMM domain-containing protein 3 and polycomb complex 

protein BMI-1 gene/micro RNA and Cancer and C-YC

HIST1H3E Histone cluster 1 H3 family member H/Cell cycle and mitosis
(Glioma) CREBBP CREB binding protein/DNA binding transcriptional factor

MCM2
Minichromosome Maintenance complex component 2/Cell cycle 
and DNA replication
(Deafness)

CAND1
Cullin associated, and neddylation dissociated 1/proteasome 
system
(Hypertension)

HIST1H3A Histone cluster 1 H3 family member A/Cell cycle and mitosis
(Glioma) MIR367 MicroRNA −367/(Cancer)

APP Amyloid beta precursor protein/TLR4 signalling
(Alzheimer Disease) HIST1H3E Histone cluster 1 H3 family member H/Cell cycle and mitosis

(Glioma)

HIST1H3J Histone cluster 1 H3 family member J/Cell cycle and mitosis
(Glioma) EP300 E1A-associated cellular p300 transcriptional co-activator 

protein/Histone acetyltransferase (Cancer)

miRNA’s associated with frailty with highest degrees

miRNA Degree  Diseases related to miRNA

MIR200B 147 Proangiogenic effect,
Related with oral squamous cell carcinoma, colorectal cancer and melanoma

MIR429 142 Regulates metastasis, activation of NF-kB and targets ECM Related with Ovarian, 
Lung Cancer and Coronary heart disease

MIR130A 138
Regulates Hepatitis C and B virus replication promotes keratinocyte viability and 
migration, regulates STK40-mediated NF-kB pathway
Related to Lung Cancer and Polymyositis

MIR200C 138 Targets ECM and transcription factor PTEN
Related with Renal cell carcinoma and Endometrial Cancer

MIR130B 134 Targets ARHGAP-1, regulates proliferation and apoptosis of glioma cells
Related with T-Cell Leukemia and cardiomyocyte hypertrophy

MIR144 132
Targets ZFX and inhibits hepatocellular carcinoma cell and migration, regulates 
oxidative stress in SH-SY5Y cells
Related with sickle cell disease and thalassemia

MIR518E 131 Related with progressive supranuclear palsy

MIR200A 130 Targets ECM and membrane receptors
Related with meningioma, hepatocellular carcinoma, and ovarian cancer

MIR29C 129
Regulates LOXL2 gene, targets CPEB4 and inhibits MAPK pathway
Related with Huntington disease, renal cell carcinoma, cardiovascular disease, 
Rhabdomyosarcoma and metastatic brain tumour

MIR518F 129 No disorder related

Table 2.  Top 10 hubs and bottlenecks of proteins and miRNAs obtained from BisoGenet40 network. The table 
indicates the hubs and bottlenecks detected using the cytoHubba plugin by Cytoscape41 and the top miRNAs 
associated with frailty.
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since MSTN up-regulation involves TNF-α, suggesting a probable relationship between the inflammatory process 
and the development of muscular diseases29. Besides, MSTN inhibits the signaling pathway related to Insulin-like 
growth factor-1 (IGF-1) a potent muscle growth factor which progressively decreases with age, and has a crucial 
function in repairing and proliferation of skeletal muscle29. MSTN and TNF-α are also directly involved in the 
modification of the redox state of muscle tissue since their direct participation in the production of ROS have 
been reported through the activation of NADPH oxidase and the reduction of GST30. These have at least two 
consequences: oxidative damage of biomolecules that lead to apoptosis29 and a positive feedback mechanism that 
increases the expression of TNF-α and MSTN regulated by the activation of NF-κB a transcription factor sen-
sitive to modifications of the cellular redox state31. Supplementary Figure 1S indicates the proposed mechanism 
for the proteins presented in gene sets and clusters based on reports of Sriram et al.29,32; Kovacheva et al., 201031; 
and Zhou et al., 201633.

Cluster 4 includes genes related to DNA metabolism and interestingly with Parkinson’s disease (PD). Frailty 
increases the vulnerability and impairs the homeostatic reserve, with the potential of further aggravation of func-
tional deterioration in patients with PD. It also increases the risk of adverse consequences including falls, disa-
bility and death16. The molecular mechanisms underlying these interactions could be explained by their possible 
relationship with alterations in mitochondrial function, as reported by Gaare and collaborators in 2018.They 
demonstrated that the enrichment of rare inherited variation in the pathway controlling mitochondrial DNA 
replication and repair influenced the risk of PD and proposed that this polygenic enrichment contributes to the 
impairment of mitochondrial DNA homeostasis34, which could establish a relationship between mitochondrial 
dysfunction –characteristic of PD– and alterations in DNA metabolism.

Figure 3.  Network connecting Genes and Frailty Deficits. Nodes are deficits and genes. To build the network, 
we used information from weighted sociomatrix and used Cytoscape (v. 3.7.1) to draw it. Edges (green) are 
original experimental papers where genes correlate with deficits in vivo; in vitro or clinical data (Reviews and 
original papers with non-human models were excluded). Node size represents the degree. Yellow nodes are the 
most connected, red nodes are the next five most connected, and white nodes the other genes or deficits.
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Cluster 5 includes genes related to signaling and maintenance processes whose primary targets are the muscle 
and nervous system. It is well established that the lack of trophic inputs during adulthood leads to loss of physical 
function mediated by the loss of cell populations in different tissues. An example of this is the age-related reduced 
signaling of IGF-2, that leads to inefficient muscle regeneration. Ikemoto-Uezumi et al., 2015 reported that the 
protein expression of IGF-2 decreases the rate of muscle regeneration in the muscle of aged mice34. The ability 
to detect a decrease in the content of trophic factors or in the efficiency of the signaling pathways responsible for 
processing their stimulus could be promising for the timely detection of frailty. Overall, these findings support 

Figure 4.  Clustering analysis of genes and deficits. Clustering analysis: (A) Network clustering associated with 
a network whose nodes are deficits and genes. (B) Centrality measures; degree (red), closeness (blue), and 
betweenness (green), associated with each node in the genes and deficits network.
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the statement of Neal S.F.16 and Viña J.14 that frailty is tightly associated with a failure in homeodynamics around 
apoptosis, energy metabolism (mitochondrial function), DNA integrity and neuromuscular changes.

Regarding the network pharmacology analysis; we identified compounds (Table 3) that could have a role in 
frailty. Some agents could be used because of their impact in inflammation (e.g., anti-rheumatic agents, in particu-
lar, small molecules coming from synthetic or natural sources), while others such as vitamin C or even valproate 
have beneficial effects on the regeneration of connective tissue –in particular in collagen sub-types. Moreover, 
endocrine pathways are also potential targets for pharmacological treatment, as shown by the estrogen-receptor 
blocker raloxifene; that is well-known for its impact on the treatment of osteoporosis and some types of cancer. 
Oxidative stress could also be halted by some of the candidate molecules found in the analysis; such as the epigal-
locatechin gallate (present in chocolate).

Further research must be assessed on the matter of repurposing drugs taking advantage of quantitative sys-
tems pharmacology (QSP), a novel tool useful to simulate drug efficacy (pharmacokinetics and pharmacody-
namics) and toxicity for model-based design of treatment schedules to facilitate pharmaceutical development35. 
Drug repurposing has been shown to bring therapeutic alternatives for those conditions that still lack an effective 
treatment36. Our results, suggest that anti-rheumatic agents could have the potential to ameliorate the progression 
of frailty and even halt the burden it poses on older adults.

Figure 5.  Network of ACE and GR and associated chemical molecules. The network was built with Cytoscape 
(v. 3.7.1) from data obtained from CTD for the most druggable targets ACE and GR. White nodes represent 
compounds interacting only with one target, yellow nodes represent compounds (drugs and toxicants) 
interacting with both targets, and red nodes represent the targets. Edges (green) are different types of 
interactions of compounds with targets accordingly to CTD. The table indicates the druggability parameters for 
each of the five possible targets.
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Finally, there are some interesting, albeit toxic compounds, that may interact with some of the most druggable 
targets GR and ACE, such as Bisphenol A (well-known endocrine disruptor chemical); which is present in several 
plastic bottles and metal cans linings that have shown to alter the epigenome. Also, arsenate, the most common 
form of inorganic arsenic and a widespread pollutant found in water, cigarettes, food, and air, that has been cor-
related with neurotoxic effects, high levels of DNA methylation and different types of cancer34. Altogether, these 
results suggest adverse environmental implications of frailty.

Our work highlights the potential that new methodologies could bring to the field of aging. Frailty in particu-
lar has shown to be a special case on the dynamics of a network of networks. Different levels, from the molecular 
to the clinical expression, seem to be related and understanding their mechanics, could improve knowledge both 
on causes and potential interventions. In conclusion, our results show several signaling pathways: apoptosis, 
inflammation, Notch, and chemokine signaling that play a significant role in the biology of frailty and may be 
considered as central hubs for this condition. Additionally, epigenetics may play a significant role in the devel-
opment of frailty, highlighting the role of environmental factors such as pollution that could lead to the clinical 
expression of this problem. Finally, there may be some drugs that could be repurposed in order to be used in 
frailty, such as anti-rheumatic agents. However, further studies are needed to validate drug efficacy and toxicity 
before they could be implemented in clinical practice.

Methods
Genes related to frailty.  In order to perform the interactome analysis, it was used the gene sets shown in 
Supplementary Table 1S, which have already been correlated with frailty by Viña et al., 201614 and Hangelbroek 
et al., 201615. Cytoscape software37 (v 3.7) was used to analyze, reconstruct, and perform structural analysis from 
all networks obtained in the analysis.

Interactome analysis of frailty-related genes.  Initially, we used a mirror version of GeneMANIA38 (a 
prediction server that finds functionally similar genes using a wealth of genomics and proteomics) on Cytoscape39 
to obtain novel genes related by physical interactions, shared common signaling pathways and co-expression 
information of frailty-related genes (Fig. 1). Then we performed the enrichment analysis (see the section below) 
to analyze significant pathways and diseases from previously obtained genes (Table 1). For the second step, we 
used BisoGenet40 plug-in for Cytoscape to build a structural biological analysis based on PPI and miRNA-Protein 
interaction network analysis using as seeds (input values) only frailty-related genes14,15 (Fig. 2). The hubs (miR-
NA’s or proteins) of the network were detected using the cytoHubba plug-in developed for Cytoscape and node 
degree was chosen as a centrality index41. Node degree defined as the number of neighbors connected directly to 
a node. Nodes with the highest degrees considered as hubs and nodes with a higher number of betweenness and 
hub properties considered as bootlenecks42 (Table 2).

Enrichment analysis.  We performed an enrichment analysis of the pathways and diseases related with 
the genes previously obtained from GeneMANIA by using Comparative Toxicogenomics Database (CTD)43, 
Database for Annotation, Visualization, and Integrated Discovery (DAVID)44 and GSEAPY module from Python. 
The main biological process (BP, GO:0008150), as well as the main KEGG and Reactome pathways along with 
related diseases were chosen accordingly to the most significantly enriched terms, pathways and conditions (p 
value < 0.05, corrected by using the Benjamini-Hochberg procedure) and listed in Table 1 separated accordingly 
with pathways, gene ontology (GO)-terms and diseases.

Compound Characteristic

Ascorbic acid Antioxidant (Vitamin C)

Antirheumatic agents Particularly, conventional disease-modifying antirheumatic drugs: cyclosporin, cyclophosphamide, 
hydroxychloroquine, leflunomide, methotrexate, mycophenolate and sulfasalazine

Valproic acid Anticonvulsant drug

Tetradecanoylphorbol Acetate Natural activators of classic PKC also used for the treatment of haematological cancer

Raloxifene A drug used for osteoporosis and breast cancer

Epigallocatechin gallate Antioxidant in green and black tea
Camelia sinensis

Cocaine Abuse drug

Butyrates Derivatives of butyric acid that contain the carboxypropane structure correlate with anticancer and 
anti-inflammatory effects

Benzyloxy Carbonyl Leucyl-
leucyl-leucine aldehyde A molecule used as a proteasome inhibitor

Bisphenol A Toxic

Sodium Arsenite Toxic

Atrazine Toxic

Hydrogen Peroxide Toxic-Used as antiseptic

Table 3.  Compounds targeting GR and ACE. The table indicates both drugs and toxicants, which interact with 
the most druggable targets (ACE and GR), accordingly to the CTD database.
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Genes-deficit analysis.  Since the frailty index is a ratio of the number of deficits that an individual has 
accumulated divided by all deficits measured, we performed a search for the relationship between deficits associ-
ated with frailty and those already mentioned genes.

Frailty definition and deficits.  There is a reasonable consensus on what the conceptual definition of frailty 
is; however, an operational definition has been a matter of debate that persists to our days2. We chose the frailty 
index, since (Mitnitski et al., 2001)45 this tool allows us to look at different domains of this condition. In addition, 
it has shown that deficits interact as a network46,47 with particular characteristics that allow to approach this prob-
lem with a systems biology paradigm. These items are known as ‘deficits’, and the sum of many deficits (minimum 
30 – Supplementary Table 3S) allows to give an individual a score of a frailty burden, in contrast to other tools 
that give cut-off points categorizing the subject as frail or not. The interest was to have a high number of features 
related to frailty in order to search for them in different databases; the frailty index suits this goal.

An exhaustive search of the different deficits that have been used to integrate a frailty index was done, depart-
ing from the first table provided by the creators of this tool, and enriched with other frailty indexes used by 
Mitniski et al.48 and Searle et al.49.

Genes-deficit network construction.  In order to relate already mentioned genes and deficits, it was 
developed a weighted socio-matrix or weighted adjacency matrix through the relation of original papers linking 
deficits with genes performed only on human samples or clinical studies on Pubmed over the last 15 years linking 
deficits with genes. The term socio-matrix is a square matrix where a number one indicates a tie between two 
nodes and a number zero indicates no tie. The convention is that rows indicate the starting node and columns the 
receiving node. In a weighted socio-matrix, like the one it was used, edge weights are included, and the number 
ones in the socio-matrix are substituted by the weights (publications) indicating the strength of a tie. Table 3S 
indicates the complete list of used MESH terms and names for the search. Supplementary Information Data 1 
presents the constructed weighted socio-matrix. The number of papers linking deficit i; i = 1, …, 34, with a gene 
j; j = 1, …, 42, corresponds to the (i, j) entry of the socio-matrix, and by symmetry, the entry (j, i) has the same 
value. Associations between deficits on the one hand and between genes on the other were not considered; hence, 
we used zeros in the corresponding entries.

Networks were then built, and their nodes correspond to deficits or genes, and their edges are obtained from 
the weighted (publications) socio-matrix. Isolated vertices were eliminated. Centrality measures were calcu-
lated (i.e., degree, closeness and betweenness) to identify central nodes. The size of the nodes in the graphi-
cal representations depends on the value of the measure (Supplementary Figs 2S,3S). Since there are weights 
associated with each edge according to the socio-matrix, weighted centrality measures were calculated as well 
(Supplementary Fig. 3S).

To identify clustering formation k-cores (maximal subgraph, where each vertex is connected to at least k other 
vertices in the subgraph) were obtained (Fig. 4). For the same purpose, community detection algorithms were 
used (walktrap, edge betweenness, spin-glass, fast greedy, label propagation, leading eigenvector, and Louvain), 
and we chose the clusters obtained through the Louvain algorithm since it provided one of the most significant 
modularity values and better interpretability. For statistical analyses, software R was used (igraph, Intergraph, 
statnet, and tnet libraries). Additionally, clusters were enriched according to the metabolic pathways and the 
biological processes in which they participate (see Supplementary Table 4S).

Network pharmacology.  Once identified the most critical nodes on the deficit-gene network (Fig. 3), we 
performed network pharmacological analysis. In the first place, we analyzed the druggability score (evaluates 
the suitability of the binding site for small molecules under the Lipinski’s Rule of five); tractability score (similar 
to druggability score but under more relaxed conditions), and Ensemble score (the average of druggability score 
calculated under different models) from such nodes (Fig. 5). In the calculation of druggability, the average of the 
output from the specific predictions was calculated as the Ensemble Score ranging from undruggable (value of 
−1.0) to druggable (value of 1.00). Then a novel network to identify chemical targets (drugs or toxicants) that 
could interact somehow with the most druggable nodes was used by using the CTD (Fig. 5) with already known 
chemical compounds to identify those compounds that could be re-purposed and tested either alone or in com-
bination in the treatment of frailty. The network was created by using Cytoscape (v 3.7.1), (Fig. 5 and Table 3) the 
complete list of all the compounds interacting with the primary targets is displayed in Supplementary Table 5S.
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