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sMAC, a computational system 
to link literature, biomedical and 
expression data
stefano pirrò  1,2, emanuela Gadaleta1, Andrea Galgani3, Vittorio Colizzi2 & Claude Chelala1

High-throughput technologies have produced a large amount of experimental and biomedical data 
creating an urgent need for comprehensive and automated mining approaches. to meet this need, 
we developed SMAC (SMart Automatic Classification method): a tool to extract, prioritise, integrate 
and analyse biomedical and molecular data according to user-defined terms. The robust ranking step 
performed on Medical Subject Headings (MeSH) ensures that papers are prioritised based on specific 
user requirements. sMAC then retrieves any related molecular data from the Gene expression omnibus 
and performs a wide range of bioinformatics analyses to extract biological insights. these features 
make sMAC a robust tool to explore the literature around any biomedical topic. sMAC can easily be 
customised/expanded and is distributed as a Docker container (https://hub.docker.com/r/hfx320/
smac) ready-to-use on Windows, Mac and Linux OS. SMAC’s functionalities have already been adapted 
and integrated into the Breast Cancer Now tissue Bank bioinformatics platform and the pancreatic 
expression Database.

The NCBI PubMed1 is a biomedical literature-based search engine that provides data from MEDLINE®, life 
science journals and online books. It is the largest and most widely used resource for biomedical and scientific 
research, with over 27 million citations for biomedical literature available currently for querying.

In order to index the large amount of stored data, the National Library of Medicine (NLM) created a con-
trolled vocabulary thesaurus named MeSH (Medical Subject Headings)2. MeSH descriptors are assigned to 16 cat-
egories, with each category divided into subcategories. In each subcategory, descriptors are arrayed hierarchically 
from most general to most specific in up to twelve hierarchical levels. Because of the branching structure of the 
hierarchies, these lists are sometimes referred to as “trees”. Each MeSH descriptor appears in at least one location 
in the tree, but it may appear in additional places if appropriate. Articles in PubMed are classified using multiple 
MeSH terms, from roots to leaves.

While PubMed offers simple and fast search capabilities, it is a daunting, not to mention time-consuming, task 
to wade through the sea of information retrieved3. For this reason, fast automatic extraction and integration of 
biological insights from biomedical literature represents a very attractive prospect.

Several automatic literature solutions were designed to identify, retrieve and extract information from a body 
of works based on user-defined search parameters. GoPubMed4 links PubMed articles with the Gene Ontology5 
by parsing and categorising the abstracts. More recently, Frisch and colleagues developed LitInspector, a tool to 
provide gene and signal transduction pathway mining within PubMed3. Despite the first version being free of use, 
the resource is now part of the Genomatix® Software Suite and requires a license. PolySearch26 is a text-mining 
approach that extracts associative relationships between biomedical entities, such as genes, proteins, human dis-
eases, drugs, metabolites etc. A smart and user-friendly interface allows the user to conduct more than 60 unique 
combinations for each search. Similar to PolySearch2, pubmed.mineR7 combines the advantages of the existing 
algorithms with the flexibility provided by an R package.

Although very valuable, the aforementioned tools do not provide any kind of linkage or integration with the 
molecular data generated from the published studies. For these reasons we developed SMAC, a fast and auto-
mated method for collecting, prioritising, integrating and analysing biomedical data extracted from PubMed 
and Gene Expression Omnibus (GEO)8. The open-source nature of SMAC allows for add-on modules to be 
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incorporated into the architecture thereby expanding the scope of the original software. SMAC is distributed as 
a docker container (https://hub.docker.com/r/hfx320/smac) and can be used out-of-box in any Windows, Mac 
or Linux system. The source code of SMAC is also available on GitHub (https://github.com/wynstep/SMAC).

Since its inception, SMAC has been employed successfully as a valuable module in Breast Cancer Now Tissue 
Bank bioinformatics9 and the Pancreatic Expression database10.

Methods
SMAC is designed to extrapolate and link literature, biomedical and molecular data from user-defined queries 
and conduct bioinformatics analysis. It exploits latest NCBI programmatic access APIs and R packages to support 
either simple and complex queries, produced with a human-readable and -writeable syntax.

SMAC performs five main tasks during its execution (Fig. 1): (i) explore the literature by listing the most relevant 
manuscripts, according to the query; (ii) prioritise literature-related, biomedical data; (iii) create gene networks 
whereas strength and reliability of interactions is proportional to co-citation rate; (iv) extract expression data from 
GEO and convert it to a standard format; (v) perform specific bioinformatics analyses, based on user selections.

starting the analysis. SMAC is able to support two main operative situations. Users can either extract 
all relevant publications and their associated data starting from a text-free user-defined query or use SMAC to 
retrieve information, and subsequent data, from a defined list of PubMed IDs (PMIDs). Text-free search terms, 
defining the concepts of interest (topic or list of PMIDs), and an email address must be defined to launch the data 
selection and retrieval process. To speed up an analysis, users can limit the amount of results retrieved and/or 
bypass the recovery of expression data.

Retrieval and prioritisation of literature data. SMAC exploits the Entrez Programming Utilities to mine 
biomedical literature and identify the most relevant articles. Records are then ranked according to the “Best Match” 
relevance algorithm11 that takes into consideration different factors i.e. past usage of an article, publication date, 
number of citations etc. For each publication reclaimed, a comprehensive set of information is collected (Table 1).

prioritisation of biomedical data. Medical Subject Headings (MeSH) represent a reliable bulk of terms for 
connecting the literature and the biomedical layers. Among the subjects retrieved, some are more important than 
others. For this reason, it’s crucial to apply a prioritisation procedure that takes into consideration the (i) hierarchical 
level (specificity), (ii) abundance in topics-related articles and (iii) abundance in all PubMed citations. The prioriti-
sation workflow is composed of two main parts: first, MeSH terms are sorted separately according to each criteria, 
second the Robust Ranking Aggregation method12 prioritises the most statistically-relevant elements by detecting 
those that are ranked consistently better than expected under the null hypothesis of the random allocation of items.

Retrieval and manipulation of expression data. The integration of molecular data generated from pub-
lished studies supersedes the functionality of all the existing tools. SMAC takes advantage of the R/Bioconductor 
package GEOquery13 to retrieve expression datasets from NCBI Gene Expression Omnibus8. For each GEO series 
(GSE), three data packages are generated in order to reflect sample-level granularity:

pData includes the phenotypic and experimental information deposited by the research group. SMAC applies 
a text-mining approach to stratify samples into different biological groups. Moreover, cancer samples are iden-
tified and separated from normal/controls. This step is crucial for performing a subset of analyses, particularly 
designed for tumour data.

eData packs the expression levels belonging to each sample.
tData reports the information related to the technology used for generating the data, as well as a conversion dic-

tionary between probes and gene names. The presence of tData is fundamental to reduce the dimensionality of eData 
as it allows for the merging expression levels belonging to the same gene, thereby facilitating subsequent bioinformatics 
analyses.

Figure 1. Schematic representation of the workflow performed by SMAC.
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Bioinformatics analysis. SMAC incorporates a body of bioinformatics analysis to be applied on the 
eData extracted and manipulated from GEO. While the core analyses can be applied to any kind of expres-
sion data, regardless of the biological context, a subset of analyses are cancer-specific and can only be applied to 
cancer-related datasets. Results are provided by SMAC in a shape of interactive graphs generated by the plotly R 
package (https://plot.ly).

Principal Component Analysis (PCA) – Core analysis. A PCA reduces the complexity of multidimensional data 
while minimising the loss of information and preserving data structure14. A set of “components” are extracted 
from the expression dataset, by linearly combining the original genes. Data are transformed into a coordinate 
system and presented as an orthogonal projection. The outcome of this analysis is reported by SMAC in a form 
of a 2D/3D scatterplot where the position of samples, reflects their mutual similarity (Fig. 2A). As an explorative 
analysis, PCA captures the presence of clusters of samples showing similar expression patterns.

Gene expression levels – Core analysis. The normalised expression levels (z-scores) for the most variable genes 
(n = 20, n = 50, n = 100 or an arbitrary number decided by the user) is presented across all samples in the GEO 
dataset. Moreover, samples are clustered according to their expression profiles for the subset of genes. This analy-
sis produces a heatmap where rows and columns represent genes and samples, respectively (Fig. 2B).

Gene interaction network – Core analysis. Using the set of papers stored in the literature layer, SMAC uses the 
Entrez Programming Utilities elink to extract the genes correlated to the publications, together with a set of scores 
that reflects their association rate. SMAC then implements the R package visNetwork (http://datastorm-open.
github.io/visNetwork/) to produce an interaction network by overlapping the genes with the, manually-curated, 
Mentha interactome15. Nodes (genes) are coloured according to their association-score while edges (connection 
between genes) are weighted according to the Mentha scoring system (Fig. 2C).

Tumour purity – Cancer related. The cellular purity of cancer samples is often affected by the presence of small 
amounts of infiltrating stromal and immune cells that may confound subsequent analyses. If SMAC detects the 
presence of cancer samples, it will apply the ESTIMATE algorithm16 to infer the tumour purity from the correspond-
ing expression data. This results in an interactive 3D scatterplot that correlates all the calculated scores (Stromal, 
Immune and ESTIMATE), where samples (dots) are coloured according to their purity percentage (Fig. 2D).

Molecular classification – Cancer related. Molecular classification models are applied to datasets comprising 
breast cancer samples. First, the PAM50 single sample predictor, is used to predict the molecular subtype of 
each sample —Luminal A (LumA), Luminal B (LumB), Basal-like (Basal), Her2-enriched (Her2) and Normal 
breast-like (Norm). Next, the molecular status of key breast cancer receptors, oestrogen, progesterone and Her2, 
is estimated using mclust. Results are presented as interactive bar plots showing the percentage of samples belong-
ing to each molecular subtype and receptor status profile (Fig. 2E).

Distribution of the software. SMAC has been developed using Python and R, and is distributed to public 
in a form of Docker package (https://hub.docker.com/r/hfx320/smac). Thanks to its modularity, users can easily 
edit the source code of SMAC (available on GitHub at https://github.com/wynstep/SMAC) by implementing 
R-based, custom analyses to be included in the main pipeline. Further analytical modules will be also imple-
mented in future releases of the software.

Results
Semantic similarity with Polysearch2 database. To evaluate the reliability of the terms retrieved by 
SMAC, we conducted three biomedical tests focussed on diabetes, multiple sclerosis and metformin. The meshes 
R package17 was used to calculate the semantic similarity among SMAC and Polysearch2 terms (adopted as Gold 
Standard). A wide range of semantic, similarity measures were explored: Shortest-Path18, Weighted-Link19, Wu 
and Palmer20, Leacock and Chodorow21, Li22 and Lord23.

Type of information Description

PMID Unique identifier number for publications stored in PubMed

Title Full title of the publication

Authors List of authors, separated by comma

Journal Full name of the journal that published the paper

Date of publication Date of publication is always reported using the yyyy-mm-dd format

MeSH headings List of the medical headings associated to the publication

GSE codes List of the GEO dataset linked to the PMID

Platforms Experimental platforms used for generating the data

ftp-links Web link for the direct download of the GEO raw data

Analyses List of analyses performed by SMAC on each tuple PMID:GSE

Table 1. Description of the metadata retrieved for each publication.
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Apart from Lord’s metrics, all the others are defined as path-based similarity measures and assume that the 
hierarchy of headings is organised along the lines of semantic similarity. Lord’s metrics is an Information-based 
value and is correlated with the frequency of the heading in a given document collection. All the scores are 
normalised between 0 and 1 and represent the probability of two sets of MeSH terms to be similar. For this 
reason, a value of 0.5 (50% probability) is often used as minimum threshold to select the statistically significant 
comparisons24.

The benchmark conducted against Polysearch2 shows that all the path-based similarity measures have a value 
higher than 0.5, with the Shortest-Path methods achieving peaks of 0.84 when comparing Diabetes-related terms 
(Fig. 3). Lord’s metric shows similarity measures between 0.89 and 0.97 in all the tests, demonstrating that SMAC 
is able to capture the biomedical insights correctly.

In our comparison benchmarks, path-based tests can be considered more stringent. In fact, two MeSH terms 
will be considered more similar if they share the same hierarchical level (specificity) and the semantics. On the 
other hand, Lord’s method takes into account both the semantic similarity and the frequency of the term in the 
PubMed dataset.

Comparison with other tools. SMAC represents a cutting-edge technology in terms of data mining. To 
the best of our knowledge, no other method offers users the ability to link and integrate the literature and bio-
medical information in PubMed with the -omics data stored in GEO. Table 2 provides a comparison of SMAC 
with other tools that have been developed for re-analysing datasets from GEO including GEO2R8, shinyGEO25, 
GEOquery13, ImaGEO26, ScanGEO27, GEO2Enrichr28 and BART29. SMAC is the only tool that has been designed 
and developed to run locally, all results are retrieved on-the-go from the NCBI servers, then downloaded and 
analysed on the host machine. There is a potential to include enrichment and meta analyses modules in the next 
release of SMAC.

evaluation of the computational speed. We evaluated the computational speed of SMAC by calculating 
the Time of Execution (ToE) for downloading and analysing an increasing number of invasive breast cancer sam-
ples from GEO (GSE10248430). A  local machine with 2 Xeon 5600 processors and 6GB of RAM was used. All the 
analysis currently implemented in SMAC have been applied on each downloaded dataset. As reported in Fig. 4 
there is a positive correlation between the ToE and the number of samples, for both downloading and analysing 
the data and an overall speed of less than 1 s per sample.

Adaption of sMAC by BCNtB bioinformatics and the pancreatic expression database. SMAC 
has been integrated successfully into the infrastructure of BCNTB bioinformatics and PED. This model was 

Figure 2. Bioinformatics analyses performed by SMAC. The Principal Component Analysis (A) permits 
to highlight the key sources of variation. Gene expression heatmap (B) shows the normalised levels for the 
most variable genes. An interactive gene network (C) reflects the association rate among the genes in selected 
publications. The cellular purity of cancer samples is presented in a single, interactive scatterplot (D). Two 
interactive barplots (E) show the percentage of breast cancer samples belonging to each molecular subtype and 
receptor status profile.
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employed to reduce the burden and time required to select and curate the data manually. These cancer initiatives 
have expanded the functionality of SMAC by incorporating multiple analytical modalities into its base code. The 
adoption and expansion of SMAC by BCNTB bioinformatics and PED has allowed for an exponential growth in 
the data available to the breast and pancreatic cancer research community.

SMAC cross-references entries in PubMed with cancer-specific domains (controlled vocabulary terms). For 
each entry identified by SMAC, the PubMed identifier, title, authors, publication date and abstract are extracted 
and made available to researchers.

BCNTB bioinformatics and PED comprise both data mining and analytical components. For the latter, a 
secondary identification stage was incorporated into SMAC to replace a second manual curation step. Attributes 
relating to the submission of experimental data, such as GEO identifiers, are extracted and computational links 

Figure 3. Semantic similarity benchmarks between SMAC and Polysearch2. The value of 0.5 is set as minimum 
threshold for statistically significant comparisons.

Tool Description
Single/
multiple

Type of analyses

PCA DEGs
Tumour 
purity

Molecular 
classification

Enrichment 
Analysis

Meta-
analysis

SMAC Download and analyse multiple GEO 
datasets Multiple ✓ ✓ ✓ ✓ ✗ ✗

GEO2R Compares two or more groups of samples in 
a GEO dataset Single ✗ ✓ ✗ ✗ ✗ ✗

shinyGEO Shiny extension of GEO2R Single ✗ ✓ ✗ ✗ ✗ ✗

GEOquery R package for downloading GEO datasets Single ✗ ✗ ✗ ✗ ✗ ✗

ImaGEO Meta-analyses across multiple GEO studies Multiple ✗ ✗ ✗ ✗ ✗ ✓

ScanGEO Identifies Differentially Expressed Genes 
across multiple GEO studies Multiple ✗ ✓ ✗ ✗ ✗ ✗

GEO2Enrichr Performs enrichment analyses on DEGs 
extracted from GEO datasets Single ✗ ✓ ✗ ✗ ✓ ✗

BART Download and analyse microarray data 
from GEO Multiple ✓ ✗ ✗ ✗ ✓ ✗

Table 2. Comparison of SMAC with other tools focused on the reanalysis of GEO datasets.

Figure 4. Evaluation of the computational burden for the download and analysis tasks. Both curves follow a 
polynomial, quadratic trend, represented as dashed lines.
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between the entry and its associated experimental data established. If data is publicly available, SMAC accesses 
and downloads the relevant data files. These are fed into the analytical pipelines developed for each resource 
automatically.

Adoption of SMAC has allowed for automation of the data retrieval, extraction, preparation and analysis pro-
cess. Furthermore, this system opens up the opportunity for periodic enrichment of the resources with minimal 
manual intervention. These cancer resources are freely available from http://bioinformatics.breastcancertissue-
bank.org9 and http://www.pancreasexpression.org10.

Conclusions
We designed SMAC, the Smart Automatic Classification system (https://hub.docker.com/r/hfx320/smac) to 
bridge literature information, biomedical headings and molecular data. Starting from a text-free, user-defined 
query, SMAC collects and prioritises all the topic-related publications in PubMed. A set of biomedical terms 
(MeSH) are also extracted and ranked according to multiple features (specificity, local and global abundances). 
Unlike other tools available, SMAC integrates and slims the molecular data generated from published studies. A 
set of core and, where relevant, cancer-specific bioinformatics analyses are applied on the retrieved datasets and 
outcomes are reported in an interactive fashion. A benchmark with Polysearch2 clearly highlights the reliability 
of SMAC to extract the biomedical insights from the literature layer.

The modularity of the architecture of SMAC permits custom modules to be incorporated, expanding its func-
tionality. SMAC has been already adopted by two important cancer resources focused on breast and pancreatic 
cancer and, in future, aims to be incorporated into more biomedical resources.

Data Availability
https://hub.docker.com/r/hfx320/smac.
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