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Label propagation method based 
on bi-objective optimization for 
ambiguous community detection in 
large networks
Junhai Luo   & Lei Ye

Community detection is of great significance because it serves as a basis for network research and has 
been widely applied in real-world scenarios. It has been proven that label propagation is a successful 
strategy for community detection in large-scale networks and local clustering coefficient can measure 
the degree to which the local nodes tend to cluster together. In this paper, we try to optimize two 
objects about the local clustering coefficient to detect community structure. To avoid the trend that 
merges too many nodes into a large community, we add some constraints on the objectives. through 
the experiments and comparison, we select a suitable strength for one constraint. Last, we merge two 
objectives with linear weighting into a hybrid objective and use the hybrid objective to guide the label 
update in our proposed label propagation algorithm. We perform amounts of experiments on both 
artificial and real-world networks. Experimental results demonstrate the superiority of our algorithm in 
both modularity and speed, especially when the community structure is ambiguous.

A variety of complex systems can be represented as networks, such as neural networks, social networks, and com-
munication networks1. The nodes in networks represent the independent individuals in systems, while the edges 
represent the relations between them. In the community structure of networks, links within communities are 
dense while links between them are sparse. As an upstream task, community detection can be beneficial to other 
research, such as identifying top spreaders in social networks2, studying functional differences in brain networks3 
and failure recovery in communication networks4.

Many efforts have been made for detecting community in networks, including hierarchical clustering algo-
rithms5–8, spectral algorithms9–11, dynamic methods12–17, methods based on statistical inference18–21, modularity 
optimization algorithms22–24, and so on. It is worth pointing out that many existing detection methods suffer from 
their high time-complexity and cannot be applied to large networks. The label propagation algorithm (LPA) pro-
posed by Raghavan et al. has proven to be near linear time-complexity for community detection25. LPA updates 
the label of every node with the most frequent label from its neighbors’. Although the update rule has small com-
putational cost, it limits the accuracy of LPA.

In the past decade, many label propagation algorithms with different label update rules have been proposed 
to improve accuracy26–28. Similarly, they all have quite fast speed, because those label update rules are all based 
on local information, such as nodes’ degree, local density, and neighbors. Nonetheless, when the size of net-
works increases or the community structure becomes ambiguous, the accuracy of these methods still needs to be 
improved.

In this paper, we propose a new label propagation algorithm based on bi-objective optimization for detecting 
community. The algorithm initially assigns unique labels to all nodes and then iteratively updates the labels until 
the algorithm converges or specified iterations. Our algorithm not only converges faster but also performs better 
when the community structure is ambiguous, especially in large-scale networks.

The rest of the paper is organized as follows. In Section 2, we will review related works about community 
detection and label propagation. In Section 3, our proposed algorithm (LPAh) is described in details. In Section 
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4, we fully demonstrate the experimental results on artificial and real-world networks and analyze results in detail 
to illustrate the superiority of our approach.

Related works
Local clustering coefficient. In the unweighted undirected graph, an open triplet consists of three nodes 
that are connected by two edges and a closed triplet (i.e., triangle) consists of three nodes connected to each 
other29. The number of triangles on edge eij connects node i and node j is given as:

∩τ = |Φ Φ |i j( ) ( ) , (1)ij

Figure 1. The main label propagation algorithm based on the hybrid of two objectives.
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where Φ(i) is the set of nodes immediately connected to node i. The number of triangles on node i is given as:

∑ τ= .
∈Φ

t 1
2 (2)

i
j i

ij
( )

Figure 2. Tests of LPAt and LPAm with different strength of constraint on LFR benchmark networks: (a–c) 
and (d–f) show the results of LPAt and LPAm respectively. The parameters of LFR benchmark networks are: 
μ = 0 ~ 1, n = 5000, kave = 20, kmax = 0.1n, γ = −2, β = −1, cmin = 10, cmax = 0.1n.
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The local clustering coefficient of one node is defined based on the triplet and measures the degree to which 
the node and its neighbors tend to cluster together29. The size of the set Φ(i) is given as ki, that is the degree of 
node i. The local clustering coefficient Ci of node i is defined as:

=
⋅ −

C t
k k( 1)/2

,
(3)i

i

i i

where ti is the number of triangles on node i and ki(ki − 1)/2 is the number of open triplets on node i.

evaluation for community partitions. A graph can be represented by its adjacency matrix A in which 
element Aij is one when node i is connected to node j, and zero when not connected. The modularity compares the 
number of edges between nodes in the same community to the expected value in a null model8 and is formulated 
as:

∑∑ δ= −
= =

Q
m

A
k k

m
l i l j1

2
(

2
) ( ( ), ( ))

(4)i

n

j

n

ij
i j

1 1

where m is a total number of edges, n is the total number of nodes, l(*) is the community for the node * and δ 
is the Kronecker delta. The higher modularity indicates a better community partition, and the typical range of 
modularity is [0.3, 0.7]. Though modularity optimization methods suffer from resolution limit30, modularity is 
still a good metric for evaluating the quality of community partitions.

Normalized Mutual Information (NMI) is one of the widely used metrics that evaluate the quality of commu-
nity partitions31. NMI can be used to compare the given partition with the ground-truth community partition. 
The closer to one the NMI is, the more similar the two partitions are.

Label propagation. In general, label propagation algorithms initialize every node with unique labels and let 
the labels propagate through the network, that is, every node repeatedly updates its own label based on specific 
rules. Finally, nodes having the same labels compose one community.

In the LPA, one node selects the most frequent label from its neighbors’ as its new label25, and the rule can be 
expressed as:

Figure 3. Tests of LPAh with different α1 on LFR benchmark networks. The parameters of LFR benchmark 
networks are: μ = 0 ~ 1, n = 5000, kave = 20, kmax = 0.1n, γ = −2, β = −1, cmin = 10, cmax = 0.1n.

https://doi.org/10.1038/s41598-019-46511-2


5Scientific RepoRts |          (2019) 9:9999  | https://doi.org/10.1038/s41598-019-46511-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

∑ δ′ =
∈ ∈Φ

l v l u l( ) arg max ( ( ), ),
(5)l L u v( )

where l(u) is the current label of node u, l’(v) is the new label of node v and L is the set of labels for all nodes in the 
network. Barber and Clark reformulated the Eq. (5) in terms of the adjacency matrix A for the network27, giving:

∑ δ′ = .
∈ =

l v A l u l( ) arg max ( ( ), )
(6)l L u

n

uv
1

Barber and Clark also proposed a label propagation algorithm based on modularity (LPAm). LPAm considers 
the new label with constraining the sum of degrees of nodes in the same community, and its update rule is:

∑ δ λ λ δ′ =





− +



∈ =

l v A l u l k K k l v l( ) arg max ( ( ), ) ( ( ), ) ,
(7)l L u

n

uv v l v
1

2

where

∑ δ=
=

K k l u l( ( ), ),
(8)l

u

n

u
1

and the parameter λ is 1/2 m.
Later, Xie and Szymanski proposed a label propagation algorithm combining with the neighborhood (LPAc)26. 

The update rule of LPAc is:

∑ τ′ =













+ ⋅











Φ ∈Φ
l v l c( ) arg max (1 ) ,

(9)v u v
uv

( ) ( )l l

where Φl(v) is the set of nodes with the same label l and immediately connected to node v, c is the weight that 
controls the impact of neighbors and c belongs to [0, 1]. Usually, c = 1 performs better than other cases and Eq. 
(9) degrades into Eq. (5) when c = 0.

Figure 4. Tests of 7 algorithms on LFR networks with n = 1000. The parameters of LFR networks are: μ = 0 ~ 1, 
n = 1000, kave = 20, kmax = 0.1n, γ = −2, β = −1, cmin = 10, cmax = 0.1n.
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It is worth mentioning that the update process in label propagation can either be synchronous or asynchro-
nous. In order to avoid the possible oscillations of labels, we focus our attention on the asynchronous update 
process here. Besides, when the current label of the updated node meets the update rule, algorithms always select 
a label at random from labels meet the update rule instead of keeping the current label.

LFR benchmark networks. We test our algorithm and compare it with others on the artificial networks 
based on LFR benchmark32. In LFR benchmark, the mixing coefficient (μ) controls the expected fraction of edges 
between communities; the distribution of node degrees and community sizes follow the power law with exponent 
γ and β; the number of nodes is n; the average of node degrees is kave; the maximum of node degrees is kmax; the 
minimum of community sizes is cmin and the maximum of community sizes is cmax.

our approach. The local clustering coefficient measures the degree to which the local area tends to cluster 
together. The coefficient considers two factors: the number of edges connected to the node and the number of 
triangles on the node. Therefore, we try to optimize two objectives about both factors to detect the community 
structure.

The first objective is making the number of edges within communities as many as possible. The edge within 
communities means that two nodes connected by it belong to the same community.

The second objective is making the number of triangles within communities as many as possible. The triangle 
within communities means that three nodes that makeup it belongs to the same community.

We introduce a function H to roughly represent the linear combination of two objectives mentioned above as 
follows:

∑∑ δ α τ δ= + ⋅
= =

H A l u l v A l u l v{ ( ( ), ( )) ( ( ), ( ))},
(10)v

n

u

n

uv uv uv
1 1

1

where the parameter α1 is a weight. Next, we can extract the term related to node w and rewrite function H as:

∑ ∑

∑

α τ δ α τ

α τ δ

= + ⋅ − + ⋅

+ ⋅ + ⋅ .

≠ ≠

=

H A l u l v A
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Figure 5. Tests of 7 algorithms on LFR networks with n = 5000. The parameters of LFR networks are: μ = 0 ~ 1, 
n = 5000, kave = 20, kmax = 0.1n, γ = −2, β = −1, cmin = 10, cmax = 0.1n.
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The third term of Eq. (11) can be regarded as a label update rule which can optimize two objectives. The rule 
can be denoted as:

∑ δ α τ δ′ = + ⋅
∈ =

l v A l u l A l u l( ) arg max { ( ( ), ) ( ( ), )},
(12)l L u

n

uv uv uv
1

1

In fact, Eq. (12) is a variant of Eq. (9). Obviously, when function H achieves the global maximum, all nodes 
have the same label, which is not a good community partition.

LPA assigns labels so as to make the number of edges within communities as many as possible. LPAm con-
strains the size of every community by Eq. (8), and at the same time, it increases the number of edges within 
communities.

Therefore, we firstly focus our attention on constraining the number of triangles within communities. The 
total number of triangles on nodes with the same label l is defined as:

∑∑ ∑τ δ δ= = .
= = =

T A l i l t l i l1
2

( ( ), ) ( ( ), )
(13)
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The function for optimizing the number of triangles within communities is given as:
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where α2 is the parameter that controls the strength of the constraint term. Similar to LPAm’s constraint about the 
number of edges within communities, α2 is selected as:

α ε=
Δ
1

(15)2

Figure 6. Tests of 7 algorithms on LFR networks with n = 10000. The parameters of LFR networks are: 
μ = 0 ~ 1, n = 10000, kave = 20, kmax = 0.1n, γ = −2, β = −1, cmin = 10, cmax = 0.1n.
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where Δ is the total number of triangles in a network and ε is a coefficient between 0 and 1. The suitable value for 
ε will be explained combined with experiments in Section 4. When the label of node v is updated, the label of v 
should be ignored to avoid its effect, that is

′ =





≠
− =

.T
T l l v

T t l l v
, ( )

, ( ) (16)
l

l

l v

From the relation between Eq. (10) and Eq. (12), the update rule corresponds to Ht is given as:
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The label propagation algorithm based on Eq. (17) is donated as LPAt.
Finally, the update rule of the label propagation algorithm that optimizes both objectives is formulated as:

∑ α τ δ λ α α′ =





+ − ′ − ′
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′ =
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We donate the algorithm that optimizes both objectives as LPAh. In fact, we can conclude that LPAh performs 
better than LPAt through experiments. The main of LPAh is given in Fig. 1.

experiments and discussion. In this section, we test the LPAt and LPAh on artificial networks and 
real-world networks and compare their performance with LPA, LPAm, LPAc, CNM5, Louvain33 and G-CN. 

Figure 7. Tests of 7 algorithms on LFR networks with μ = 0.3. The parameters of LFR networks are: μ = 0.3, 
n = 1000~50000, kave = 20, kmax = 0.1n, γ = −2, β = −1, cmin = 10, cmax = 0.1n.
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Among them, G-CN is one of the state-of-the-art methods34 for community detection; CNM and Louvain are 
popular community detection algorithms, and their time complexity are O(nlog2n) and O(m) respectively.

the selection for ε. The value of ε has a direct effect on the strength of the constraint term. Therefore, we test 
LPAt with different values of ε on LFR benchmark networks. For the purposes of comparison, we also test LPAm 
with different values of parameter mλ. Each algorithm doesn’t stop running until it converges or 20 iterations. 
Figure 2 shows the average of different metrics for performing LPAt and LPAm respectively 50 times on LFR 
benchmark networks.

Figure 2(a) shows the NMI of partitions given by LPAt. When the community structure is ambiguous (i.e., 
μ ≥ 0.6), with the increment of ε, the NMI values also increase, which means the partitions are closer to the 
ground-truth partitions. In Fig. 2(b), with the increment of ε, the increment of average modularity also demon-
strates the quality of partitions becomes better. Figure 2(c) shows that when the community structure is ambigu-
ous, the number of communities in partitions given by LPAt increases with the increment of ε.

The above observation also appears in Fig. 2(d~f). From the trend, we can conclude that when the community 
structure becomes ambiguous, if there is no or weak constraint, LPAt or LPAm tends to assign all nodes to a large 
community. However, when the constraint is strong, LPAt or LPAm tends to assign nodes into too many small 
communities. Therefore, a suitable value should be that the partitions given by LPAt or LPAm are as close as pos-
sible to the ground-truth partitions or the modularity is as large as possible.

As Barber and Clark gave, the suitable value of mλ is 0.527. When mλ is larger than 0.5, the NMI and modular-
ity have no obvious increment. It is worth pointing out that when mλ = 0.6 or 0.7, the NMI is slightly bigger than 
that when mλ = 0.5. This is because of the bias of NMI towards partitions with more communities35. Therefore, 
when mλ is larger than 0.5, the constraint tends to be excessive. Follow the above analysis, the suitable value for 
ε of LPAt approaches to 0.7.

Finally, we try to explain this idea mathematically. The triplet is a locally dense structure that contains more 
information than adjacent relationships. We can assign this information as weights to edges in the original net-
work. The adjacency matrix of the new weighted network can be represented as:

= ×W w[ ] , (20)ij n n

where

Figure 8. Tests of 7 algorithms on LFR networks with μ = 0.6. The parameters of LFR networks are: μ = 0.6, 
n = 1000~50000, kave = 20, kmax = 0.1n, γ = −2, β = −1, cmin = 10, cmax = 0.1n.
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τ= ⋅ .w A (21)ij ij ij

The suitable value for mλ is inspired by the definition of modularity, that is, the constant term of Eq. (20):

∑ ⋅ ∑

∑
= ⋅

⋅
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A A

A
k k

m
1
2 (22)

j ij i ij

ij ij

i j

According to the definition of modularity in a weighted graph, the suitable value for ε should be 2/3 and 
determined by

∑ ⋅ ∑
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Besides, from Fig. 2, we can conclude that LPAt with ε = 2/3 performs not better than LPAm with mλ = 0.5. 
Therefore, we focus our attention on LPAh with ε = 2/3.

the selection for α1. Here, under ε = 2/3, we test LPAh with different values of α1 on LFR benchmark net-
works. The iteration time of the algorithm is also less than or equal to 20. The results of the above experiments 
are shown in Fig. 3.

As we can see from Fig. 3(a), the increment of α1 can improve the NMI of detection results. However, when α1 
is between 0.5 and 1, the difference in the improvement is not obvious. Figure 3(b) shows that different α1 has no 
obvious effects on the modularity of detection results. In Fig. 3(c), when community structure is ambiguous, with 
the increment of α1, the number of communities that are detected by LPAh decreases. In fact, when α1 is 0, LPAh 
degrades into LPAm. From the discussion in section 4.1, the partition that assigns nodes into too many small 
communities means the constraint is strong. The execution time of LPAh under different values of α1 demon-
strates the faster convergence when α1 is larger than 0. Considering LPAc often performs better when the weight 
c is 1, we also determine to select the α1 as 1.

Comparison of artificial networks. In order to fully compare all algorithms, we not only consider the 
networks with different strength of community structure but also take the size of networks into account.

Firstly, we test 7 algorithms on LFR networks with different mixing coefficient (μ). Each algorithm doesn’t 
stop running until it converges or 20 iterations. The average results achieved by performing each algorithm 50 
times are shown in Figs 4, 5 and 6.

Before analyzing the results of experiments, we divide the variation range of μ into 3 parts to observe every 
figure: when 0 ≤ μ < 0.5, the most edges connect nodes belong to the same community, which means the com-
munity structure is clear; when 0.5 ≤ μ ≤ 0.65, the community structure is ambiguous because the modularity is 
still larger than 0.3; when μ > 0.65, the community structure is very weak.

t(ms) iterations c NMI Q

1468 8 5 0.0123 0.0016

638 5 4 0.0087 0.0010

2553 20 53 0.7949 0.3340

2527 20 54 0.8113 0.3395

2530 20 61 0.8518 0.3461

2510 20 46 0.7375 0.3123

2511 20 58 0.8400 0.3453

2506 20 57 0.8218 0.3403

2511 20 55 0.8007 0.3366

1384 11 3 0.0044 0.0005

626 5 3 0.0044 0.0005

1396 11 4 0.0087 0.0010

1759 14 5 0.0123 0.0016

2501 20 54 0.7980 0.3369

2520 20 56 0.8049 0.3380

2496 20 50 0.7617 0.3269

766 6 5 0.0123 0.0016

2496 20 50 0.7639 0.3283

879 7 4 0.0083 0.0010

2516 20 51 0.7657 0.3234

Table 1. Tests of LPAc on LFR networks with μ = 0.6. The parameters of LFR networks are: μ = 0.6, n = 20000, 
kave = 20, kmax = 0.1n, γ = -2, β = -1, cmin = 10, cmax = 0.1n.
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Figure 4 shows the NMI, modularity, number of communities and execution time of 7 algorithms on LFR net-
works with 1000 nodes. As we can see from Fig. 4(c), when the community structure becomes ambiguous, LPA, 
LPAc and G-CN tend to assign all nodes into a large community, and the tendency of LPA appears earlier. Unlike 
them, LPAm and LPAh tend to assign nodes into many communities. Therefore, in Fig. 4(a,b), LPAh and LPAm 
both perform better than LPA, LPAc and G-CN. When the community structure is ambiguous (0.5 ≤ μ ≤ 0.65), 
LPAh performs better than LPAm both in NMI and modularity. Notice that, when the community structure is 
very weak (μ > 0.65), the modularity of LPAm and Louvain is slightly larger than that of LPAh which may be 
because LPAm and Louvain both aim at optimizing modularity. However, at this time, the modularity is lower 
than the typical value (0.3), and the slight superiority has no practical significance. Figure 4(d) shows the exe-
cution time of algorithms on different networks. Besides, for non-label propagation algorithm, CNM always 
performs not well and Louvain aggregate excessively (the average number of communities is lower than the 
ground-truth even if the community structure is clear).

From the experiments on the network with 5000 and 10000 nodes in Figs 5 and 6, we can get the conclusions 
consistent with the above.

In Figs 5(c) and 6(c), in order to exhibit the results of other algorithms clearly, we only plot part of the results 
of LPAm, because the number of communities detected by LPAm increases dramatically. We can compare the 
experimental results from a different perspective - under the same μ and different sizes of networks. Let’s focus 
our attention on the cases that the community structure is ambiguous, especially μ = 0.6 and 0.65. It is obvious 
that the accuracy of LPA, LPAc and G-CN decreases significantly, and even unable to detect the community struc-
ture. In the above cases, the accuracy of LPAh, LPAm, and Louvain only decrease slightly, and LPAh still performs 
better than LPAm. In terms of execution time, LPAh still performs quite well.

Next, we test 7 algorithms on LFR networks with different size, that is, the number of nodes (n) is 1000, 2000, 
3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 30000, 35000, 40000 
and 50000. Here, we consider the situation in which the community structure is clear or ambiguous (μ = 0.3 or 
0.6). Each algorithm doesn’t stop running until it converges or 20 iterations. The average results achieved by per-
forming each algorithm 20 times are shown in Figs 7 and 8.

Figure 7 shows the performance of 7 algorithms on different sizes of networks when the community structure 
is clear (μ = 0.3). The algorithms based on label propagation perform better than CNM in NMI and modularity, 
and better than Louvain in the number of communities. According to the execution time, the time complexity of 
7 algorithms is comparable and close to linear.

Compared to Fig. 7, the results in Fig. 8 are more interesting. Although LPA is fastest, it can’t find the com-
munity structure. With the increment of network size, the accuracy of LPAc and G-CN decreases significantly. 
In fact, as shown in Table 1, the detection results (red data) of LPAc and G-CN sometimes are still comparable 
to LPAh. In Table 1, when LPAc can’t detect the community structure, it will converge fast, which causes the 
fluctuations in the execution time of LPAc in Fig. 8(d). When n is larger than 10000, the performance of LPAm in 

network Karate Dolphins Football Facebook
ca-
GrQc

ca-
HepPh

cit-
HepTh

n 34 62 115 4039 5242 12008 27770

m 78 159 613 88234 14484 118489 352285

c

LPA 2 3 11 56 724 656 580

LPAc 2 4 14 24 720 818 843

G-CN 3 4 14 25 682 814 834

LPAm 7 9 13 98 1243 1397 1488

LPAh 6 8 13 55 1066 1206 1444

CNM 3 4 7 14 419 424 289

Louvain 4 5 10 16 392 317 171

Q

LPA 0.307 0.474 0.586 0.813 0.793 0.455 0.488

LPAc 0.363 0.527 0.565 0.732 0.797 0.534 0.590

G-CN 0.315 0.527 0.562 0.738 0.800 0.550 0.584

LPAm 0.345 0.500 0.581 0.813 0.709 0.589 0.569

LPAh 0.363 0.515 0.585 0.821 0.752 0.602 0.589

CNM 0.381 0.494 0.571 0.778 0.814 0.589 0.519

Louvain 0.419 0.520 0.604 0.835 0.860 0.658 0.650

t (ms)

LPA <1 <1 <1 206 187 867 4820

LPAc <1 <1 <1 240 196 987 5222

G-CN <1 <1 <1 263 220 1247 6632

LPAm <1 <1 <1 242 391 2199 8930

LPAh <1 <1 <1 239 218 2287 9736

CNM <1 <1 1.59 66 56 943 8581

Louvain <1 <1 1.68 197 144 853 7752

Table 2. Detection results on real-world networks.
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NMI and modularity also decreases slightly. With the increment of network size, two algorithms with constraints, 
namely LPAm and LPAh, perform differently from other algorithms in the number of communities in Fig. 8(c).

Comparison of real-world networks. Finally, we run each algorithm on 7 real-world networks until it 
converges or 20 iterations. Because some networks do not have the ground-truth partitions, or some partitions 
are concluded by researchers, we only consider the average of modularity (Q), execution time (t) and number of 
communities (c). The detection results of all algorithms are shown in Table 2.

In Table 2, Karate36, Dolphins37, Football38 and Facebook39 network are social networks between persons or 
animals in different scenarios; ca-GrQc40 and ca-HepPh40 are collaboration networks; cit-HepTh41 is a citation 
network. According to the optimal results highlighted with red color in Table 2, though LPAh is not the clear 
winner, it performs well enough. The number of communities detected by LPAm and LPAh is larger than others, 
which is because of the constraint term in their objective function. The modularity of LPAh is comparable to that 
of other algorithms and even performs better on some networks. Because of Louvain and CNM aim at optimizing 
the modularity, Q detected by Louvain and CNM is sometimes larger than that by LPAh.

Conclusion
We propose a new label propagation algorithm, LPAh, which is based on two optimization objectives. The algo-
rithm performs well on large-scale networks, even if the community structure is ambiguous.

The optimization objective is inspired by the local clustering coefficient and has the constraint to avoid the 
trend that merges too many nodes into a large community. To select the suitable coefficient (ε) for the constraint, 
we test the algorithm with different strength of constraint on various artificial networks and compare the results. 
Under the selected parameter (ε), our algorithm performs better on LFR networks than other existing algorithms 
including the state of the art one, especially when the community structure is ambiguous. Besides, the experi-
ments on various real-world networks also show the superiority of our algorithm in both modularity and speed.
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