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Genome-scale metabolic model of 
the rat liver predicts effects of diet 
restriction
priyanka Baloni  1, Vineet sangar1, James t. Yurkovich  1, Max Robinson  1, scott taylor2, 
Christine M. Karbowski2, Hisham K. Hamadeh2,3, Yudong D. He2 & Nathan D. price  1

Mapping network analysis in cells and tissues can provide insights into metabolic adaptations to 
changes in external environment, pathological conditions, and nutrient deprivation. Here, we 
reconstructed a genome-scale metabolic network of the rat liver that will allow for exploration of 
systems-level physiology. the resulting in silico model (iRatLiver) contains 1,882 reactions, 1,448 
metabolites, and 994 metabolic genes. We then used this model to characterize the response of the 
liver’s energy metabolism to a controlled perturbation in diet. transcriptomics data were collected from 
the livers of Sprague Dawley rats at 4 or 14 days of being subjected to 15%, 30%, or 60% diet restriction. 
These data were integrated with the iRatLiver model to generate condition-specific metabolic models, 
allowing us to explore network differences under each condition. We observed different pathway usage 
between early and late time points. Network analysis identified several highly connected “hub” genes 
(Pklr, Hadha, Tkt, Pgm1, Tpi1, and Eno3) that showed differing trends between early and late time 
points. taken together, our results suggest that the liver’s response varied with short- and long-term 
diet restriction. More broadly, we anticipate that the iRatLiver model can be exploited further to study 
metabolic changes in the liver under other conditions such as drug treatment, infection, and disease.

Metabolic adaptation is critical for the ability of cells to maintain homeostasis following a physiological change. 
One of the more important organs for regulating homeostasis is the liver, which plays a primary role in detoxifi-
cation, protein synthesis, and nutrient regulation1,2. Homeostatic regulation in hepatocytes involves many meta-
bolic processes spanning interconnected pathways, requiring a systems approach to provide mechanistic insight. 
GEnome-scale metabolic Models (GEMs) provide one such systems biology framework for the quantitative 
interrogation of metabolic capabilities across diverse conditions3. GEMs detail the connectivity of the metabolic 
network through reaction stoichiometries, allowing for systems-level computation of reaction fluxes in response 
to genetic or environmental perturbations4,5.

The scope of GEMs has been iteratively expanded to include additional pathways and physiological infor-
mation, including various -omics data6–8. Notably, the integration of transcriptomics data has allowed for the 
construction of condition-specific models9–12. The global human metabolic network reconstruction13–15 paved the 
way for the use of GEMs to explore clinical applications and resulted in many cell- and tissue-specific GEMs16–18. 
Several of these tissue-specific models have been used to study human physiology19–22 and pharmacological tar-
gets23–25. The hepatocyte has been the focus of several cell-specific modeling efforts. In 2010, two GEMs of the 
human hepatocyte were published simultaneously26,27 to understand diverse physiological liver functions; one of 
these models26 was later used to simulate metabolic phenotypes resulting from inborn errors of metabolism28. 
A later GEM, iHepatocytes22,23, was used to predict serine deficiency in patients with non-alcoholic fatty liver 
disease and to identify genes that are potential therapeutic targets for treatment of non-alcoholic steatohepatitis29.

While these cell-specific models have been used to understand pathophysiology in humans, the limitations 
associated with perturbation experiments in humans have limited their utility in translation research. Thus, 
organisms like Sprague Dawley rats (Rattus norvegicus) – small in size, easy to handle, high rate of reproduction, 
and similar physiology to humans – have been used as a primary model organism to study toxicology30 and to 
model aspects of human physiology30. Studying these diverse metabolic processes of the liver provides important 
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insights into the physiological response to pharmacological interventions31. One of the well-studied physiological 
responses in the liver is due to a change in nutritional status, such as over-fed or starvation conditions32–34. During 
a well-fed state, the liver stores excess glucose as glycogen, which is then converted back to glucose during glucose 
deprivation. Understanding the metabolic regulatory responses to such perturbations in various physiological 
models represents an important open area of research.

Here, we present the in silico investigation of the metabolic effects of different diet-restriction patterns as 
interpreted through our reconstruction of a liver-specific GEM of the rat (iRatLiver). We generated genome-wide 
transcriptomics data of the rat liver to assess the response to different feeding patterns. These data were then 
integrated with iRatLiver to generate condition-specific models that were used to simulate changes in metabolic 
pathway usage as a result of the dietary changes. More broadly, we anticipate that this model can be a useful 
resource for toxicological and biomedical research, with its comparability back to the human reconstructions.

Results
Constructing the iRatLiver GeM. The first major step of this project was to reconstruct the metabolic 
network of the rat liver35. Because we are ultimately interested in studying human physiology, we used an existing 
GEM of the human liver16 as a starting point for the homology-based reconstruction of rat liver metabolism; see 
Methods for details regarding the reconstruction process. The resulting model, iRatLiver, comprises 1882 reac-
tions, 1448 metabolites, 994 genes, 7 compartments (cytoplasm, lysosome, mitochondria, nucleus, endoplasmic 
reticulum, peroxisome, and extracellular space), and 82 metabolic subsystems (Supplementary Fig. 1); these sub-
systems were assigned according to the BiGG Models database36. We validated the iRatLiver model by compar-
ing the predicted doubling time with literature values; the predicted doubling time of 16.3 hours was consistent 
with the reported doubling time of 16.9 hours of rat hepatocytes in cell culture37. Further, we tested the model’s 
ability to perform liver-specific functions (gluconeogenesis, triglyceride synthesis, amino acid degradation, and 
ammonia and ethanol detoxification) as previously reported16 (see Data S3 (Table S4) for simulation results). The 
iRatLiver model is provided in Data S1; an SBML version of the model is provided in Data S2.

There are several differences between human and rat metabolism38–40, most notably the existence of several 
enzymes that are functional in rats but are present only as pseudogenes in humans (Table 1). We compared the 
enzymes in rat and human and identified these unique enzymes that are functional in rats (see Methods section). 
The human L-threonine 3-dehydrogenase gene is an expressed pseudogene41–44; whereas it is functional in rats, 
suggesting that these differences should be taken into consideration for pharmacokinetic studies. Humans and rat 
also differ in their ability to metabolize uric acid; rats have a functional uric acid oxidase, whereas humans have 
a loss of uricase activity45.

We compared the iRatLiver model to an existing tissue-specific model of the human liver, liverCADRE16, 
observing differences in several subsystems: vitamin C metabolism, vitamin B2 metabolism, fatty acid oxida-
tion, tryptophan metabolism, and the pentose phosphate pathway (Supplementary Fig. 1A). Recently, Papin and 
colleagues reported iRno, a GEM of rat30 that was used for biomarker prediction. A model of global rat metabo-
lism, iRno encompasses all reactions in the organism rather than tissue-specific content and thus contains more 
reactions and metabolites than does iRatLiver. We compared our liver-specific model to the global iRno model 
(Supplementary Fig. 1B), finding fewer dead-end metabolites (five and 679, respectively), a result not unexpected 
due to the differing scope between the models (Supplementary Fig. 1), i.e. a global reconstruction vs. a recon-
struction more tailored to a particular organ. There have been several subsequent iterations of iRno focusing on 
various aspects of rat physiology46–48.

Gene symbol Enzyme Enzyme name Reaction formula Pathway Ref.

Tdh 1.1.1.103 L-threonine 3-dehydrogenase L-threonine + NAD+ = L-2-amino-3-
oxobutanoate + NADH + H+

Glycine, serine and 
threonine metabolism

41

Gulo 1.1.3.8 L-gulonolactone oxidase L-gulono-1,4-lactone + O2 = L-ascorbate + H2O2
Ascorbate and aldarate 
metabolism

43

Cmah 1.14.18.2 CMP-N-acetylneuraminate monooxygenase
CMP-N-acetylneuraminate + 2 ferrocytochrome 
b5 + O2 + 2 H+ = CMP-N-glycoloylneuraminate + 2 
ferricytochrome b5 + H2O

Amino sugar and 
nucleotide sugar 
metabolism

79

Uox 1.7.3.3 uric acid oxidase urate + O2 + H2O = 5-hydroxyisourate + H2O2 Purine metabolism 45

Ggta1 2.4.1.87 N-acetyllactosaminide 3-alpha-galactosyltransferase

UDP-alpha-D-galactose + beta-D-galactosyl-(1->4)-
beta-N-acetyl-D-glucosaminyl-R = UDP + alpha-D-
galactosyl-(1->3)-beta-D-galactosyl-(1->4)-beta-N-ac-
etylglucosaminyl-R (where R can be OH, an oligosaccharide 
or a glycoconjugate)

Glycosphingolipid 
biosynthesis - lacto 
and neolacto series

80

Art2b 3.2.2.5 NAD glycohydrolase NAD+ + H2O = ADP-D-ribose + nicotinamide
Nicotinate and 
nicotinamide 
metabolism

81,82

RGD1309350 3.5.2.17 hydroxyisourate hydrolase 5-hydroxyisourate + H2O = 5-hydroxy-2-oxo-4-ureido-2,5-
dihydro-1H-imidazole-5-carboxylate Purine metabolism 42

LOC688286 4.1.2.48 low-specificity L-threonine aldolase L-threonine = glycine + acetaldehyde Glycine, serine and 
threonine metabolism

83

Table 1. Enzymes present in the rat liver but not in the human liver.
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Validating iRatLiver predictions in diet-restriction conditions. Our next goal was to explore the 
utility of iRatLiver for phenotypic predictions under a controlled perturbation. Diet restriction in rats has been 
extensively studied in relation to a variety of medical applications, including obesity34, lifespan32,49, and drug 
effects33,50. We therefore designed a study in which we altered the diet of groups of rats and studied the resulting 
change in liver function through measuring gene expression (Fig. 1). A total of 50 male Sprague Dawley rats were 
divided into five groups and given different diets; liver samples were taken at days 4 and 14 for five rats in each 
group for transcriptomics analysis (see Methods for full details). From the gene expression data, we identified 
differentially expressed genes (DEGs) (Data S3 (Table S2)) and corresponding biological processes that were 
enriched for DEGs under diet-restriction conditions (Data S3 (Table S3)).

We then filtered the gene expression data to the set of metabolic genes to examine the effects of diet restriction 
on liver metabolism. We performed principal component analysis (PCA) on the normalized expression values 
of the metabolic genes, observing distinct clusters for the different experimental groups (Fig. 2). The control 
samples (with or without overnight fasting) formed a separate cluster from the diet-restricted samples, corrobo-
rating previous results that suggested the expression of metabolic genes varies under varying dietary conditions51. 
Further, the diet-restricted samples for days 4 and 14 clustered separately, indicating that the expression profile 
was also influenced by the duration of the diet restriction. We observed high variance in the group 5 rats (60% 
diet restriction), suggesting that there was a less uniform adaptive response. Ultimately, these results indicated 
that the underlying expression profile of the liver varied as a function of time.

Analysis of the raw transcriptomics data provided a snapshot of biological processes that might be regulated 
in various conditions, but our goal herein was to obtain a holistic view of how the metabolic network changed 
as a result of diet restriction. Thus, we integrated the transcriptomics data into the iRatLiver model using previ-
ously published methods (GIMME12 and E-flux52); the two algorithms take different approaches to integrating 
the expression data with the GEM, resulting in models with differing structure (see Methods). The resulting 
condition-specific models (i.e., a model for each group of rats in the experimental design) allowed for the explo-
ration of how metabolic fluxes and pathway usage were altered under nutrient deprivation.

Figure 1. Overview of study design. (a) Graphical representation of the experimental groups of rats considered 
for studying the effect of diet restriction. The rats were divided into five groups based on their diet and the 
experimental measurements were done at days 4 and 14. (b) Graphical representation of various analyses 
performed in the study from reconstructing the rat liver model to identifying active reactions in diet restricted 
conditions.
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We computed the flux state of the full metabolic network for all condition-specific models to identify reactions 
that carried flux in all conditions. We selected the set of reactions from GIMME and E-flux that had non-zero 
fluxes across a majority of conditions; this approach yielded a set of 1049 and 604 reactions that carried flux in 
GIMME and E-flux, respectively. The intersection of those reactions resulted in a set of 338 high-confidence 
reactions that were used in subsequent analysis (list of reactions provided in Data S3 (Table S5)). To obtain insight 
into pathway regulation under the experimental conditions, we simulated the models (optimizing for growth 
rate) and computed the flux state. These flux values were scaled using projective decomposition53, a normaliza-
tion method that is part of Scale-Invariant Geometric Data Analysis (SIGDA)54, showing that various metabolic 
subsystems cluster together (Fig. 3). We observed trends in the usage of several pathways in the group 5 rats (60% 
less food) that were in the opposite direction when comparing the day 4 and 14 timepoints. This observation can 
be explained by the fact that, during initial diet restriction, the liver is able to produce glucose from the catabo-
lism of glycogen; under long-term diet restriction (during which glycogen stores have been depleted) glucose is 
synthesized via gluconeogenesis from substrates such as lactate, pyruvate, glycerol, and amino acids generated in 
the liver or originating from extrahepatic tissues55.

Understanding changes in pathway usage under diet-restricted conditions. While previous stud-
ies have explored the regulation of glycolysis, gluconeogenesis, TCA cycle and pentose phosphate metabolism55,56, 
the iRatLiver model provides the opportunity to explore these questions in the context of the metabolic network. 
To this end, we performed pathway-based enrichment analysis (Data S3 (Table S6)) on the genes present in 
altered iRatLiver model subsystems. We found that glycolysis/gluconeogenesis, the pentose phosphate pathway 
(PPP), fatty acid degradation, purine metabolism, and propanoate metabolism were significantly affected by diet 
restriction. It has been previously reported that the activity of metabolic enzymes in PPP was reduced under 
starvation conditions but restored through re-feeding with a high-carbohydrate diet33.

Upon deeper analysis of these subsystems, we observed that the distribution of reaction fluxes varied between 
conditions (Fig. 4). Several reactions relevant to starvation conditions55, such as L-lactate dehydrogenase 
(LDH_L) malate dehydrogenase (MDH), succinate dehydrogenase (SUCD1m), and phosphoribosylpyrophos-
phate synthetase (PRPPS), showed variations in fluxes across conditions55. Under starvation conditions, iRatLiver 
correctly predicts the synthesis of glucose through gluconeogenesis, the conversion of lactate to pyruvate (by 
LDH_L) to oxaloacetate in the mitochondria. The accumulation of TCA cycle intermediates in hepatocytes due 
to gene deletion is responsible for hepatic steatosis in dietary restricted state55,56. In addition to these behaviors, 
the iRatLiver model also predicted alterations in phosphoribosylpyrophosphate synthetase (PRPPS) under fasting 
conditions.

We also examined the regulation of hormones, one of the main functions of the liver, and the subsequent 
effect on various physiological functions in the system during diet restriction. Several genes in steroid metabo-
lism were altered based on our metabolic analysis, namely hydroxysteroid 11-beta dehydrogenase 1 (Hsd11b1), 
hydroxysteroid (17-beta) dehydrogenase (Hsd17b1, Hsd17b2, Hsd17b7, Hsd17b8), and aldo-keto reductase fam-
ily 1 (Akr1c19). These genes are involved in various biological processes such as glucocorticoid biosynthesis, 
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cholesterol biosynthetic process, fatty acid biosynthesis process, oxidation-reduction process as well as response 
to nutrient levels. This observation suggests that hormone regulation is another important physiological change 
that occurs during diet restriction.

Identifying key genes from network analysis. Finally, we attempted to understand transcriptional and 
metabolic variations due to diet restriction using a network-based approach. We hypothesized that the metabolic 
genes identified through integration of the gene expression data with the iRatLiver model were highly connected 
nodes that orchestrated global metabolic functionality under changing environmental conditions.

To test this hypothesis, we constructed a protein expression network in which genes are nodes and interac-
tions are edges (Fig. 5A; see Methods); the interaction between nodes may be a physical binding or function 
association determined by putative or experimental evidence57. We identified the most highly connected nodes 
(“hub” nodes) to be pyruvate kinase (Pkm, Pklr), hydroxyacyl-CoA dehydrogenase (Hadha), transketolase and 
transketolase-like protein (Tkt, Tktl1, Tktl2), phosphoglucomutase (Pgm1), triosephosphate isomerase (Tpi1), 
and enolase (Eno3). We calculated the node degree distribution (the number of connections the node has to 
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other nodes in the network) and edge betweenness (the number of shortest paths that go through an edge in the 
network) for the network. The edge betweenness for glycerol kinase (Gk) and glyceraldehyde-3-phosphate dehy-
drogenase (Gapdh) was highest, indicating that many paths in the network traverse by this edge.

Interaction networks provide interesting insights into how genes related to diverse functions work in concert 
to achieve broader systems-level functions58. We next explored how the hub nodes in our network are connected. 
We observed similar trends in the expression of Hadha, Tpi, Gk, and Gapdh for in the day 4 and 14 diet-restricted 
conditions. The trend varies for Tkt and Pgm1, indicating that these genes are differently regulated for under 
different diet conditions. The expression levels of Tkt in our study are lower when compared to control samples. 
Pgm1 is expressed at higher levels in the nutrient restriction conditions than control overnight fasting, except for 
the 60% restricted food group at 14 days (Fig. 5B,C).

Discussion
The liver plays an important role in regulating metabolic homeostasis by catabolizing, storing, and altering nutri-
ents, as well as detoxifying toxic substances present in the body. Targeted perturbation experiments in model 
organisms allows for a systems-level characterization of the complex systems underlying liver metabolism. In 
particular, rats are frequently used in pharmacological and metabolic studies due to physiological similarities 
with humans. Here, we described a tissue-specific metabolic network model of the rat liver (iRatLiver) and used it 
to study diet restriction in rats. We used the iRatLiver model to compute changes in the network-level metabolic 
flux state of the system due to alterations in the nutritional status of 50 Sprague Dawley rats. We have provided 
evidence that this in silico model is able to provide deeper insight into the metabolic alterations in rat due to diet 
restriction. The results presented here have three primary implications.
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First, upon diet restriction, the liver maintains homeostasis through regulation of metabolic activity across the 
metabolic network. We observed that several key pathways – central carbon metabolism, fatty acid degradation, 
purine metabolism, and propanoate metabolism – are responsible for the regulation of systems-level function 
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edge is decided based upon its edge betweenness in the network. (B) Box plots of hub nodes gene expression at 
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Box colors indicate experimental conditions as shown in the legend.
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under the diet restriction. Hepatocytes can use glucose and/or fatty acids as metabolic fuels, and selection of these 
depends on hormonal regulation and nutrient levels. In fasting or nutrient starvation conditions, hepatocytes 
predominantly depend on oxidation of fatty acids for energy supply55, an observation supported by our results 
herein.

Second, the liver’s response varied with respect to short- and long-term diet restriction. The survival of rats 
subjected to severely restricted diet indicates that the organism is able to alter its metabolism to maintain required 
energy levels. Through integration of gene expression data with the iRatLiver model, we were able to identify the 
genes and pathways responsible for the metabolic shifts that allowed the organisms to adapt to changing envi-
ronmental conditions. We investigated reactions involved in carbohydrate metabolism (glycolysis/gluconeogen-
esis, TCA cycle, and PPP) and observed changes in the flux through phosphoribosylpyrophosphate synthetase 
(PRPPS) in fasting conditions. PRPPS (Prps1, Prps1l1, Prps2) was previously reported to be affected by amino 
acid depletion55,59, while mutations in Prps1 have been associated with hyperuricemia, hyperuricosuria, hypoto-
nia, and ataxia and gain-of-function mutation results in PRS-1 superactivity60. Our investigation of differential 
pathway usage under diet restriction therefore warrants further study to better characterize genetic factors that 
influence the varied metabolic shifts observed here in short- and long-term diet restriction.

Third, network models have the potential to provide important insights into complex liver functions. The 
construction of an interaction network allowed for the identification of key genes such as Pklr, Hadha, Tkt, Pgm1, 
Tpi, Gk, and Gapdh involved in metabolic regulation during diet restriction. We observed that the expression 
levels of Tkt were lower in diet restriction than in control samples. Transketolase (Tkt) is a key enzyme in pen-
tose phosphate pathway and governs carbon flow. Akt is known to regulate Tkt activity, and it has been reported 
that caloric restriction causes downregulation of the PI3K/Akt/mTOR pathway, ultimately affecting amino acid, 
carbohydrate and purine metabolism61. Thus, we conclude that these pathways are affected under the conditions 
studied here. Similarly, Pgm1 (Phosphoglucomutase) –involved in the interconversion of glucose-1-phosphate 
and glucose-6-phosphate – has been connected to the regulation of glycogen content during nutritional stress in 
the system62. In humans, Pgm1 plays a role in balancing cellular demand during nutrient depletion, thus helping 
cell proliferation. Both Pgm1 and Tkt (identified here as hub nodes) have been implicated in cancer cell prolifer-
ation and have been studied as possible therapeutic targets61,62. Thus, it is possible that a network approach such 
as the one presented here could be used in pharmaceutical studies for the identification of potential drug targets.

In this study, we used a systems approach to interrogate energy metabolism in the rat liver in a metabolic 
network model context. Through the integration of transcriptomics data, we generated condition-specific models 
that were used to compute pathway usage under different diet-restricted conditions. Our results suggest that the 
construction of a detailed transcriptional regulatory network of the rat liver would lead to further important 
insights into the effects of diet restriction, such as genes that are switched on or off during those stress conditions. 
We anticipate that the iRatLiver model presented here, which we are making freely available to the scientific com-
munity, will also prove useful to others in studying important physiological and biomedical questions related to 
obesity, aging, and pharmacology.

Methods
Reconstruction of an in silico metabolic model of rat liver. We used a previously published tissue-spe-
cific GEM of the human liver (liverCADRE16) for the construction of iRatLiver model. The liverCADRE model 
displayed improved metabolic functionality and was useful in predicting biological outcomes. The liverCADRE 
model consisted of 1763 reactions, 1402 metabolites, 994 unique genes and 80 subsystems16. Following the estab-
lished protocol for reconstructing metabolic networks35, we identified homologous genes between human and rat 
using Ensembl (GRCh37)63 and Homologene64 and replaced these human genes with the corresponding Rattus 
norvegicus genes.

We incorporated information regarding known metabolic differences between rat and human (unique pro-
teins in rat liver metabolism added to the iRatLiver model are summarized in Table 1)38–40. We performed protein 
BLAST65 using an e-value cut-off of 1e-30 to identify matching proteins. Next, we compared metabolic pathways 
in human and rat using EC2KEGG tool66. The list of unique proteins in rat along with the biological functions are 
given in Table 1. We used KEGG67 and BioCyc68 to obtain information of metabolic reactions catalyzed by these 
enzymes which were added to the iRatLiver model. We identified dead-end metabolites and blocked reactions in 
the draft reconstruction. We used reaction file containing information from Recon 215, KEGG67 and BioCyc68 to 
fill gaps in the model.

The resulting draft reconstruction consisted of 1843 reactions, 1477 metabolites, and 988 unique genes. We 
then added reactions belonging to cholesterol metabolism, tryptophan metabolism, glycolysis, tyrosine metabo-
lism and others using information from the human Recon 2 model15. We used the objective function from mouse 
metabolic model iMM141569 with no modifications. The final iRatLiver model consisted of 1882 reactions, 1448 
metabolites, 994 unique metabolic genes, 7 compartments, and 82 subsystems. We compared reactions and sub-
systems present in the human liver model (liverCADRE)16 and iRatLiver model and found differences in vitamin 
B2, vitamin C, squalene and cholesterol synthesis, fatty acid oxidation, tryptophan as well as pentose phosphate 
pathway.

iRatLiver model validation. We performed two primary sets of validation for iRatLiver. First, we com-
pared the predicted doubling time of 16.3 hours with literature values, finding that it was consistent with the 
reported doubling time of 16.9 hours in rat hepatocyte cell culture37. Second, we performed a previously used 
array of tests to ensure the model could compute basic functionality of the liver16. Specifically, we tested the mod-
el’s ability to perform gluconeogenesis, triglyceride synthesis, amino acid degradation, and ammonia and ethanol 
detoxification (see Data S3 (Table S4) for simulation results). We deposited iRatLiver in BioModels70 under the 
identifier MODEL1811090001. The iRatLiver model is available as SBML format (Data S2).
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experimental design for diet restriction study in rat. We studied the effects of varying levels of nutri-
ent deprivation on male Sprague Dawley rats, approximately 8–10 weeks of age, that were subjected to varying 
levels of dietary restriction (Fig. 2 and Data 3 (Table S1)). Rats were housed in groups or stable pair of compatible 
individuals at an AAALAC, International accredited facility and were cared for in accordance with the Guide 
for the Care and Use of Laboratory Animals, 7th Edition71. All research protocols were reviewed and approved by 
the Amgen Institutional Animal Care and Use Committee. Lighting in animal holding rooms was maintained 
on 12:12 hr light:dark cycle, and the ambient temperature and humidity range was at 68 to 79 F and 30 to 70%, 
respectively. Powdered feed (Harlan Tekland rodent diet 8640) was provided either ad libitum (groups 1 and 2), 
reduced by 15% (group 3), reduced by 30% (group 4), or reduced by 60% (group 5). Reduction in food was cal-
culated based on the average food consumption recorded for group 1 and 2 based on the previous 3 days. There 
were 10 rats per group; five rats per group were subjected to 4 days of dietary restriction (necropsy on day 5) and 
the remaining 5 per group were subjected to 14 days (euthanized on day 15). Groups 2–5 were fasted 8–12 hours 
overnight prior to necropsy. Standard clinical and anatomic pathology endpoints were collected and examined 
(not included in this study).

transcriptome analysis. RNA extraction from rat hepatocytes was carried out using Qiagen (Valencia, CA) 
RNeasy Mini kit and qiazol according to the manufacturer’s instructions to homogenize the tissues and chloro-
form for phase separation. Amplification was performed with Oligo dT primed RT using SSII, 2nd strand cDNA 
synthesis, cleanup via Qiagen MinElute. Synthesis of biotinylated cRNA using the Enzo (Farmingdale, NY) amp 
kit, cleanup of cRNA via Qiagen RNeasy Mini kit. Biotin-labeled aRNA products were hybridized to Affymetrix 
(Santa Clara, CA) GeneChip® Rat Genome 230 2.0 Arrays per manufacturer instructions provided on the prod-
uct insert. Scans were carried out as per manufacturer instructions provided on the product insert. The scan files 
were processed using Expression Console (Affymetrix) for quality control and subsequent results were used in 
microarray data analysis.

All statistical analyses were executed using the R statistical computing platform (version 3.0.1). Expression 
data were normalized using the Robust Multi-Array Average method implemented in the Bioconductor package 
affy (version 1.38.1). The expression data was submitted in Gene Expression Omnibus (GEO)72 and the acces-
sion number for the data is GSE98621. A single Empirical Bayes model included in the Bioconductor package 
EBarrays (version 2.2.0) package, Lognormal-Normal-Modified-Variance (LNN-MV), was used to calculate dif-
ferentially expressed genes. These analyses were conducted separately for each treatment group. The function 
crit.fun, setting FDR = 0.1, was used to calculate the minimum posterior probability required to deem a sequence 
representing a gene significant in each treatment group.

Normalization and fold change analysis was performed as mentioned above. The fold change values were 
calculated by considering the group of ad libitum, overnight fasting samples (Group 2) as control. The number of 
DEGs in each condition are represented in Data S3 (Table S2). The number of DEGs are higher for Day 14 condi-
tions as compared to the others, indicating that larger number of genes are altered during high stress conditions. 
We identified sets of genes that are commonly up or down-regulated in various experimental groups. Enrichment 
analysis of these genes gave information of the pathways were significantly enriched in these conditions. We used 
the enrichment analysis performed by STRING v10.557 (see Data S3 (Table S3)).

Integration of transcriptomics data with iRatLiver. To identify the metabolic changes taking place in 
the liver, we integrated transcriptomic data with the iRatLiver model. Among available methods for integrating 
omics data with metabolic model73, we implemented two different algorithms: Gene Inactivity Moderated by 
Metabolism and Expression (GIMME)12 and E-Flux52. The two algorithms make differing assumptions for the 
integration of transcriptomics data, resulting in differing outputs and interpretations of subsequently computed 
physiological states.

The combination of these methods is helpful in identifying set of active reactions in condition of interest and 
capturing extent of flux changes and reshaping the flux cone considering the measurements of gene expression. 
Upon implementation of the algorithms, we computed the flux state (optimizing for growth rate) of each model 
separately; the reactions with zero flux were identified (reactions with a flux less than 1E-06 were denoted as 
carrying no flux). Reactions having non-zero fluxes were selected from the total set of reactions in the model. 
Only those reactions having measurable fluxes from both methods were considered active and subsequently 
used for analyzing reactions and determining which subsystems were perturbed under diet-restricted condi-
tions. We considered absolute values of reaction fluxes and grouped the reactions based on their corresponding 
subsystems. For each subsystem, we calculated average values of reaction fluxes. Considering group 2 (control, 
overnight fasting) as control, we subtracted the average values calculated for each subsystem for diet-restricted 
conditions. Then we carried out an unbiased approach to identify subsystem differences between diet-restricted 
conditions. We used projective decomposition54 to normalize the average flux values and represented the values 
in clustergram in Fig. 3. The normalized flux values ranged from −3 to 2 for different subsystems. We also carried 
out flux variability analysis (FVA)74 and determined the robustness of metabolic model. The information related 
to altered subsystems can be extrapolated to further identify possible rewiring in the system leading to adaptation 
during diet-restricted state. The COBRA toolbox75,76 was implemented in MATLAB 2014a and academic licenses 
of Gurobi Optimizer v7.5 and IBM CPLEX v12.7.1 were used to solve LP and MILP problems in this study.

statistical analysis. Fisher’s exact test followed by a correction of the p-values for multiple testing using 
Benjamini-Hochberg procedure was used for pathway-based enrichment of genes identified from metabolic anal-
ysis77. A P-value cutoff of 0.05 was considered statistically significant in all analyses.
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Network analysis and visualization. The genes belonging to altered subsystems were used for network 
analysis. STRING v10.557 was used for extracting confident interactions (STRING combined score >0.7) between 
these genes/proteins of the specific organism. The genes are represented as nodes and the interaction between 
nodes is called an edge. The interactions were visualized using Cytoscape78. We used the NetworkAnalyzer appli-
cation in Cytoscape to calculate node degree distribution and edge betweenness. Nodes with highest connections 
in the network are defined as ‘hub’ nodes. The number of shortest paths that go through an edge in the network 
determines the edge betweenness.
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