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Identification of prognosis 
markers for endometrial cancer 
by integrated analysis of DNA 
methylation and RNA-Seq data
Xiao Huo, Hengzi sun, Dongyan Cao, Jiaxin Yang, Peng Peng, Mei Yu & Keng shen

Endometrial cancer is highly malignant and has a poor prognosis in the advanced stage, thus, prediction 
of its prognosis is important. DNA methylation has rapidly gained clinical attention as a biomarker 
for diagnostic, prognostic and predictive purposes in various cancers. In present study, differentially 
methylated positions and differentially expressed genes were identified according to DNA methylation 
and RNA-Seq data. Functional analyses and interaction network were performed to identify hub 
genes, and overall survival analysis of hub genes were validated. The top genes were evaluated by 
immunohistochemical staining of endometrial cancer tissues. The gene function was evaluated by 
cell growth curve after knockdown CDC20 and CCNA2 of endometrial cancer cell line. A total of 329 
hypomethylated highly expressed genes and 359 hypermethylated lowly expressed genes were 
identified, and four hub genes were obtained according to the interaction network. Patients with low 
expression of CDC20 and CCNA2 showed better overall survival. The results also were demonstrated by 
the immunohistochemical staining. Cell growth curve also demonstrated that knockdown CDC20 and 
CCNA2 can suppress the cell proliferation. We have identified two aberrantly methylated genes, CDC20 
and CCNA2 as novel biomarkers for precision diagnosis in EC.

Endometrial cancer (EC) is a gynecological cancer that is commonly diagnosed in developed countries, account-
ing for approximately 7% of new cancer cases and 4% of cancer-related deaths in women1. Most women diag-
nosed at an early stage have a long survival time; however, those with high-risk histopathology or at an advanced 
stage have a poor prognosis2. Early diagnosis, reasonable assessment of prognosis and timely intervention are 
important. Although the Federation International Of Gynecology and Obstetrics (FIGO) staging system com-
bined with histology help us to manage the EC patients, it remains sufficient to accurately predict the prognosis 
due to the molecular heterogeneity of EC3. Therefore, there is an urgent need to identify sensitive and specific 
molecular markers for prognosis to achieve personalized treatment and improve clinical outcomes. Many studies 
have focused on specific molecular alterations in EC, such as gene mutations, DNA methylation, microsatellite 
instability, and copy number alterations4–8.

DNA methylation is a major epigenetic mechanism that inhibits the binding of transcription factors or the 
recruitment of inhibitory proteins, which is closely related to normal development and cellular function, includ-
ing embryonic development, regulation of gene expression, X-chromosome inactivation, genomic imprinting, 
and genomic stability9–13. Recently, DNA methylation has been extensively investigated in cancer. Cancer-specific 
changes include hypermethylation of C-phosphate-G (CpGs) in gene promoters, hypomethylation of non-CpG 
island CpGs, and an overall increase in the variation in methylation14,15. Cancer-associated hypermethylation of 
CpG islands (CGIs) in gene promoters, which induces the silencing or downregulation of genes, especially tumor 
suppressor genes, may contribute to tumorigenesis and progression14. Therefore, DNA methylation has rapidly 
gained clinical attention as a biomarker for diagnostic, prognostic and predictive purposes in various cancers16,17.

During recent decades, a few specific DNA methylation signatures associated with high-risk EC and a series 
of altered methylation genes associated with unfavorable prognostic factors have been identified, such as TBX2, 
CHST11, PTEN and NID218–20. Even though advanced studies permit genome-wide screening at the DNA 
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methylation or mRNA expression level, the mechanisms of DNA methylation that are involved in the regulation 
of gene expression and affect prognosis in EC remain unclear. However, although methylation studies in EC are 
still preclinical, the understanding of how DNA methylation is associated with the prognosis of EC should con-
tinue to develop so that we can accurately predict the prognosis and improve the survival time of EC patients. 
The present study investigated altered DNA methylation patterns by integrating methylomes and transcriptomes 
of both EC and normal tissues available in the TCGA data portal with DNA-binding proteins and their binding 
motifs, aiming to identify specific DNA methylation genes as potential biomarkers for predicting the prognosis 
of EC patients.

Results
Identification of DEGs, DMPs, EI and ES expression in EC. According to the screening conditions, 
a total of 8464 DEGs in the cancerous and paracancerous samples were obtained from the 60,483 transcripts, of 
which 3325 were upregulated and 5319 were downregulated. A total of 78,963 DMPs were obtained from 208,022 
methylation positions in the cancerous and paracancerous samples, of which 34,637 were upregulated and 44,500 
were downregulated. We mapped the DMPs to gene promoters, and in cases with multiple DMPs in the same pro-
moter region, we chose the consistently upregulated or downregulated positions as the valid DMP for the differ-
entially methylated gene (DMG). Finally, 3180 and 9106 DMGs were obtained by upregulated and downregulated 
DMP mapping, respectively. The most significant top 100 DEGs and DMGs are shown in Supplementary Fig. S1.

Subsequently, the number of DMPs in the promoter region of each gene was counted, and the distribution of 
genes corresponding to different DMP numbers was further analyzed as shown in Fig. 1A. The promoter regions 
of most DMGs have only one DMP. Then, we analyzed the relationship between the DEGs and DMPs as shown in 
Fig. 1B, and 817 EI genes and 799 ES genes were found, of which 329 EI genes and 359 ES genes were ultimately 
obtained for a significantly negative correlation between DEGs and DMPs. We analyzed the distribution of genes 
corresponding to the different DMP numbers in the promoter regions of the 688 negatively regulated genes, as 
shown in Fig. 1C, in which there are significantly less EI/ES in promoter regions with only one DMP. This finding 
suggests that these EI/ES genes are more prone to be regulated by multiple methylation positions in the promoter 
regions.

GO and pathway functional enrichment analysis. The KEGG and GO functional enrichment analyses 
of identified EI and ES genes were performed by the ClusterProfiler package for R. The results of the enrichment 
analysis revealed that EI genes were enriched in KEGG biological pathways associated with regulation of focal 
adhesion, proteoglycans in cancer and ECM-receptor interaction (Supplementary Fig. S2A), and ES genes are 
mainly enriched in pathways associated with regulation of the cell cycle, DNA replication, mismatch repair, and 
the p53 signaling pathway (Supplementary Fig. S2B), which are important signaling pathways. According to 
the GO analysis, EI genes were enriched for 188 terms, including 144 within the “biological process” category, 
30 within the “cellular component” category, and 14 within the “molecular function” category. In addition, ES 
genes were enriched for 67 terms, including 62 within the “biological process” category, 1 within the “cellular 
component” category, and 4 within the “molecular function” category. Comparative analysis found that the 188 
GO terms enriched among EI genes have no intersection with the 67 GO terms among ES genes, suggesting that 
ES and EI genes may perform different biological functions. Furthermore, we performed a crosstalk analysis on 
these GO terms with JACCARD ≥0.5 using the EnrichmentMap plugin for Cytoscape, and the results showed 
that EI genes were mainly enriched for regulation of the mitotic cycle and single-stranded DNA (Supplementary 
Fig. S3A) and that the ES genes were mainly enriched for regulation of proteinaceous extracellular structure and 
regulation of the cation transmembrane (Supplementary Fig. S3B).

Construction and analysis of the genetic interaction subnet. The PPI network, which was down-
loaded from the HIPPIE database, contains 17,381 nodes, and the average number of neighboring nodes is 19.6. 

Figure 1. Gaussian hierarchical clustering map of the top 100 gene with the most significant difference. (A) The 
clustering map of differentially expressed genes; (B) differentially methylated genes.
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The genetic interaction subnet was constructed by mapping the EI and ES genes to the PPI network; a total of 570 
genes were mapped into the network, of which 241 showed interactions, and the average number of neighboring 
nodes was 1.36. Supplementary Figure S4 shows that as the degree increased, the number of nodes was reduced.

Combined with the network topology analysis and the background PPI network, a statistical model was 
constructed to calculate the ES and EI enrichment of each gene in the genetic interaction subnet. The network 
diagram constructed by Cytoscape showed that there are fewer ES genes in the network, and most ES/EI gene 
enrichment was of low significance (Supplementary Fig. S5). According to the screening threshold FDR < 0.05, 
genes with neighboring nodes containing ≥5 EI/ES genes were defined as hub genes, and four hub genes named 
CCNA2, CDC20, POC1A, and CDH1 were obtained (Table 1).

Hub gene validation. The four hub genes were then validated using the external TCGA database to con-
firm the validity of our findings. First, we analyzed the expression distribution of these four genes in cancer and 
adjacent tissues as shown in Fig. 2A. The expression distributions of CCNA2, CDC20 and POC1A were relatively 
centralized. However, CDH1 had a more dispersed distribution in different samples, which suggests that CDH1 
expression is heterogeneous in different samples.

We calculated the DMPs of the promoter regions of these four hub genes as shown in Supplementary Table S1. 
There are CGIs in the promoter region of the CDH1 gene, and several methylation sites were downregulated. 
Furthermore, we analyzed the correlation between the expression of these four hub genes and methylation sites, 
as shown in Fig. 2B–N, which shows that the methylation level of the CDC20 promoter region is generally higher, 
and the methylation levels of the promoter regions are significantly negatively correlated with the expression of 
these hub genes.

The relationship between hub genes and survival in EC. The prognostic value of the four hub genes 
was assessed by the Human Protein Atlas (https://www.proteinatlas.org). The threshold was adjusted to a Cox P 
value < 0.05. Patients with low expression of CDC20 and CCNA2 showed better overall survival in EC (Fig. 3). 
The GO analysis for these four hub genes revealed that CDC20 and CCNA2 were mainly enriched for the regula-
tion of cell cycle processes, which also showed that CDC20 and CCNA2 played an oncogenic role (Fig. 4).

Evaluation of the hub genes by IHC. From January, 2010 to January, 2013, a total of 130 human 
endometrial tissue samples, 100 stage III-IV cancer of which had accompanying follow-up information, and 
30 cancer-adjacent endometrial tissue samples from archives of paraffin-embedded tissues was collected at 
the Department of Pathology of Peking Union Medical College Hospital. The follow-up was performed until 
December 30, 2018. Supplementary Table S2 summarizes the characteristic of all patients, including, age, disease 
stage, and tumor grade. We selected the two hub genes (CDC20 and CCNA2) that rarely been studied in endo-
metrial cancer to evaluate gene expression values using IHC. The expression differences of CDC20 and CCNA2 
between endometrial cancer tissues and adjacent normal endometrial tissues were explored, as shown in Fig. 5. 
The CDC20 (50.25 ± 1.74 vs 23.67 ± 3.43, p < 0.01) and CCNA2 (46.65 ± 1.44 vs 24.67 ± 2.43, p < 0.01) shows 
significantly higher expression in endometrial cancer than cancer adjacent tissue. In addition, the correlation 
between the expression of these genes and the prognosis of endometrial cancer is shown in Fig. 6. These data 
show that the higher expression of CDC20 (OS, HR = 1.863, 95% CI 1.065–3.195, p = 0.031; PFS, HR = 1.598, 
95% CI 1.063–2.759, p = 0.032) and CCNA2 (OS, HR = 1.740, 95% CI 1.034–3.273, p = 0.040; PFS, HR = 1.480, 
95% CI 0.955–2.536, p = 0.082) were associated with poor prognosis in endometrial cancer patients.

Evaluation of the hub genes function. The expression of CDC20 and CCNA2 was significantly 
down-regulated by transfecting with siCDC20 and siCCNA2 (Fig. 7A) in Ishikawa and AN3CA cells. Results 
showed that knockdown of CDC20 reduced the proliferation of Ishikawa at the 48 hours (p = 0.03), 72 hours 
(p < 0.001), 96 hours (p < 0.001), 120 hours (p < 0.001) and AN3CA at the 48 hours (p = 0.006), 72 hours 
(p = 0.001), 96 hours (p = 0.014) after cell plating, and knockdown of CCNA2 reduced the proliferation of 
Ishikawa at the 72 hours (p < 0.001), 96 hours (p < 0.001), 120 hours (p < 0.001) and AN3CA at the 48 hours 
(p = 0.002), 72 hours (p < 0.001), 96 hours (p = 0.006) after cell plating (Fig. 7B).

Discussion
Despite repeated attempts to better study the molecular mechanisms of EC, the clinical outcome for patients with 
advanced stage EC remains unsatisfactory, with a 5-year overall survival rate of only 16% to 69%1. At present, the 
combination of surgical-pathological staging according to the FIGO system and histological staging is commonly 
used to predict the survival of patients. However, the prognosis remains considerably variable for patients at the 
same stage and having similar pathological features due to the heterogeneity of EC in terms of its clinical behavior 
and molecular characteristics2,3. Although several previous studies have identified more molecular biomarkers 

GeneSymbol

Number of EI 
Neighborhood 
gene

Number of 
Neighborhood 
gene

Number of 
EI gene

Number 
of network 
gene

EI Neighborhood 
gene per

Fisher’s exact 
test pvalue FDR

CCNA2 10 125 241 17381 0.0740740 1.89E-05 0.004548

CDC20 11 160 241 17381 0.0643274 2.73E-05 0.006543

POC1A 8 88 241 17381 0.0833333 5.64E-05 0.013491

CDH1 23 688 241 17381 0.0323488 0.000188 0.044765

Table 1. The hub genes in the interaction subnet.
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for the diagnosis or prognosis of EC, most work has focused on gene expression profiles and protein assays21,22. 
Recently, the detection of DNA methylation has been focused on the diagnosis and progression of EC. Pabalan N 
et al. reported that RASSF1A had good marker potential for EC, and aberrantly methylated regions of RASSF1A 
demonstrated sensitivity and specificity for the detection of EC in a systematic review and meta-analysis23. 
Chuandi Men et al. analyzed DNA methylation and gene expression data from the TCGA database and identified 
that protocadherin (PCDH) clusters, DDP6, TNXB, and ZNF154, may be novel deregulated genes with altered 
methylation in EC24. However, according to comprehensive research on the diagnostic role of DNA methylation 
in EC, more specific methylated genes need to be investigated to enhance the diagnostic specificity in clinical 
samples25. Overall, few studies have evaluated the potential predictive role of DNA methylation patterns in EC 
prognosis. Although TBX2, CHST11, and NID2 were identified as having specific DNA methylation signatures 
for unfavorable clinical predictive and prognostic factors and a prognostic model that contained 15 methylation 
markers was recently established to distinguish EC patients with a poorer prognosis18,19 biomarkers with higher 
accuracy should be investigated to assist in prognosis prediction for EC patients.

In the present study, we screened for aberrant DNA methylation and gene expression in EC according to 
the data from TCGA database. Because hypermethylation often inhibits the expression of downstream genes 
and hypomethylation often promotes the expression of downstream genes, 329 EI genes and 359 ES genes that 
could be regulated by aberrant DNA methylation were obtained by the combined analysis of DEGs and DMPs. 
To further investigate the effect of these EI/ES gene changes in biological processes and pathways, statistically 
significant GO cluster terms were obtained, and KEGG pathway analysis was performed. Most EI/ES genes are 
enriched in many core cancers signaling pathways that are known to be important in EC progression, including 
the cell cycle, the p53 signaling pathway, and proteoglycans in cancer. These results indicated that the aberrant 
methylation of EI and ES genes is significantly associated with the above core cancer signaling pathways and 
contributes to carcinogenesis and the progression of EC. Therefore, hub genes were further screened by a genetic 
interaction subnet, and the prognostic value of the hub genes was further investigated. Most genes in the genetic 
interaction network tend to be isolated, and only a few hub genes have obvious concentrations of connections 
with other genes as shown in Supplementary Fig. S4 and S5. A hub gene with higher node degrees is more likely 
to be a disease-related gene because it could affect downstream biological functions by regulating the expression 
of adjacent genes in the interaction network26. Ultimately, 4 hub genes (CCNA2, CDC20, POC1A and CDH1) 
were identified, and 2 (CDC20 and CCNA2) were significantly associated with the prognosis of EC. CDC20 is a 
regulatory protein that appears to interact with several other proteins at multiple points in the cell cycle27 which 
agrees with our GO analysis. Enhanced expression of CDC20 is more often found in various tumor types (includ-
ing lung adenocarcinoma, breast cancer, bladder cancer and prostate cancer) and might serve as a novel cluster 
of prognostic biomarkers28–31. In addition, studies that focused on abnormal DNA methylation in hepatocellular 

Figure 2. The validation of hub genes using external TCGA database. (A) Expression distribution of four genes 
in cancer and adjacent tissues; (B–N) Relationship between the expression level of the differentially promoter 
methylation positions and the expression level of hub genes. Red dots indicate cancer samples and green dots 
indicate paracancerous samples.
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carcinoma have also shown that patients with hypomethylation and high expression of CDC20 had shorter over-
all survival and that this gene served as a novel biomarker for precision diagnosis and treatment32. Nevertheless, 
few studies have reported the role of CDC20 in EC, especially about aberrant DNA methylation. CCNA2 belongs 
to the highly conserved cyclin family, the function of whose members controls both the G1/S and G2/M tran-
sition phases of the cell cycle. Over-expressed CCNA2 has been identified in several malignant tissues, such as 
oral, bladder, and hepatocellular cancer, and may be used as a diagnostic and prognostic biomarker as well as a 
molecular target for treatment33–35. Moreover, Previous study also showed that the high expression of cyclin A, as 
a cell-cycle regulator, could be a useful marker for poor prognosis of endometrial cancer36. In present study, the 
results also demonstrated that the expression of CDC20 and CCNA2 is significantly associate with cell prolifer-
ation. Recently, Zhang et al. evaluated prognostic factors based on 328 patients with EC and demonstrated that 

Figure 3. Prognostic analysis of the four hub genes.

Figure 4. KEGG enrichment analysis of four hub genes.
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Figure 5. Immunohistochemistry for CDC20 and CCNA2. Samples from endometrial tissue (N = 30) and 
endometrial cancer (N = 100). Cancer-adjacent endometrial tissue sample of weak immunostaining score for 
either (A) CDC20, (D) CCNA2. Endometrial cancer sample of weak and strong immunostaining score for 
either CDC20 (B,C), CCNA2 (E,F). The expression for CDC20 and CCNA2 genes were depicted in (G) slides. 
(X 100).

Figure 6. Overall (OS) and disease-free (DFS) survival curves in endometrial cancer (N = 100) according to 
CDC20 (A,B) and CCNA2 (C,D) genes expression status.
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CCNA2 plays a vital role in EC proliferation and prognosis37. However, the aberrant DNA methylation of CCNA2 
has rarely been investigated in EC.

Conclusion
In conclusion, our study integrated the DNA methylation and RNA-Seq data between EC and normal control 
samples from the TCGA database and identified 2 hub genes involved in core cancer signaling pathways known 
to be important in EC tumorigenesis. In addition, we also validated the DMPs of CDC20 and CCNA2 using the 
external TCGA database and demonstrated the utility of aberrant DNA methylation of CDC20 and CCNA2 in 
predicting the prognosis of EC patients. Moreover, further validation and molecular mechanism studies will be 
performed at our center.

Materials and Methods
Data sources and preprocessing of DNA methylation data. DNA methylation data from 478 samples 
(431 primary tissue samples, 1 recurrent sample, and 46 paracancerous tissue samples, which contained 33 pairs 
of matched cancer and adjacent cancer samples) generated using the Illumina Human Methylation 450k Array 
were obtained from UCSC Xena (https://genome-cancer.ucsc.edu/). RNA-Seq gene expression data from 579 EC 
samples (543 primary tissue samples, 1 recurrent tissue sample, and 35 paracancerous tissue samples, which con-
tained 23 pairs of matched cancer and adjacent cancer samples.) were obtained from The Cancer Genome Atlas 
(TCGA, https://cancergenome.nih.gov/). Twenty-one pairs of cancerous and paracancerous samples, which were 
simultaneously performed for methylation and RNA-seq, were selected to screen for differential methylation and 
differentially expressed genes. obtained by matching methylation profiles and RNA-Seq data of c samples.

The DNA methylation data were preprocessed with MiNiFi software and normalized with SWAN38,39 and then 
positions that have been shown to be cross-reactive, or demonstrated to map to multiple places in the genome, 
were filtered out. This list was originally published by Chen et al.40. CpG sites where the N-A value exceeds 70% 
were removed from each sample, and the impute.knn of the R package was used to fill in the missing value. 
Subsequently, unstable genomic methylation sites, including CpG sites and the single nucleotide sites on the sex 
chromosomes, were removed, and the methylation positions were simultaneously mapped to the gene promoter 
region, which was defined as 1500 bp upstream to 500 bp downstream of the gene transcription start site (TSS)38. 
Methylation sites that were not labelled as part of the promoter region of genes were removed, and finally, 208,022 
CpG sites were left. RNA-Seq data in the Fragments Per Kilobase of exon model per Million mapped fragments 
(FPKM) format were converted to the Transcripts Per Kilobase of exon model per Million mapped reads (TPM) 
format.

Integrated analysis of differentially expressed genes (DEGs) and differentially methylated pro-
moter positions (DMPs). We calculated the ratio of the median expression of each gene in the matched 
samples as the fold change and finally selected the DEGs with significant p < 0.05 and |log2(fold change)| > 1 
using a paired t test. The DMPs with p < 0.05 were selected. We analyzed the relationship between DEGs and 
DMPs and defined hypomethylated highly expressed genes as epigenetically induced (EI) genes and hypermeth-
ylated lowly expressed genes as epigenetically suppressed (ES) genes in order to screen for significantly negatively 
related genes as the final EI and ES genes.

Figure 7. CDC20 and CCNA2 knockdown decrease the cell proliferation in Ishikawa and AN3CA cells. (A) 
CDC20 inhibition via transfection of siCDC20 silenced its protein expression in Ishikawa and AN3CA cells, 
respectively. (B) CCNA2 inhibition via transfection of siCCNA2 silenced its protein expression in Ishikawa 
and AN3CA cells, respectively. (C,D) Cell growth curves of Ishikawa and AN3CA. The data are shown as 
mean ± SD. Statistical significance was determined by t test. *P < 0.05; **P < 0.01. Uncropped blots are shown 
in the Supplementary Fig. S6.
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Functional and pathway enrichment analyses for EI and ES genes. Gene ontology (GO) analyses 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for EI 
and ES genes using the ClusterProfiler package for R to identify over-represented GO terms and statistically sig-
nificantly enriched pathways.

Generation and analysis of a genetic interaction subnet. To systematically identify hub genes that are 
significantly associated with EC, we downloaded all protein interaction data from the Human Integrated Protein–
Protein Interaction reference (HIPPIE) v2.0 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5210659/) to 
construct a human protein-protein interaction (PPI) network and subsequently constructed an EI/ES gene inter-
action subnet by mapping the EI and ES genes into the PPI network.

Biological networks are complex networks often characterized by having self-organization, self-similarity, 
attractor, small world theory and scale-free features. We used the PPI network as a background to analyze the 
degree distribution of EI/ES gene interaction subnets and evaluate whether the EI/ES gene interaction subnet 
conformed to the scale-free feature. We calculated the number of genes connected to each EI/ES gene, the num-
ber of genes interacting with each other and the number of connected genes using the PPI as a statistical back-
ground to construct a statistical model that could perform Fisher’s enrichment test for each gene and screen the 
significant network nodes with a false discovery rate (FDR) < 0.01 and number of interaction nodes > 5 as the 
hub EI/ES gene.

The validation of differentially methylated CpG sites (DMCs) and differentially methylated 
regions (DMRs) and Kaplan–Meier analysis of hub genes. The DMCs and DMRs of the hub EI/ES 
genes between EC and adjacent normal tissues were also analyzed by an external 27 K dataset, which was down-
loaded from TCGA and contained 10 paired cancer and normal samples for gene expression profiling and 12 
paired cancer and normal samples for methylation profiling. To further explore the relationship between the 
expression of the hub genes and prognosis of EC, TCGA RNA-Seq data and survival analysis were performed by 
the Human Protein Atlas (https://www.proteinatlas.org) online tool and the Kaplan–Meier curve, respectively.

Immunohistochemical staining (IHC). We collected a total of 130 human endometrial tissue samples, 
100 stage III-IV cancer tissue of which had accompanying follow-up information, and 30 cancer-adjacent endo-
metrial tissue samples from archives of paraffin-embedded tissues between January, 2010 and January, 2014 at 
the Department of Pathology of Peking Union Medical College Hospital. The follow-up was performed until 
December 30, 2018. The pathological diagnoses were reconfirmed by a pathologist. The project was approved 
by the Ethical Committee (Peking Union Medical College Hospital), and informed consent was acquired from 
patients or family members. IHC was performed as previously described41. Anti-antibody (CDC20 1:100, 
Abcam, ab86104, CCNA2 1:400, Abcam, ab181591) was used for IHC. The scoring details have been described 
previously42.

Cell culture and cell proliferation detection. Human endometrial cancer cell lines (Ishikawa and 
AN3CA) were purchased from Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (Bei 
Jing, China). Ishikawa, AN3CA were cultured in DMEM (10% fetal bovine serum) at 37 °C, 5% CO2 condition. 
siCDC20 and siCCNA2 purchased from Guangzhou Ribobio Co., Ltd. and transfected into cells by Lipofectamine 
RNAiMAX. The target sequence of siCDC20 was 5′-GACCACTCCTAGCAAACCT-3′, the target sequence of 
siCCNA2 was 5′-GCTGTGAACTACATTGATA-3′. After 48 hours of transfection, western blot was used to detect 
the efficiency of gene knockdown. The western blot was performed as previously described43. The primary anti-
bodies were anti-CDC20 (1:1000, Abcam, ab26483), anti-CCNA2 (1:1000, Abcam, ab181591) and anti-β-actin 
(1:1000, Abcam, USA). After 48 hours of transfection, cell growth curve (Cell Counting Kit-8 assay) was used to 
evaluate the proliferation of each group of cells. The CCK-8 assay was performed as previously described44.
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