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Neural Correlates of Variations 
in Human trust in Human-like 
Machines during Non-reciprocal 
Interactions
eun-soo Jung1,5, Suh-Yeon Dong2 & Soo-Young Lee1,3,4

As intelligent machines have become widespread in various applications, it has become increasingly 
important to operate them efficiently. Monitoring human operators’ trust is required for productive 
interactions between humans and machines. However, neurocognitive understanding of human trust 
in machines is limited. In this study, we analysed human behaviours and electroencephalograms (EEGs) 
obtained during non-reciprocal human-machine interactions. Human subjects supervised their partner 
agents by monitoring and intervening in the agents’ actions in this non-reciprocal interaction, which 
reflected practical uses of autonomous or smart systems. Furthermore, we diversified the agents 
with external and internal human-like factors to understand the influence of anthropomorphism of 
machine agents. Agents’ internal human-likenesses were manifested in the way they conducted a task 
and affected subjects’ trust levels. From EEG analysis, we could define brain responses correlated with 
increase and decrease of trust. The effects of trust variations on brain responses were more pronounced 
with agents who were externally closer to humans and who elicited greater trust from the subjects. 
this research provides a theoretical basis for modelling human neural activities indicate trust in partner 
machines and can thereby contribute to the design of machines to promote efficient interactions with 
humans.

Technological advances have extended the applications of intelligent machines, and humans therefore have more 
opportunities to cooperate with machine partners within a team. Trust can lead a team to successful cooperation, 
and teams of humans and machines are no exception. Human operators’ appropriate trust in partner machines 
is critical for their efficient cooperation1–4. An operator’s distrust in machines can lead an operator to frequently 
intervene and make the machines useless, and over-trust can result in severe mistakes in automation. However, 
human users’ self-reporting of trust during interactions with machines is inefficient and can be unreliable because 
the reports may not be sincere or because an individual may be biased against particular criteria. Therefore, 
understanding neurocognitive responses related to human trust in machines and engendering appropriate trust 
from humans are important in the development and application of intelligent machines.

Human trust in machine partners has different characteristics from trust in human partners1,5–7. Therefore, 
instead of focusing on factors identified in trust between humans8, we focused on human-likeness of machines as 
a factor for human trust in machines9,10. Humans tend to expect automated agents to be perfect and thus are less 
tolerant of mistakes than they are of mistakes made by humans5. Namely, human trust in automation can more 
easily be broken due to humans’ higher expectations of automation. Research that assigned anthropomorphism 
to automated agents also demonstrated that agents with enhanced humanness gained more resilient trust9 and 
were blamed less for mistakes10. Additionally, there are human-like factors of machines that affect human trust in 
machines but work differently on individuals according to their characteristics11.
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Studies using functional magnetic resonance imaging (fMRI) have demonstrated different brain activation 
in response to untrustworthy human faces compared with trustworthy faces12,13 and investigated the neural cor-
relates of building trust during interactions between humans14. Previous research in electroencephalography 
(EEG) also have provided human brain responses according to participants’ trust in sensor systems for driving15 
or co-operators in trust games, such as investment game16,17 and coin toss guessing18,19. A study demonstrated 
that human-like cues (human face and voice) affect neural responses to a machine partner’s technical capability 
during a theory-of-mind game20. A trust sensor model with EEG and galvanic skin response was proposed and 
demonstrated the feasibility of psychophysiological measurements of human trust in automation21.

Most of the pragmatic applications of automated systems are operated in non-reciprocal interactions where a 
human supervises the systems. For example, current self-driving system operates under supervision of a driver 
for safety reasons; a human operator can interfere with the system whenever necessary but not the other way 
around. However, the neurocognitive aspects of human supervisors’ trust during non-reciprocal interactions 
with automated agents has not been widely explored. The interaction between subjects and agents in our research 
was a kind of non-reciprocal interaction, where only subjects could make an action according to agents’ action. 
To the best of our knowledge, there was no previous attempt to investigate neural correlates of human trust in 
automated agents during non-reciprocal interactions. In this study, we designed and conducted an experiment for 
non-reciprocal interactions between humans and machine agents. We measured EEG responses and investigated 
human neural responses related to the development, maintenance, and degradation of situational or learned 
trust22 in machine teammates and the factors that influence that trust. Especially, we focused on the influences of 
machine human-likenesses on the partner human’s trust. We hypothesized that human-likenesses of automated 
agents will have a significant impact on behavioural and neural responses of human supervisors related to trust 
variations and formations.

Results
An experiment was conducted to record human EEG signals (15 subjects) while performing a decision-making 
task23 with six externally and internally different machine agents (three human-faced (HF) agents with different 
risk-taking personalities and three robot-faced (RF) agents with different risk-taking personalities). In this task, 
a subject had to guess a correct colour (either blue or green) to earn points for the correct colour in each trial 
together with an agent partner. Between the two options represented as colours, one was riskier with higher 
points than the other. Namely, subjects had to consider ‘how much risk to take for the given rewards’ as the 
main factor for decision making in the task. Therefore, we adopted risk-taking personalities for agents’ internal 
human-likeness and designed agents with various risk-taking levels as there are people with different characters. 
Each agent presented better choices depending on its risk-taking personality, and a subject supervised the agent 
by monitoring and intervening against the agent’s decisions (details in the Materials and Methods section and 
Fig. 1). Subjects’ behaviours and EEG signals were analysed and interpreted according to their trust and the 
agents’ human-likenesses.

Behavioural responses. Subjects’ evaluations from the questionnaires conducted during the experi-
ment and the number of interventions against each agent’s play are presented (Table 1) and were analysed with 
respect to the agents’ human-likeness factors. The effects of both external and internal human-like factors on 
subjects’ questionnaire responses were assessed via a two-way repeated analysis of variance (ANOVA) with two 
within-subject factors: agents’ external (HF and RF) and internal human-likeness (the level of risk-taking per-
sonality of agents: high, medium, and low). The agent’s external human-likeness exhibited significant effects 
on evaluations of human-likeness (F(1, 14) = 35.79, p < 0.001) and familiarity (F(1, 14) = 11.90, p = 0.0098) 
but not on risk-taking personality (F(1, 13) = 1.64, p = 0.37, responses for 14 subjects were tested due to the 
missing response of one subject), ability (F(1, 14) = 0.41, p = 0.67), or trust (F(1, 14) = 0.01, p = 0.92). On the 
other hand, internal human-likeness influenced only subjects’ judgements of the agents’ risk-taking levels (F(2, 
26) = 25.87, p < 0.001, responses for 14 subjects were tested due to the missing response of one subject) and not 
their judgements of other characteristics (human-likeness: F(2, 28) = 0.47, familiarity: F(2, 28) = 0.34, ability: F(2, 
28) = 0.63, and trust F(2, 28) = 0.88, p > 0.1 for all four cases). All the p-values were corrected by false discovery 
rate. There was no significant effect of the interaction between internal and external human-likenesses on any of 
the questionnaire item (p > 0.1 for every case). Namely, subjects judged an agent’s human-likeness and familiarity 
not with the agent’s risk-taking personality but with the agent’s appearance or voice, whereas they assessed an 
agent’s risk-taking personalities with the agent’s play, regardless of their appearances or voices.

On average, a subject intervened on an agent 5.58 times (s.d. = 4.54 with n = 45 sessions) per session, and 
the gap between the maximum and minimum numbers of interventions of each subject was 6.07 (s.d. = 2.91, 
n = 15 subjects) for HF and 5.47 (s.d. = 3.77, n = 15 subjects) for RF agents. According to trust scores from the 
questionnaire and the numbers of interventions, agents experiencing fewer interventions tended to gain higher 
scores on trust. We observed a significant negative correlation between trust scores from the questionnaire and 
the numbers of interventions enacted on each agent (Spearman’s r = −0.4, p < 0.001, the numbers of interven-
tions for each subject were normalized to zero mean and unit variance because their range was different for each 
subject). Therefore, we considered the number of interventions on an agent to be an indicator of the implicit trust 
level of a subject in the agent.

There was no significant effect of agents’ external (F(1, 14) = 1.217, p = 0.289) or internal human-likenesses 
(F(1.148, 28) = 1.883, p = 0.190 with Greenhouse-Geisser correction24) on the number of interventions for overall 
subjects. However, there was a significant correlation between the number of interventions on HF and RF agents 
according to their risk-taking personalities (Spearman’s r = −0.69, p < 0.001, Fig. S1). This result can be inter-
preted that each subject formed trust in agents according to agents’ plays, which were related to risk-taking levels. 
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Even though the level of trust or human-likeness related to risk-taking level cannot be objectively determined for 
overall subjects, each subject can perceive certain risk-taking agent more trustworthy than others.

We also analysed subjects’ reaction times after agent decision onsets; however, they exhibited no significant 
correlation with the explicit trust scores (Spearman’s r = −0.14, p = 0.17). The fastest subject reacted within 
0.71 s on average (s.d. = 0.28, n = 192 trials of all six sessions), and the slowest reacted within 1.84 s on average 
(s.d. = 1.18, n = 192 trials); the overall average of the 15 subjects was 1.16 s (s.d. = 0.38, n = 15 subjects).

EEG analyses for trust increase and decrease. Previous studies have defined the basis of human trust. 
According to their conclusions, the most dominant bases of trust are ability, persistence, and intention4,8,20,25–27. 
In our research, an agent’s persistence and intention to help human partners were guaranteed and it was informed 
to subjects before each session. However, an agent’s risk-taking personality were not informed in advance, thus 

Figure 1. Experimental design. Example trials for HF and RF agents. In each trial, an agent’s face and two 
rectangles (one blue and one green) are presented after a fixation period. A corresponding reward is marked on 
each rectangle simultaneously (Rewards stage). A few seconds later, each agent presents its choice with sounds 
(HF speaks “blue” or “green” in Korean, and RF beeps regardless of blue or green) as the text colour changes 
to white (Agent’s decision stage). Subjects cannot submit their decisions during the Rewards stage but must 
wait until the agent presents its decisions, and subjects’ decisions can be different from those of the agent’s. A 
subject’s decision can be submitted and confirmed by key-pressings, and it is taken as the final decision for each 
trial. After the submission of a final decision, a trial ends with feedback showing whether the final decision is 
correct or wrong (Feedback stage). In the example trial with an HF agent, a subject’s final decision is different 
from that of the agent’s, and the final answer is correct. Consequently, the subject earns the points for the correct 
rectangle. In the example trial with an RF agent, a subject accepts the agent’s decision, which is wrong, and 
earns no reward. A face from Japanese Female Facial Expression (JAFFE) database and the face of robot Pepper 
were modified and used for HF and RF agent, respectively, in our experiment. However, the faces are removed 
and replaced with emoji in this manuscript due to the image copyright for publication. HF agents make small 
head movements (tilt slightly to left and right) during the Rewards stage and smile/frown when a final answer is 
correct/wrong during the Feedback stage. RF agents have no change in their appearance.

Human-faced 
& high-risk 
taking agent

Human-faced 
& medium-risk 
taking agent

Human-faced 
& low-risk 
taking agent

Robot-faced 
& high-risk 
taking agent

Robot-faced & 
medium-risk 
taking agent

Robot-faced 
& low-risk 
taking agent

Human likeness
3.20 3.00 3.07 1.67 1.53 1.67

(1.21) (1.07) (1.10) (0.82) (0.74) (0.90)

Familiarity
3.33 3.27 2.93 2.07 2.33 2.33

(0.82) (0.88) (1.03) (0.88) (1.18) (1.11)

Risk-taking
4.07 3.40 2.60 3.87 2.86 2.67

(0.70) (0.51) (0.83) (1.06) (0.95) (0.82)

Ability
2.93 3.27 3.27 2.93 3.07 3.00

(0.59) (0.70) (0.96) (1.03) (1.03) (1.20)

Trust
2.73 3.00 3.33 2.93 3.13 3.07

(0.96) (1.07) (0.90) (1.10) (1.19) (1.10)

# of interventions
6.33 4.73 4.87 7.33 5.07 5.20

(5.50) (3.75) (3.31) (6.49) (4.04) (3.41)

Table 1. Average (standard deviations in parentheses) scores from the questionnaire and the number of 
interventions for each agent.
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subjects could only notice each agent’s risk-taking personality from its plays and judge its ability from previous 
results. As subjects learnt an agent’s personality or strategy, the results of the agent’s decision of each trial affected 
on the next trial. Therefore, trust level can be changed trial by trial and culminated in the final trust in each agent, 
not formulated at a statistic value from the beginning. Consequently, we hypothesized that subjects adjusted their 
trust on each agent considering its previous performance, and investigated the brain activities which can reflect 
the changes of trust in trial-level. We simplified these changes in trust into two phases: trust increase after agents’ 
correct decisions (ACs) and decrease after agents’ wrong decisions (AWs). Subjects’ brain activities after agent 
decision onset were analysed with respect to the change in their trust in the partner agents. This was because we 
expected that this period was involved with immediate judgements of trustworthiness of partners’ actions before 
subjects’ final decisions were made.

To focus on the differences in EEG signals between two consecutive trials with respect to AC and AW cases, a 
wavelet-transformed EEG signal of the kth (k < 32) trial was subtracted from that of the (k + 1)th trial and grouped 
according to the performance (correct/wrong) of the agent in the kth trial. Studies have uncovered that judgement 
of trustworthiness is related to the amygdala12,13, paracingulate cortex, and ventral tegmental area14. Moreover, 
there are EEG studies which have investigated the neural correlates of trust by observing midline central elec-
trodes15,16. Therefore, brain signals from the central region (Cz channel) were first examined (Fig. 2). The results 
demonstrated that the theta band (4~8 Hz) power at approximately 0.4 s decreased after ACs and increased after 
AWs. From statistical tests, we can select a continuous time-frequency (TF) region representing EEG responses 
related to trust decreases and increases (Fig. S2).

Observation of EEG power variations between consecutive trials over the selected TF region was extended 
to all scalp channels. After trials with ACs, subjects tended to produce relatively smaller powers in the theta 
band in the fronto-central area in response to their agents’ new actions than those they had produced in the 
previous responses (Fig. 3A), and they produced relatively larger powers after AWs (Fig. 3B). The variations 
in EEG powers due to AC and AW were proven to be statistically significant (Fig. 3C,D) by rejecting the null 
hypothesis that the variations were from a distribution with zero mean at Cz (t(88) = −3.54, p = 0.011 for ACs 
and t(88) = 4.12, p = 0.003 for AWs), FC1 (t(88) = −3.51, p = 0.011 for ACs and t(88) = 3.21, p = 0.019 for AWs), 
and FC2 (t(88) = −3.31, p = 0.012 for ACs and t(88) = 3.37, p = 0.017 for AWs, all p-values were corrected for 
multiple hypothesis testing28) channels. Our results are also consistent with previous research that demonstrated 
differences between brain activations due to implicit agreement and disagreement in the fronto-central region29. 
In summary, we defined a TF region of brain responses related to trust variations that were more pronounced in 
the fronto-central brain area.

To verify that these brain responses are not related to other factors such as disappointment due to failures of 
achieving points, we additionally analysed subjects’ brain responses during a control experiment where subjects 
conducted the same task without any agent (details are in the Materials and Methods section and Fig. S3). EEG 
power variations of the selected TF region were observed with the same method as for the sessions with agents, 
but were grouped according to the differences due to subject’s correct (SC) and wrong (SW) decisions (Fig. S4). 
The brain activities that we defined to be correlate to trust variations were not correlated to the results of subject 
themselves’ decisions or disappointment from the failure.

EEG analyses for agents’ human-likenesses. As in the analyses of subjects’ behaviours, the EEG feature 
related to trust was also analysed with respect to agents’ external and internal human-likenesses. The powers of 
selected TF region defined in the previous section were extracted from all trials of each session and averaged 
(Fig. 4). The brain activation for each session was similar to each other. The powers in the fronto-central channels 
(FC1, FC2, and Cz) were relatively larger for sessions with HF agents, regardless of risk-taking levels (mean and 
standard deviations of powers for HF agents: 49.59 ± 23.72 μV2, for RF agents: 37.14 ± 9.79 μV2). A two-way 
ANOVA was conducted that examined the effect of external human-likeness (agent types; HF and RF) and inter-
nal human-likeness (risk-taking levels; high, medium, and low) on the powers of selected TF region. There was 
a statistically significant effect of agent types on the powers of selected TF region, F (1, 83) = 10.15, p = 0.002. 
However, there was no significant effect of risk-taking levels (F(2, 83) = 0.11, p = 0.90) or the interaction between 

Figure 2. Average EEG power variations in the Cz channel due to trust changes. (A) Grand average EEG 
variations after ACs and (B) AWs. (C) Log-scaled p-values from two-tailed paired t-tests between AC and AW 
cases. Average power variations for AC and AW trials of each session are used as samples for paired t-tests (i.e., 
sample no. = 89 for each case, where a faulty session was discarded from the total of 90 sessions). Data until 0.7 s 
after the onset are presented because data after 0.7 s are likely to be influenced by subjects’ key-pressings.
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two factors (F(2, 83) = 0.57, p = 0.57). We regarded that the observed brain activations were affected by the 
audio-visual stimuli for HF and RF agents, and this indicates the necessity of separate observations for EEG 
changes related to trust variations in HF and RF agents.

EEG analyses for agents’ external human-likenesses and subjects’ trust levels. In this section, 
we conducted observation of brain responses related to trust variations separately according to agents’ external 
human-likenesses and session-level trust defined from our behavioural results. From the behavioural results, the 
number of interventions against agents’ plays was correlated with subjects’ final trust in agents. Namely, higher 
trust can be built during sessions where subjects rejected agents’ decisions less often, and subjects’ rejections were 
affected by agents’ risk-taking personalities. Among three sessions for each subject and agent face type (HF/RF), 
the one (or ones) with the maximum number of interventions was defined as the low trust session and the one (or 
ones) with the minimum number of interventions was defined as the high trust session. Not exactly two out of the 
three sessions were used because there could be multiple sessions with the most/least interventions. One or more 
sessions were used as high or low trust sessions. Three subjects had two sessions with the maximum/minimum 
number of interventions among their HF sessions and seven subjects had two sessions with the maximum/mini-
mum number of interventions among their RF sessions.

EEG power differences between consecutive trials for AC and AW cases were observed with the same TF 
range as in the previous section, but they were analysed separately according to the final trust level of each session 
(Fig. 5A–D). The similar EEG features associated with trust decreases and increases were detected for different 
sessions with respect to agents’ external human-likenesses and trust levels. In the brain responses to agents’ deci-
sions after ACs, negative changes in theta band power were observed in the fronto-central area, and positive 
changes were observed after AWs. Thus, we narrowed our observations down to three channels in the 
fronto-central region (Cz, FC1, and FC2). The power variations over the selected TF region for these three chan-
nels were averaged for each subject and tested for significance in the AC and AW cases (Fig. 5E). The statistical 
significance was confirmed by rejecting the null hypothesis that the variations were from a distribution with zero 

Figure 3. Topographies of average EEG power variations due to trust changes in the selected TF region. (A) 
Grand average of the EEG power changes after AC and (B) AW cases, and (C) log-scaled p-values (corrected) 
from two-tailed t-tests for AC and (D) AW cases. Average power variations for AC and AW trials of each session 
are used as samples and compared to zero in t-tests (i.e., sample no. = 89 sessions for each case). Values between 
electrodes are interpolated.

Figure 4. Topographies of average EEG powers for each session. Powers of the selected TF region were 
observed according to the types of partner agent. Values between electrodes are interpolated.

https://doi.org/10.1038/s41598-019-46098-8


6Scientific RepoRts |          (2019) 9:9975  | https://doi.org/10.1038/s41598-019-46098-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

mean. The trends in the subjects’ EEG power in the selected TF and spatial region were consistent across the 
external human-likenesses and subject trust levels. However, the trends were more statistically significant for 
sessions with HF ( = − . = .t(14) 2 64, p 0 010 for ACs and = . = .t(14) 3 05, p 0 004 for AWs of highly trusted HF 
agents, and = − . = .t(14) 2 46, p 0 014 for ACs and = . = .t(14) 2 44, p 0 014 for AWs of low-trusted HF agents, 
all are one-tailed t-tests). Responses related to trust variations were distinctive regardless of the final trust levels 
in HF agents. However, subjects’ brain responses tended to be less influenced by their RF partners’ performances, 
especially when they did not build up high trust in the partners ( = − . = .t(14) 2 00, p 0 033 for ACs and 

= . = .t(14) 0 89, p 0 194 for AWs of highly trusted RF agents, and = − . = .t(14) 0 90, p 0 192 for ACs and 
= . = .t(14) 1 63, p 0 063 for AWs of low-trusted RF agents, all are one-tailed t-tests). Moreover, a three-way 

ANOVA was conducted to examine the effect of external human-likenesses (HF and RF), final trust levels (high 
and low), and agents’ performances (AC and AW) on neural responses, i.e., the selected TF powers. We could find 
the statistically significant effect of agents’ performances on neural responses (F(1,112) = 33.34, p < 0.001), but 
other factors were not statistically significant (external human-likeness: F(1,112) = 0.47, p = 0.50; final trust level: 
F(1,112) = 0.19, p = 0.66). Also, there was a statistically significant interaction between the effect of agents’ per-
formances and external human-likenesses (F(1, 112) = 11.19, p = 0.001). Post-hoc analysis indicated that the EEG 
power changes were significantly different between sessions with HFs and RFs for AW cases (p = 0.005), and less 
significant for ACs (p = 0.062). Additionally, the difference between AC and AW was significantly larger with the 
HF agents (p < 0.001) than with the RF agents (p = 0.089, all p-values for post-hoc were corrected with Bonferroni 
correction). Thus, we can interpret these results that subjects’ neural responses were affected by agents’ perfor-
mances and these EEG changes further enhanced by agent’s external human-likenesses. Together with behav-
ioural results, these results indicate that subjects were less sensitive to the participation of less trusted agents if 
they were externally less like human.

Discussion
To understand brain responses related to human trust in machines, we observed subjects’ behaviours and EEG 
activities while supervising partner agents. We focused on human brain activities related to trust and its forma-
tion through multiple trials of interactions with machine agents. As previous research that investigated human 
trust in anthropomorphic agents or machines5,9,10, we hypothesized that machine agents’ human-likenesses can 
cause significant impacts on human supervisors’ trust. Therefore, two aspects of human-like factors were assigned 
to each agent: one factor was external human-likeness involving appearance, voice, and movements, and the 
other was internal human-likeness involving risk-taking trait, which is the main factor in conducting task in our 
experiment.

Subjects’ explicit judgements of agents’ human-likenesses and familiarities were only affected by their external 
human-like cues. Each subject’s implicit trust in agents could be defined using the number of interventions in the 
agents’ decisions, which were influenced by agents’ risk-taking personalities. During the experiment, however, 
subjects’ trust levels could be changed as they learned the task and the agents’ characteristics. Without sufficient 
information of an agent’s risk-taking personality or technical competency, subjects could not yet establish their 
trust in the agent at the beginning of each session. According to subjects’ behavioural results, subjects’ final trust 
formed after each session was influenced by agents’ risk-taking personalities; each subject had sessions with rela-
tively higher and lower trust due to agents’ different risk-taking personalities.

As technical competence is one of the major factor in trust4,8,25–27, subjects’ trust could increase after AC 
and decrease after AW trials. To understand the formation of trust in a machine agent during each session, 
we observed the differences between the brain signals elicited during consecutive trials with respect to agent 

Figure 5. Topographies of average EEG power variations due to trust increase and decrease in the selected 
TF region presented separately for agent types (HF/RF) and subjects’ trust levels (high/low). Average EEG 
power variations after AC and AW cases for (A) sessions with highly trusted HF agents, (B) with low-trusted 
HF agents, (C) with highly trusted RF agents, and (D) with low-trusted RF agents. (E) Average of EEG power 
variations in the fronto-central (FC1, FC2, and Cz) brain area (n = 15 subjects for each bar). Average power 
variation for each case was compared to zero in a t-test. The error bars represent standard errors.
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performances. There were significant changes in the theta band power of signals from the fronto-central region at 
0.4 s after an agent’s decision onset, in accordance with trust changes. These observations are consistent with pre-
vious studies exploring human brain activities related to the evaluation of trustworthiness in faces12,13 or implicit 
intentions of agreement/disagreement in sentences29.

We continued the EEG analyses with divided sessions according to subjects’ trust (low and high), which was 
affected by agents’ internal human-likenesses, and agents’ external human-likenesses (HF and RF). The effects of 
trust changes were relatively less prominent for RF agents, especially for the sessions where relatively low trust was 
built. This implied that subjects were less dependent and participated more actively when they did not trust the 
decisions of their partner agents and therefore paid less attention to the actions and performances of the agents. 
The formation of trust in externally less human-like agents with risk-taking characteristics that contradicted their 
human partners was less successful. Subjects’ trust in machine agents can be built up during cooperation, and 
results of this research provide the neurophysiological mechanisms behind human trust formation. There was no 
direct relation between each subject’s intervention after a trial with AC or AW, such as less interventions in trials 
right after an AC or more after an AW, and this is not against our hypothesis or analyses in the result section. An 
agent’s performances affected on a subject’s trust variation in trial-level, but were not directly concluded into the 
subject’s decision to trust or distrust the agent in each trial. In this study, we focused on human supervisors’ trust 
which was built during interactions with their partner agents. Based on the findings from this research, we can 
extend the scope of human trust mechanism from the beginning to the end of interactions with machines. Future 
research will focus on trust dynamics modelling with further investigating of the quantitative measure of trust 
varying in time.

In conclusion, we analysed human behaviours and EEG signals to identify the neurocognitive responses 
related to trust in non-reciprocal interactions with machines. The interaction involving with decision made by 
the automated system can be practical application of our research. More common automated decision support 
systems such as artificial intelligent secretary may be available, as well as professional applications that require 
risky decisions, such as autopilot and anti-warfare systems. Furthermore, we designed human-like agents with 
external and internal human-like aspects to explore factors that influence trust. Features in EEG signals indicating 
changes in human trust in partner machines were demonstrated. This research provides a theoretical basis for 
the feasibility of monitoring and modelling human trust in machine partners with brain responses, and thus can 
contribute significantly to the design of machine partners for various applications and to efficient interactions 
between humans and machines.

Materials and Methods
Subjects. We recruited 15 subjects (6 females) who were right-handed, were native Korean speakers, had 
normal or corrected-to-normal vision, and had no history of psychiatric or neurological disorders. Experimental 
designs and procedures were all approved by the Institutional Review Board of Korea Advanced Institute of 
Science and Technology (KAIST) and conducted in accordance with the relevant guidelines and regulations. 
Written informed consent was obtained from every subject. The ages of the subjects ranged from 21 to 34 years 
(mean age of 25.1 years and a variance of 3.4 years). Payment for each subject was approximately 20,000 Korean 
Won for an hour of participation.

Experimental procedure. Subjects performed a one-armed bandit task (modified from the study of 
Behrens et al.23) together with various human-like machine partners to earn additional rewards. In our experi-
ment, machine agents repeatedly chose either blue or green rectangles that had associated rewards, and human 
subjects supervised the agents by confirming or intervening in their choices (Fig. 1). One of the two rectangles 
was correct in each trial, and a subject was rewarded with the points on the correct rectangle only when his/
her guess was correct. The green rectangle always contained larger rewards but had smaller probability of being 
correct than the blue rectangle (the probability for blue was 75% and that for green was 25%). The same pair of 
rewards was not presented more than once in each session, but the sum of every reward pair was 100 for each 
trial. Subjects were informed that the probability that the blue rectangle was correct was always higher than that 
of the green one but were not told the exact probability. In each trial, a subject submitted a final choice between 
the two options by accepting or rejecting a partner agent’s decision, and then the outcome of the choice was 
revealed as feedback. Therefore, subjects could update their strategies using the results of previous trials, for 
example, changing how much risk to take, or how much to trust their partner agents. Each session consisted of 
32 trials, which were 32 decision-making trials. Each subject participated in six overall sessions with a different 
agent in each session. The order of the 32 reward pairs in each session was pseudo-random (same random order 
for all subjects). Furthermore, the order of the six sessions was random, except that there were not three sessions 
with HF or RF in a row. The order of sessions was randomly permuted for each subject with MATLAB (The 
MathWorks, Inc., Natick, MA, USA). Subjects performed each session within five minutes. A questionnaire about 
each agent was given to subjects after every session, and each subject scored (from 1, lowest, to 5, highest) each 
agent’s human-likeness, familiarity, risk-taking level, and trust (Table 1). After the experiment, a bonus was paid 
to each subject in proportion to the points obtained during the whole experiment.

Unlike subjects, machine agents had information about the probability that each rectangle was correct and 
evaluated the two options in consideration of the information and given rewards. As humans would make deci-
sions that consider the tradeoffs between a given option’s payoffs and risks, we designed agents with various 
risk-taking levels by controlling a risk-taking parameter modelled in the study of Behrens et al.23. This risk-taking 
personality was a factor of human-likeness that we controlled in our experiment. All agents have this personality 
but differently; we designed different agents with risk-taking levels as there are people with different characters. 
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Different agents calculated the value differently with respect to their risk-taking personalities. Each agent evalu-
ated an option using the following equations:

γ= ⋅g F r f( , )blue blue blue

γ γ= − . + .F r r( , ) max[min[ ( 0 5) 0 5, 1], 0]blue blue

where fblue is the reward size of the blue rectangle (different for each trial), rblue is the probability that blue was 
correct, and γ is a risk-taking parameter. Each agent calculated the value gblue and ggreen and chose the one with 
the bigger value. We set three risk-taking levels with γ = .0 7, 1, and 1.5 for high, medium, and low risk-taking, 
respectively; there were two agents with each risk-taking level. A pair of options was given in each trial, and an 
agent selected the better choice with its own criteria as described above. As risk-taking personality is an internal 
human-likeness factor, subjects could notice agents’ risk-taking level only by performing the task with them. 
Experimental settings were controlled so that each agent could earn a similar level of reward (agents themselves 
could achieve 75.1~77.2% of the total rewards without human supervisors). Subjects were informed of the ability 
of the agents and their intentions to help subjects, and thus subjects could build trust as they interact with the 
agents.

In addition to risk-taking personality traits, there was another factor that made the machine agents distinctive. 
This factor could be externally recognized with audio-visual representations of the agents. The six agents in our 
experiment can be classified into two types according to this external human-likeness: human-faced (HF) and 
robot-faced (RF) agents. HF agents had a human female face, female voice, movements, and facial expressions. 
A happy Asian female face30 was used with modifications because previous research concluded that humans 
tend to trust more in happy faces than angry or sad faces12. We recorded a female voice speaking “blue” and 
“green” words in the Korean language and played a recording at each agent’s decision stage in sessions with the 
HF agent. RF agents had robot Pepper’s face (SoftBank Robotics, Japan) and could make a “beep” sound but no 
movement. We also adopted expressing emotions with facial expressions (smiling and frowning) as a factor of 
external human-likeness. Therefore, we designed HF agents to smile or frown according to a result of each trial, 
but not the robot-faced agents.

In summary, there were six machine agents; each conducted a one-armed bandit task with subjects in each 
session. Every agent was unique, with different external and internal human-likenesses. Each agent’s external 
human likeness was audio-visually revealed, whereas the internal human likeness (or risk-taking personality) 
could be only perceived from observing its plays in each session. An agent’s decision can be accepted as the final 
decision or rejected with an intervention of a subject in each trial.

Additionally, we had conducted an additional control session during our experiment for each subject (Fig. S3). 
In this session, subjects had to perform the same one-armed bandit task without any agent. Neither did an agent 
nor its decision was appeared, thus subjects had to make decisions by themselves. The experimental settings, such 
as the number of trials or the probability of each colour to be correct were same as the other sessions with agents.

EEG recording and preprocessing. The EEG signals were recorded using BrainCap (Brain Products 
GmbH), which has 32 integrated electrodes (Ag/AgCl and passive) located at standard positions given by the 
International 10–20 system31 (Fig. S5), and BrainAmp (Brain Products GmbH) in an electromagnetically shielded 
room. Among the thirty-two channels, thirty were for scalp potentials, one was for Electrooculogram (EOG), 
and another was for Electrocardiogram (ECG). Individual sensors were adjusted under 20 kΩ impedance during 
the whole period of each experiment. The sampling rate was 500 Hz, and a notch filter at 60 Hz was used during 
the measurement. The signals were recorded using BrainVision Recorder 1.10 and exported using BrainVision 
Analyser 1.05 (Brain Vision LLC).

A MATLAB toolbox, EEGLAB32, was used for preprocessing. First, the reference was transformed from the 
FCz channel to an average-reference to reduce the effects of the original reference-site activity on other EEG 
channel32–34. Second, artefacts due to eye movements and heartbeat were reduced using independent component 
decomposition (ICA)32,35 based on the extended Infomax algorithm36. Components to reject were selected manu-
ally. Third, the signals were filtered using a high-pass filter with a cutoff frequency of 0.95 Hz and a low-pass filter 
with a cutoff frequency of 35 Hz. The high-pass filter removed linear trends with very slow voltage changes32,33, 
whereas the low-pass filter reduced artefacts from electromyography (EMG)33,37.

EEG data from each trial were epoched from −200 ms to 700 ms relative to each agent’s decision onset, where 
the mean EEG amplitude during the 200 ms before the onset was used as the baseline for each trial and chan-
nel. Time-frequency representations of spectral power between 4 and 35 Hz were obtained with complex Morlet 
wavelet transformation38 with a central frequency at 1 Hz intervals. No normalization was applied to our analyses 
because our observation was focused on power differences between trials and normalization could have weak-
ened these differences.

Statistical analysis. The two-way repeated measure ANOVA tests in the Behavioural Response section were 
performed using IBM SPSS Statistics 21 (IBM Corp. Armonk, NY). The sphericity of each distribution for the 
ANOVA test was verified by Mauchly’s sphericity test39 with a threshold of p < 0.05. For a case whose sphericity 
was not supported by Mauchly’s test, the degree of freedom was adjusted by Greenhouse-Geisser’s epsilon24. For 
comparisons in each within-subject effect, p-values were corrected using the method of false discovery rate (FDR) 
for multiple comparisons. To select TF regions for EEG differences between ACs and AWs, clusters consisting 
of adjacent bins that all exceed a threshold40,41 of p < 0.05 and covering at least one frequency band were con-
sidered significant. In EEG Analyses for Trust Increase and Decrease section, p-values were also FDR-corrected 
for multiple hypothesis testing introduced in the study of Storey28. The ANOVA tests for EEG analyses were 
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also performed using IBM SPSS Statistics 21. For significant interaction, post-hoc pairwise comparisons with 
Bonferroni corrections were carried out.

Data Availability
The data from our experiment are available from the corresponding author upon request. The data are not pub-
licly available according to the policy protecting subjects’ personal data.
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