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Quantifying individual differences 
in brain morphometry underlying 
symptom severity in Autism 
Spectrum Disorders
Emmanuel Peng Kiat pua  1,2, Gareth Ball  2, Chris Adamson2, Stephen Bowden1,4 & 
Marc L. Seal2,3

The neurobiology of heterogeneous neurodevelopmental disorders such as autism spectrum disorders 
(ASD) are still unclear. Despite extensive efforts, most findings are difficult to reproduce due to high 
levels of individual variance in phenotypic expression. To quantify individual differences in brain 
morphometry in ASD, we implemented a novel subject-level, distance-based method on subject-
specific attributes. In a large multi-cohort sample, each subject with ASD (n = 100; n = 84 males; mean 
age: 11.43 years; mean IQ: 110.58) was strictly matched to a control participant (n = 100; n = 84 males; 
mean age: 11.43 years; mean IQ: 110.70). Intrapair Euclidean distance of MRI brain morphometry and 
symptom severity measures (Social Responsiveness Scale) were entered into a regularised machine 
learning pipeline for feature selection, with rigorous out-of-sample validation and permutation 
testing. Subject-specific structural morphometry features significantly predicted individual variation 
in ASD symptom severity (19 cortical thickness features, p = 0.01, n = 5000 permutations; 10 surface 
area features, p = 0.006, n = 5000 permutations). Findings remained robust across subjects and were 
replicated in validation samples. Identified cortical regions implicate key hubs of the salience and 
default mode networks as neuroanatomical features of social impairment in ASD. Present results 
highlight the importance of subject-level markers in ASD, and offer an important step forward in 
understanding the neurobiology of heterogeneous disorders.

The autism spectrum disorders (ASD) are a group of neurodevelopmental conditions characterised by impair-
ments in social communication and restricted and repetitive behaviours1. Definitive neurobiological mechanisms 
underlying ASD or other heterogeneous neurodevelopmental disorders have yet to be clearly delineated due to 
significant heterogeneity within and between individuals2. Magnetic Resonance Imaging (MRI) offers an in vivo 
method to assay neurobiological abnormalities, and has led to some promising findings of brain dysfunction in 
ASD neuroimaging3. However, group differences in brain structure or function in ASD remain frequently mis-
identified because of high levels of variability between and within individuals, giving rise to poor reliability and 
reproducibility of findings4.

In addition to the large phenotypic variation in individuals with ASD, neuroimaging studies are confounded 
by a number of methodological factors related to differences in image acquisition sites, anatomical sex, IQ, as well 
as age-dependent perturbations of neurodevelopment5. For example, age-related whole brain volume alterations6, 
cortical thinning7, and atypical surface area development8 in ASD are associated with continuous shifts through-
out the lifespan. Identifying altered neurodevelopmental trajectories in ASD becomes even more complex as cor-
tical volume can be further delineated into separable sub-components of cortical thickness and cortical surface, 
each with distinct genetic influences on development9. Previous reports of cortical measures of brain structural 
morphometry in ASD have been inconsistent, such as increased regional cortical thickness10–12, decreased13, or 
with significant cortical thinning in frontal, temporal or parietal regions14. Similarly, surface area in ASD has been 
reported to be increased15, decreased12, or not significantly different from neurotypical peers11,16. Alterations in 
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grey matter volume in ASD have also been reported to be driven by the absence of typical age-related cortical 
thinning17. These mixed findings suggest that the expression of ASD in atypical brain structure is likely to differ 
between individuals with the condition, and across different age cohorts. Consequently, research efforts to iden-
tify consistent differences in the brain in individuals with ASD have remained inconclusive. Given the diverse 
nature of the condition, there is an increasing need for predictive brain-based markers that are sensitive to heter-
ogeneity in the neurobiology and symptom expression of ASD18.

Emerging work suggests that individual-specific variation in brain architecture may be a critical factor under-
lying idiosyncrasies in ASD symptom characteristics19,20. As conventional neuroimaging investigations typi-
cally rely on broad between-group comparisons without sufficient consideration of subject-specific effects, such 
approaches have been of limited yield in ASD research. Additionally, high-dimensional neuroimaging data with 
a large number of, often co-linear, features relative to small sample sizes pose further issues with increased risk 
of false positives. In particular for such a heterogeneous population as ASD, these challenges suggest that inves-
tigations of brain structure and function in ASD should incorporate appropriate subject-level modelling, with 
adequate consideration for common problems associated with large-scale high-dimensional neuroimaging data 
analysis21,22.

Drawing from multi-disciplinary methodologies in ecology and twin modelling23, we developed a novel 
subject-level, distance-based method to test the hypothesis that neuroanatomical differences between subjects 
can explain individual differences in symptom severity. Using this approach on carefully matched case-control 
pairs at the individual rather than group level, we compared subject-specific differences in brain structural mor-
phometry on MRI to associated intrapair differences in individual symptom severity. Specifically, we hypothe-
sised that intrapair differences in cortical thickness and surface area features could predict individual variation in 
ASD symptom severity. By investigating relative individual differences within conservatively matched subjects, 
confounding effects related to inter-subject or cohort differences such as age, sex, intelligence and image acquisi-
tion site are also implicitly controlled for. Importantly, our approach implements well-validated and sophisticated 
machine learning and feature reduction techniques to ensure reproducibility of findings with reduced likelihood 
of false positives.

Results
Using machine learning to predict subject-specific differences in symptom severity (Social Responsiveness Scale; 
SRS) from differences in MRI features (Fig. 1), we applied regularised linear regression with elastic net penalty to 
achieve a sparse solution and select important features from the full imaging dataset. After training, the model 
significantly predicted differences in symptom severity between cases and controls in the out-of-sample dataset 
(R2 = 0.153; p = 0.01, 5000 permutations). Based on 1000 iterations of the training loop, nineteen cortical thick-
ness features were retained as predictors of individual differences in symptom severity (Fig. 2A; Supplementary 
Table 1). Regions where cortical thickness significantly predicted variation in symptoms severity were wide-
spread, including the cingulate (anterior and posterior) cortex, inferior parietal cortex and lateral frontal (pars 
triangularis) cortex in the right hemisphere, and middle frontal cortex in the left hemisphere. Bilateral associa-
tions were observed in the orbitofrontal cortex (medial, pars orbitalis), inferior and middle temporal gyri and the 
fusiform gyri.

The above procedure was repeated for cortical surface area measurements to predict differences in symptom 
severity. Ten surface area features were selected in the training dataset, with a favourable out-of-sample model fit 
(R2 = 0.18, p = 0.006; Fig. 2B; Supplementary Table 2). In contrast to the right hemisphere emphasis observed in 
cortical thickness features, identified cortical surface area features comprised of regions of the left caudal middle 
frontal gyrus, left supramarginal gyrus, left inferior parietal lobule, left rostral middle frontal gyrus, left insula, 
as well as the right entorhinal cortex, and the bilateral isthmus cingulate gyri and rostral anterior cingulate gyri.

We validated our approach against more conventional methods of group-level prediction less robust to het-
erogeneity across individuals. As expected, without accounting for subject-level within-pair differences, regres-
sion model training to predict symptom severity based on group-level MRI features demonstrated a poor fit in 
out-of-sample validation tests (Cortical thickness model fit: R2 = 0.0000434; surface area model fit: R2 = 0.0158) 
by comparison. Comparisons of model fit performance for both approaches are shown in Supplementary Fig. 2 
and Supplementary Table 3.

Discussion
By implementing a strict matching procedure combined with subject-level distance-based prediction of variation 
in ASD symptom severity based on the SRS measure, we demonstrated that individual-specific differences in 
cortical morphology were associated with subject-level variation in ASD symptom severity. Key cortical features 
implicate abnormal morphometry of frontal and temporal-parietal cortices, fusiform gyri, anterior and posterior 
cingulate regions, and the insula.

Cortical surface area features identified in the present study were strikingly consistent with previous findings 
of altered surface area underlying increased grey matter volume in 3-year old boys with ASD24. Cortical surface 
area in 8 of the 10 cortical regions identified in the present study (Supplementary Table 2) were similarly reported 
by Ohta and colleagues to be significantly increased in ASD compared to controls, with the exception of the 
bilateral isthmus cingulate. Specific regions reported in both studies were the left caudal middle frontal, left ros-
tral middle frontal, right entorhinal, left inferior parietal, left supramarginal, bilateral rostral anterior cingulate, 
and the left insula. Given the known inconsistencies across investigations on ASD structural morphometry, the 
similarity in reports of atypical surface area features across both studies that independently identified the same 
set of cortical regions and laterality is remarkable. Compared to the study of Ohta and colleagues that investigated 
males with ASD at the age of 3 years24, present findings were derived from independent samples of an older age 
cohort (age range 5–25 years) that also included females, and utilised a different analysis method with the novel 
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subject-level distance-based approach. The consistent results across different age cohorts and samples suggest that 
differences in the identified surface area features may be a stable feature of ASD over time.

Similarly, Wee and colleagues reported that morphological abnormalities in a set of cortical regions were 
the most discriminative features for the classification of ASD between 5 to 23 years of age. Using a multi-kernel 
learning strategy for feature selection, classification based on regional and interregional features in unseen sam-
ples achieved a sensitivity of 95.5% and specificity of 97%, with an accuracy of 96.27% and area under receiver 
operating characteristic curve (AUC) of 0.995, suggesting acceptable predictive utility25. Similar cortical regions 
underlying individual differences in ASD were identified in the present study in the surface area of the left caudal 
middle frontal, left supramarginal, right rostral anterior cingulate gyrus, and cortical thickness of the right infe-
rior temporal gyrus, right cuneus, left middle temporal and right fusiform gyrus.

Other neuroimaging investigations in ASD have also implicated the identified cortical regions in either or both 
hemispheres in the anterior cingulate26–28, posterior cingulate28–30, isthmus cingulate30–32, insula31, rostral mid-
dle frontal gyrus29, pars orbitalis32, pars triangularis27, medial orbitofrontal27,29, middle temporal gyrus30,33, infe-
rior temporal gyrus28,30,33, fusiform gyrus29, inferior parietal lobule29, supramarginal gyrus34, lingual gyrus28,29,34, 
cuneus cortex34, and pericalcarine cortex28. Together with previous reports of clusters of cortical features24,25 sim-
ilar to that identified in the present study, convergent results across multiple independent investigations suggest 
that atypical structural morphometry in these specific regions may be characteristic of altered neurodevelopment 
in ASD.

These distributed cortical regions facilitate key aspects of social, language, and sensory functioning, deficits of 
which are consistent with clinical features in ASD. For example, the middle temporal and inferior temporal gyri 
subserve language and semantic processing, and visual perception35,36. The right middle temporal gyrus and right 
insula are part of a distributed cortical network for modulating attention to salient features of the multimodal 
sensory environment37. The right fusiform and occipital-temporal regions are highly specialised for face percep-
tion, recognition, and representation of facial features such as eye gaze and facial expressions that are necessary 
for social communication38–40. Notably, the identified cortical regions in the cingulate and insula implicate hub 
regions of the salience network (SN) and default mode network (DMN) that have been increasingly suspect to 
be aberrant in ASD41. The SN primarily anchored to the anterior insular and dorsal anterior cingulate cortex 
contributes to cognitive and affective processes such as social behaviour and communication, and the integra-
tion of sensory, emotional and cognitive information42. The DMN comprising the posterior cingulate, medial 

Figure 1. Subject-level distance-based pipeline. (A) Each ASD case was individually matched to one control 
participant in age, sex, IQ and image acquisition site. (B) For every matched pair, within-pair Euclidean 
distances (Δ) on symptom severity variables and morphometry of brain region-of-interests (ROI) were 
computed. (C) Using a machine learning approach, regularised regression with elastic net penalisation was 
implemented to test the association between within-pair ΔROI and Δsymptom severity. A subset of the sample 
(33%) was held out as an independent out-of- sample test set. Remaining data was used as a training set to 
obtain cross-validated model weights for feature selection. The trained coefficient weights were then used to 
generate predictions and model fit parameters in the held-out test set. (D) Finally, out-of-sample model fits were 
evaluated against a null distribution of 5,000 permutations.
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prefrontal and parietal cortices typically demonstrates reduced activity on task initiation, and functions to sup-
port self-referential and introspective states and social cognition43. Altered function of the salience network and 
DMN are highly consistent with ASD symptomatology, and emerging evidence suggests that specific features of 
cortical regions comprising these networks may discriminate ASD from neurotypical development3.

A subject-level distance-based framework. Morphometry of the frontal, temporal, fusiform and insu-
lar cortices have been suggested to be important classification features in ASD. However, findings were incon-
sistent due to high variability in symptom severity, age and IQ across heterogeneous ASD subgroups. Katuwal 
and colleagues found that classification accuracy became poorer as subgroup differences along these variables 
increased, but was significantly improved by matching subgroups on subject demographics44. Between-group 
differences in cortical thickness in ASD have also been reported to become non-significant after controlling for 
IQ, further highlighting the importance of matching on key confound variables13. Present findings support the 
hypothesis of Katuwal and colleagues that increasing homegeneity between case and control populations can 

Figure 2. Cortical features selected using regularised regression models. Colour bars represent mean beta 
coefficients of cortical regions associated with individual differences in symptom severity in ASD. (A) Cortical 
thickness features associated with symptom severity variation in ASD. (B) Surface area features associated with 
symptom severity variation in ASD. Note. CAC: caudal anterior cingulate gyrus; CUN: cuneus; ENT: entorhinal; 
FUS: fusiform gyrus; INFP: inferior parietal gyrus; INS: insula; ISTC: isthmus cingulate gyrus; IT: inferior 
temporal gyrus; LH: left hemisphere; LIN: lingual gyrus; MORB: medial orbitofrontal; MT: middle temporal 
gyrus; PCAL: pericalcarine; PC: posterior cingulate gyrus; PORS: pars orbitalis; RH: Right hemisphere; PTRI: pars 
triangularis; RMF: rostral middle frontal gyrus.
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reduce noise and improve precision in classification. Further, similar cortical regions were also implicated in ASD 
in cortical thickness of occipital-temporal regions and the anterior cingulate. By modelling individual differences 
in well-matched subgroups, consistent patterns of abnormalities across cortical regions and subjects may emerge 
or become more distinct. For example, intrapair differences between cases and controls in structural morpho-
metry of certain regions, such as the anterior cingulate, appear to exceed differences observed in other cortical 
regions in a large proportion of the sample (Supplementary Fig. 2). However, to qualify as potential candidate 
markers in the neurobiology of ASD, such putative features must necessarily demonstrate significant associations 
with ASD symptomatology based on rigorous analysis and validation45. Using the subject-level distance-based 
framework in the current study, we demonstrated that individual differences in the structural morphometry of 
identified cortical regions also predicted subject-level variation in symptom severity (Fig. 2).

Present results suggest that as neuroanatomy diverges between ASD and control subjects, individual differ-
ences in symptom severity increase within matched case-control pairs. Conversely, negative coefficient weights 
reflect an increase in symptom severity differences as regional cortical features becomes more similar between 
ASD and controls. While this may appear counterintuitive, the direction of differences in altered brain morpho-
metry in ASD have been observed to shift across development, due to age-dependent changes in the neurodevel-
opmental trajectory of ASD that differs from controls46. Previous longitudinal findings suggest that the expected 
typical age-related decline in cortical surface area8 or cortical thickness17 may be absent in ASD. Group differ-
ences in cortical thickness also varied across development stages, with region-specific differences in age-related 
trajectories between ASD and controls34. A dynamic pattern of age-specific abnormalities has also been reported 
with increased cortical thickness in children with ASD. However, no differences were observed in adult cohorts 
due to an accelerated rate of cortical thinning in ASD compared to controls47. As a consequence of the different 
developmental trajectories between groups, atypical cortical developmental trajectories in ASD may intersect 
with that of typically developing peers at certain stages of development. At such time-points, group differences 
in abnormally developing cortical regions in ASD may not be detected cross-sectionally, despite a concomitant 
difference in symptom severity. The presence of group-dependent developmental trajectories that are dynamic 
over time could explain the high prevalence of inconsistent findings in ASD. With our proposed framework, we 
were able to identify distinct patterns of abnormalities associated with symptom severity in ASD that were not 
dependent on detecting mean differences at the group level. Notably, our approach based on cross-sectional data 
identified structural differences in ASD in the same regions reported in the longitudinal study of  8 in surface area 
of the anterior cingulate, insula, supramarginal gyrus and inferior parietal lobe, and cortical thickness of the 
bilateral inferior temporal gyri.

Importantly, a dimensional approach based on continuous measures allows for a more precise quantification 
of sub-threshold ASD traits in individuals who do not meet the criteria for clinical diagnosis, otherwise known 
as the broader autism phenotype48. For example, a broader phenotype individual in the control group may dis-
play a high degree of similarity in symptom severity to an individual with a milder presentation of ASD49. This 
is consistent with overlapping distributions of SRS scores in children with or without ASD observed in a large 
nation-wide population sample, such that a proportion of controls displayed higher SRS scores than individuals 
with ASD, and vice versa50. In the present study, a similar pattern is observed with overlapping symptom severity 
scores ranges between cases and controls. Investigating group differences in ASD based on group-averaged var-
iables between cases and controls are thus likely to obscure important subject-specific effects, and could explain 
inconsistent findings from previous studies.

Indeed, present results suggest that subject-level modelling significantly outperforms group-difference 
methods of symptom severity prediction in ASD. We show that individual variability in brain morphometry 
and symptom severity can be modelled with a subject-level distance-based approach. Dimensional approaches 
to symptom measurement as such could be more effective in delineating the association between properties of 
the brain and symptom severity. Individual differences in neurodevelopment were also accounted for based on 
confound matching at the individual level (rather than group) to improve inter-subject homogeneity. With the 
robustness of present findings, such methodological considerations may be important for improved character-
isation of heterogeneity in ASD brain morphometry that better reflects the continuous spectrum of symptom 
severity in this population.

Future directions. Interestingly in the current study, individual differences in cortical thickness between 
ASD and controls appeared to be more prevalent in the right hemisphere, in contrast to a left hemisphere bias for 
differences in surface area features. Cortical features that were implicated bilaterally were the surface area of the 
rostral anterior cingulate and isthmus cingulate, and cortical thickness of the middle temporal, inferior temporal 
and fusiform gyrus.

ASD has been related to a loss or inversion of typical patterns of brain asymmetry or lateralisation, with 
abnormal asymmetry in brain morphometry and connectivity associated with symptom deficits in ASD51–53. For 
example, the study of Wee and colleagues noted significantly more abnormalities in the right hemisphere than 
the left in ASD25, in agreement with previous reports of a right-hemisphere bias in brain structural and functional 
asymmetry in ASD54–56. In contrast, a leftward lateralisation of abnormalities in ASD was reported for cortical 
thickness47 and surface area57. Distinct patterns of lateralisation between different morphological features in ASD 
may be related to the independent growth trajectories of cortical thickness and cortical surface area, each regu-
lated by discrete genetic mechanisms9. Further, the direction of atypical asymmetry in structural morphometry 
has been shown to shift throughout development in ASD with decreasing leftward asymmetry with age, or could 
differ between high and low functioning individuals with ASD47,57. Mixed findings of structural asymmetry or 
direction of effects in ASD could thus be due to the diverse aetiology or distinct subtypes in the condition, as well 
as relative differences to control that vary across developmental stages due to altered developmental trajectories58. 
While we have shown that individual differences in specific cortical features are strongly implicated in ASD, the 
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complex expression of age-dependent changes in ASD that are dynamic over time requires further investigation 
beyond cross-sectional studies.

Together, present results derived from rigorous testing and validation techniques suggest that subject-level 
variation in brain properties are important characteristics in the expression of ASD. Present findings were limited 
to cortical thickness and surface area features, and other properties across different measures of brain struc-
ture and function could account for larger proportions of variance in symptom severity59. The robustness of the 
subject-level distance-based approach is nevertheless promising. Given that complex neurodevelopment condi-
tions such as ASD likely stem from perturbations of anatomically distributed and interconnected neural systems, 
future applications of the subject-level distance-based approach to investigations of intrinsic brain networks may 
reveal more sophisticated insights into atypical neural mechanisms in ASD60. As brain structural connectivity 
constrains the development of functional networks across the lifespan, validation across different imaging modal-
ities will be necessary to elucidate distinct neurobiological mechanisms, such as network analysis of white matter 
microstructure and functional connectivity investigations61.

We strongly encourage continued multimodal subject-level distance-based investigations to further challenge 
this hypothesis in large multi-site cohorts. As we have shown, investigations in ASD must necessarily demonstrate 
generalisability beyond in-sample modelling, given the high levels of inter- and intra-individual heterogeneity 
in this population. It is likely that the reliable identification of neural correlates in ASD strongly depends on 
quantifying individual variation in the phenotypic expression of ASD or the broader autism phenotypes. Such 
individualised approaches will be important for the development of clinical applications to aid management or 
personalised intervention strategies for each unique patient at the individual level.

Conclusion
The robustness and generalisability of present findings is important progress in the search for neural correlates of 
heterogeneous disorders such as ASD, and offers promising insights into the neurobiology of ASD symptomatol-
ogy. Based on present results with out-of-sample predictions, cortical hubs of the salience and DMN networks are 
likely to be implicated as potential neuroanatomical markers of ASD symptomatology. Increased reliability and 
validity of evidence for subject-specific alterations in brain structure and function will be necessary to advance 
current knowledge about the aetiology of ASD, where individual variability should be carefully modelled, rather 
than discarded as noise.

Methods
Participants. Data was obtained from the Autism Brain Imaging Database Exchange II (ABIDE-II) cohort 
across 17 independent imaging sites62. Protocols specific to each imaging site for diagnosis, behavioural and 
cognitive assessment, and Magnetic Resonance Imaging (MRI) acquisition are available for public-access. Data 
collection and sharing for each site was approved by the respective ethics review board or ethics committee prior 
to data contribution to ABIDE-II with informed consent for study participation. All procedures were conducted 
in accordance with the Code of Ethics of the World Medical Association (Declaration of Helsinki), and approved 
by The Royal Children’s Hospital Human Research Ethics Committee. The Social Responsiveness Scale (SRS) 
was used as a phenotype measure of ASD symptom severity63. The SRS instrument has been established to be a 
reliable and valid quantitative measure of ASD traits, demonstrating convergent validity with the gold standard 
Autism Diagnostic Observation Schedule and Autism Diagnostic Interview, and is able to discriminate ASD from 
other psychopathologies64,65. The instrument is commonly used for both screening and as a tool to aid clinical 
diagnosis.

Based on the multivariate genetic matching method66, each ASD case was individually matched to the nearest 
control participant in age and IQ, restricted to a maximum distance of 0.25 standard deviations for each variable 
within each pair. For categorical variables, exact matching criteria were set for participant sex and image acquisi-
tion site. The genetic search algorithm67 aims to achieve optimal balance after matching by finding a set of weights 
for each covariate of interest. Matching balance was evaluated by univariate and paired t-tests for dichotomous 
variables and the Kolmogrov-Smirnov test for continuous or multinomial variables. The process selected n = 100 
individuals with ASD to 100 controls eligible for inclusion (see Table 1; Supplementary Table 4).

Image processing and quality control. Pre-processing and analysis of T1-weighted MRI was performed 
using FreeSurfer (v6.0.0; http://surfer.nmr.mgh.harvard.edu/). Visual inspection for movement artefacts were 
conducted for every subject to ensure data quality control. We inspected images for characteristic ring artefacts 
caused by in-scanner head motion, and evaluating grey/white matter and grey matter/CSF boundaries. Briefly, 
the FreeSurfer cortical surface reconstruction pipeline performs the following steps in sequence: non-uniform 
intensity correction, skull stripping, segmentation into tissue type and subcortical grey matter structures, cortical 
surface extraction and parcellation. Manual editing was performed on the white matter mask images to avoid 

Group n Sex Age IQ SRS

ASD 100 n = 84
males

11.45 (3.51);
Range: 5.92–24.58

110.58 (13.18);
Range: 80–149

91.7 (28.42);
Range: 11–162

Controls 100 n = 84
males

11.43 (3.55);
Range: 5.89–23.92

110.70 (13.18);
Range: 79–148

19.7 (13.0);
Range: 1–57

Table 1. Descriptive statistics of matched samples. Note. SRS: Social Responsiveness Scale raw scores. Higher 
score indicates more severe ASD symptoms.
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false-positive errors in estimated surfaces and to ensure accurate masking of the dura. We further inspected 
images for topological errors during cortical reconstruction by inspecting surface outputs and parcellations for 
each subject. Cortical morphometric statistics based on the Desikan–Killiany–Tourville (DKT) brain anatomical 
atlas were used to estimate cortical thickness (mm) and surface area measurements (mm2) for each brain region. 
An advantage of the DKT atlas is that labelling is performed on a per-subject basis rather than the projection 
of a single parcellation onto every cortex, and is well-suited for the present subject-level analyses. Given that 
participants with high motion in one scan are also likely to move more in other scans during the same session68, 
we further evaluated head motion parameters in each subject’s resting-state functional MRI (fMRI) scan using 
framewise displacement (FD) as an estimate of volume-to-volume head movement. Inter-subject mean FD was 
not significantly associated with differences in SRS scores within matched subject pairs (t = 1.54, p = 0.125), sug-
gesting that individual variation in symptom measures were not likely explained by differences in in-scanner head 
motion.

Subject-level distance-based analysis. Within-pair Euclidean distances were computed for every 
matched pair on clinical (SRS score) and demographic (age and IQ) continuous variables and brain structural 
morphometry measures (cortical thickness and surface area). Age and total intracranial volume were regressed 
out using standardised residual adjustment to adjust for inter-subject disparity in age and head size69. By meas-
uring the anatomical difference between matched brains at the level of individual subjects, we can investigate 
brain-behaviour associations underlying symptom severity by testing whether differences in brain structure can 
explain differences in symptom severity between paired subjects. Subjects were also strictly matched at the indi-
vidual level on key neurodevelopmental and demographic factors such as age, sex, IQ, and MRI acquisition site. 
This improves subgroup equivalence70, and reduces the likelihood of significant differences on these confound 
covariates influencing observed outcomes between subjects. Figure 1 provides a summary of the analysis pipeline. 
Regularised regression with elastic net penalisation71 was used to test the hypothesis that selected case-control 
differences in cortical morphometry were associated with variation in symptom severity (α = 0.5, λ = 100, k-fold 
cross- validation = 10, n iterations = 1000). The aim of machine learning is to estimate model parameters to 
make accurate predictions on new, unseen or held-out datasets. Elastic net is an embedded technique that com-
bines machine learning and feature reduction functions by implementing a regularisation framework to obtain 
a reduced subset of selected features. Elastic net has been previously applied in machine learning for neuroimag-
ing in Alzheimer’s disease classification and treatment outcome predictions in ADHD cohorts22. In regularised 
regression, λ is a parameter controlling for the strength of regularisation. The higher the value of λ, the more 
likely coefficients will be estimated towards zero with an increased penalty. α is the mixing parameter (0< α <1) 
and determines the relative quantities of L2 norm penalised regression (ridge regression) and L1 norm penalised 
regression (LASSO regularised penalisation). Elastic net is an approach that combines both the L1 and L2 penal-
ties of the LASSO and ridge methods.

A subset of the matched-pairs sample (33%) was held out as an out-of-sample test set independent of the 
subject data; that is these data were not used in the cross-validation steps (training set), and only examined as an 
independent validation of the model (test set). The remaining data was used as a training set to obtain optimal 
model weights for selected features. In the training set, we employed a strict k-fold cross-validation loop (10 
folds, 1000 iterations) to train the model to predict differences in symptom severity between matched cases and 
controls in the out-of-sample test set. The model was trained within a k-fold cross-validation loop (k = 10). The 
training set is first randomly partitioned into k subsamples of equal size. For each fold, one subsample is withheld 
for internal validation to test the model trained on k-1 subsamples. Each of the k subsamples were used as the 
validation set once per fold. Results from each fold were averaged to obtain a single estimation. Due to intrinsic 
randomness of model building, estimated coefficients may vary after each run. To account for stochastic error and 
to ensure robustness of estimates, the process was repeated for n = 1000 iterations, and the averaged coefficient 
weights used to generate predictions in the out-of-sample test set.

Model goodness-of-fit was assessed by constructing a null distribution of symptom severity outcome. To gen-
erate a null distribution, the symptom severity (difference) variable was randomised across every sample observa-
tion of cortical thickness or surface area features using 5,000 permutations. For each iteration, model parameters 
were obtained using the same machine learning pipeline with regularised regression with elastic net penalty. 
The p-value of the initial model fit in the out-of-sample test set was computed as the proportion of iterations 
in the null distribution with model performance exceeding that of the initial model fit. Application and valida-
tion of recommended best practice for the regularised regression protocol are detailed elsewhere72,73. The entire 
procedure was repeated for cortical thickness and surface area measures. Final model weights were obtained 
by fitting selected features on the entire dataset to allow independent model testing. To validate our approach 
against group-level prediction methods, we repeated the entire machine learning pipeline on the same matched 
ASD cohort but at the group-level without within-pair distance computations, adjusted for age, sex, site, IQ and 
intracranial volume effects.

Analyses were performed in the R environment74 using the MatchIt and boot wrapper tools66,75. Visualisations 
were generated with in-house scripts. Visualisation scripts for Fig. 2 are available at: https://developmentalimag-
ingmcri.github.io/freesurfer_statsurf_display/.

Data Availability
Datasets generated during the current study are available from the corresponding author on reasonable re-
quest. Matched ABIDE-II subject IDs are available in the supplementary materials. ABIDE-II is an open access 
dataset and is freely available to download from: http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html.

https://doi.org/10.1038/s41598-019-45774-z
https://developmentalimagingmcri.github.io/freesurfer_statsurf_display/
https://developmentalimagingmcri.github.io/freesurfer_statsurf_display/


8Scientific RepoRts |          (2019) 9:9898  | https://doi.org/10.1038/s41598-019-45774-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

References
 1. Wing, L. The autistic spectrum. The Lancet 350, 1761–1766 (1997).
 2. Hahamy, A., Behrmann, M. & Malach, R. The idiosyncratic brain: Distortion of spontaneous connectivity patterns in autism 

spectrum disorder. Nat. Neurosci. 18, 302–309, https://doi.org/10.1038/nn.3919 (2015).
 3. Uddin, L. Q., Dajani, D. R., Voorhies, W., Bednarz, H. & Kana, R. K. Progress and roadblocks in the search for brain-based 

biomarkers of autism and attention-deficit/hyperactivity disorder. Translational Psychiatry 7, e1218, https://doi.org/10.1038/
tp.2017.164 (2017).

 4. Ecker, C. The neuroanatomy of autism spectrum disorder: An overview of structural neuroimaging findings and their translatability 
to the clinical setting. Autism: the international journal of research and practice 21, 18–28, https://doi.org/10.1177/1362361315627136 
(2017).

 5. Pua, E. P. K., Bowden, S. C. & Seal, M. L. Autism spectrum disorders: Neuroimaging findings from systematic reviews. Research in 
Autism Spectrum Disorders 34, 28–33 (2017).

 6. Lange, N. et al. Longitudinal volumetric brain changes in autism spectrum disorder ages 6-35 years. Autism Research 8, 82–93 
(2015).

 7. Wallace, G. L., Dankner, N., Kenworthy, L., Giedd, J. N. & Martin, A. Age-related temporal and parietal cortical thinning in autism 
spectrum disorders. Brain: a journal of neurology 133, 3745–3754 (2010).

 8. Mensen, V. T. et al. Development of cortical thickness and surface area in autism spectrum disorder. NeuroImage: Clinical 13, 
215–222, https://doi.org/10.1016/j.nicl.2016.12.003 (2017).

 9. Panizzon, M. S. et al. Distinct Genetic Influences on Cortical Surface Area and Cortical Thickness. Cerebral Cortex 19, 2728–2735, 
https://doi.org/10.1093/cercor/bhp026 (2009).

 10. Hardan, A. Y., Muddasani, S., Vemulapalli, M., Keshavan, M. S. & Minshew, N. J. An MRI study of increased cortical thickness in 
autism. American Journal of Psychiatry 163, 1290–1292 (2006).

 11. Raznahan, A. et al. Mapping cortical anatomy in preschool aged children with autism using surface-based morphometry. 
Neuroimage Clin 2, 111–119, https://doi.org/10.1016/j.nicl.2012.10.005 (2013).

 12. Ecker, C. et al. Brain surface anatomy in adults with autism: the relationship between surface area, cortical thickness, and autistic 
symptoms. JAMA psychiatry 70, 59–70, https://doi.org/10.1001/jamapsychiatry.2013.265 (2013).

 13. Hardan, A. Y., Libove, R. A., Keshavan, M. S., Melhem, N. M. & Minshew, N. J. A preliminary longitudinal magnetic resonance 
imaging study of brain volume and cortical thickness in autism. Biological psychiatry 66, 320–326, https://doi.org/10.1016/j.
biopsych.2009.04.024 (2009).

 14. Hadjikhani, N., Joseph, R. M., Snyder, J. & Tager-Flusberg, H. Anatomical differences in the mirror neuron system and social 
cognition network in autism. Cerebral cortex 16, 1276–1282 (2005).

 15. Hazlett, H. C. et al. Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years. Arch. 
Gen. Psychiatry 68, 467–476 (2011).

 16. Wallace, G. L. et al. Increased gyrification, but comparable surface area in adolescents with autism spectrum disorders. Brain: a 
journal of neurology 136, 1956–1967 (2013).

 17. Smith, E. et al. Cortical thickness change in autism during early childhood. Human brain mapping 37, 2616–2629 (2016).
 18. Jack, A. & Pelphrey, K. A. Annual Research Review: Understudied populations within the autism spectrum - current trends and 

future directions in neuroimaging research. Journal of Child Psychology and Psychiatry, https://doi.org/10.1111/jcpp.12687 (2017).
 19. Chen, H., Nomi, J. S., Uddin, L. Q., Duan, X. & Chen, H. Intrinsic functional connectivity variance and state-specific under-

connectivity in autism. Human Brain Mapping, https://doi.org/10.1002/hbm.23764 (2017).
 20. Dickie, E. W. et al. Personalized intrinsic network topography mapping and functional connectivity deficits in Autism Spectrum 

Disorder. Biol. Psychiatry, https://doi.org/10.1016/j.biopsych.2018.02.1174 (2017).
 21. Bzdok, D. & Yeo, B. T. T. Inference in the age of big data: Future perspectives on neuroscience. NeuroImage, https://doi.org/10.1016/j.

neuroimage.2017.04.061 (2017).
 22. Mwangi, B., Tian, T. S. & Soares, J. C. A review of feature reduction techniques in neuroimaging. Neuroinformatics 12, 229–244, 

https://doi.org/10.1007/s12021-013-9204-3 (2014).
 23. Carlin, J. B., Gurrin, L. C., Sterne, J. A., Morley, R. & Dwyer, T. Regression models for twin studies: a critical review. International 

journal of epidemiology 34, 1089–1099, https://doi.org/10.1093/ije/dyi153 (2005).
 24. Ohta, H. et al. Increased Surface Area, but not Cortical Thickness, in a Subset of Young Boys With Autism Spectrum Disorder. 

Autism. Research 9, 232–248, https://doi.org/10.1002/aur.1520 (2016).
 25. Wee, C.-Y., Wang, L., Shi, F., Yap, P.-T. & Shen, D. Diagnosis of autism spectrum disorders using regional and interregional 

morphological features. Human Brain Mapping 35, 3414–3430, https://doi.org/10.1002/hbm.22411 (2014).
 26. Haznedar, M. M. et al. Anterior cingulate gyrus volume and glucose metabolism in autistic disorder. American Journal of Psychiatry 

154, 1047–1050 (1997).
 27. Jiao, Y. et al. Predictive models of autism spectrum disorder based on brain regional cortical thickness. NeuroImage 50, 589–599 

(2010).
 28. Prigge, M. B. et al. Social Responsiveness Scale (SRS) in Relation to Longitudinal Cortical Thickness Changes in Autism Spectrum 

Disorder. J. Autism Dev. Disord., 1–11 (2018).
 29. Hyde, K. L., Samson, F., Evans, A. C. & Mottron, L. Neuroanatomical differences in brain areas implicated in perceptual and other 

core features of autism revealed by cortical thickness analysis and voxel-based morphometry. Human Brain Mapping 31, 556–566 
(2010).

 30. Yang, D. Y.-J., Beam, D., Pelphrey, K. A., Abdullahi, S. & Jou, R. J. Cortical morphological markers in children with autism: a 
structural magnetic resonance imaging study of thickness, area, volume, and gyrification. Molecular autism 7, 11 (2016).

 31. Doyle-Thomas, K. A. et al. The effect of diagnosis, age, and symptom severity on cortical surface area in the cingulate cortex and 
insula in autism spectrum disorders. Journal of child neurology 28, 732–739 (2013).

 32. Caeyenberghs, K. et al. Neural signature of developmental coordination disorder in the structural connectome independent of 
comorbid autism. Developmental science 19, 599–612 (2016).

 33. Abell, F. et al. The neuroanatomy of autism: a voxel-based whole brain analysis of structural scans. Neuroreport 10, 1647–1651 
(1999).

 34. Zielinski, B. A. et al. Longitudinal changes in cortical thickness in autism and typical development. Brain: A Journal of Neurology 
137, 1799–1812 (2014).

 35. Chao, L. L., Haxby, J. V. & Martin, A. Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. 
Nat. Neurosci. 2, 913 (1999).

 36. Herath, P., Kinomura, S. & Roland, P. E. Visual recognition: evidence for two distinctive mechanisms from a PET study. Human 
brain mapping 12, 110–119 (2001).

 37. Downar, J., Crawley, A. P., Mikulis, D. J. & Davis, K. D. A multimodal cortical network for the detection of changes in the sensory 
environment. Nat. Neurosci. 3, 277 (2000).

 38. Rossion, B. et al. A network of occipito‐temporal face‐sensitive areas besides the right middle fusiform gyrus is necessary for normal 
face processing. Brain: a journal of neurology 126, 2381–2395 (2003).

 39. Rossion, B., Schiltz, C. & Crommelinck, M. The functionally defined right occipital and fusiform “face areas” discriminate novel 
from visually familiar faces. NeuroImage 19, 877–883 (2003).

https://doi.org/10.1038/s41598-019-45774-z
https://doi.org/10.1038/nn.3919
https://doi.org/10.1038/tp.2017.164
https://doi.org/10.1038/tp.2017.164
https://doi.org/10.1177/1362361315627136
https://doi.org/10.1016/j.nicl.2016.12.003
https://doi.org/10.1093/cercor/bhp026
https://doi.org/10.1016/j.nicl.2012.10.005
https://doi.org/10.1001/jamapsychiatry.2013.265
https://doi.org/10.1016/j.biopsych.2009.04.024
https://doi.org/10.1016/j.biopsych.2009.04.024
https://doi.org/10.1111/jcpp.12687
https://doi.org/10.1002/hbm.23764
https://doi.org/10.1016/j.biopsych.2018.02.1174
https://doi.org/10.1016/j.neuroimage.2017.04.061
https://doi.org/10.1016/j.neuroimage.2017.04.061
https://doi.org/10.1007/s12021-013-9204-3
https://doi.org/10.1093/ije/dyi153
https://doi.org/10.1002/aur.1520
https://doi.org/10.1002/hbm.22411


9Scientific RepoRts |          (2019) 9:9898  | https://doi.org/10.1038/s41598-019-45774-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

 40. Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in human extrastriate cortex specialized for face 
perception. Journal of neuroscience 17, 4302–4311 (1997).

 41. Anderson, J. S. et al. Functional connectivity magnetic resonance imaging classification of autism. Brain: a journal of neurology 134, 
3742–3754, https://doi.org/10.1093/brain/awr263 (2011).

 42. Menon, V. In In: Arthur W. Toga, editor. Brain Mapping: An Encyclopedic Reference, vol. 2, pp. 597–611. Academic Press: Elsevier. 
597–611 (2015).

 43. Mak, L. E. et al. The Default Mode Network in Healthy Individuals: A Systematic Review and Meta-Analysis. Brain Connectivity. 
https://doi.org/10.1089/brain.2016.0438 (2017).

 44. Katuwal, G. J., Baum, S. A., Cahill, N. D. & Michael, A. M. Divide and Conquer: Sub-Grouping of ASD Improves ASD Detection 
Based on Brain Morphometry. Plos One 11, e0153331, https://doi.org/10.1371/journal.pone.0153331 (2016).

 45. Pua, E. P. K., Malpas, C. B., Bowden, S. C. & Seal, M. L. Different brain networks underlying intelligence in autism spectrum 
disorders. Human Brain Mapping 39, 3253–3262, https://doi.org/10.1002/hbm.24074 (2018).

 46. Lin, H. Y., Ni, H. C., Lai, M. C., Tseng, W. Y. I. & Gau, S. S. F. Regional brain volume differences between males with and without 
autism spectrum disorder are highly age-dependent. Molecular Autism 6, https://doi.org/10.1186/s13229-015-0022-3 (2015).

 47. Khundrakpam, B. S., Lewis, J. D., Kostopoulos, P., Carbonell, F. & Evans, A. C. Cortical Thickness Abnormalities in Autism Spectrum 
Disorders Through Late Childhood, Adolescence, and Adulthood: A Large-Scale MRI Study. Cereb Cortex 27, 1721–1731, https://
doi.org/10.1093/cercor/bhx038 (2017).

 48. Dawson, G. et al. Defining the broader phenotype of autism: genetic, brain, and behavioral perspectives. Development & 
Psychopathology 14, 581–611 (2002).

 49. Bishop, D. V. M., Maybery, M., Wong, D., Maley, A. & Hallmayer, J. Characteristics of the broader phenotype in autism: A study of 
siblings using the children’s communication checklist-2. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 
141B, 117–122, https://doi.org/10.1002/ajmg.b.30267 (2006).

 50. Kamio, Y. et al. Quantitative autistic traits ascertained in a national survey of 22 529 Japanese schoolchildren. Acta Psychiatrica 
Scandinavica 128, 45–53, https://doi.org/10.1111/acps.12034 (2013).

 51. Herbert, M. R. et al. Abnormal asymmetry in language association cortex in autism. Annals of Neurology: Official Journal of the 
American Neurological Association and the Child Neurology Society 52, 588–596 (2002).

 52. Floris, D. L. et al. Atypical lateralization of motor circuit functional connectivity in children with autism is associated with motor 
deficits. Molecular autism 7, 35 (2016).

 53. Conti, E. et al. Lateralization of brain networks and clinical severity in toddlers with autism spectrum disorder: a HARDI diffusion 
MRI study. Autism. Research 9, 382–392 (2016).

 54. Chiron, C. et al. SPECT of the brain in childhood autism: evidence for a lack of normal hemispheric asymmetry. Developmental 
Medicine & Child Neurology 37, 849–860 (1995).

 55. Herbert, M. R. et al. Brain asymmetries in autism and developmental language disorder: a nested whole-brain analysis. Brain: a 
journal of neurology 128, 213–226 (2004).

 56. Wei, L., Zhong, S., Nie, S. & Gong, G. Aberrant development of the asymmetry between hemispheric brain white matter networks 
in autism spectrum disorder. European neuropsychopharmacology: the journal of the European College of Neuropsychopharmacology 
28, 48–62, https://doi.org/10.1016/j.euroneuro.2017.11.018 (2018).

 57. Dougherty, C. C., Evans, D. W., Katuwal, G. J. & Michael, A. M. Asymmetry of fusiform structure in autism spectrum disorder: 
trajectory and association with symptom severity. Mol. Autism 7, 28, https://doi.org/10.1186/s13229-016-0089-5 (2016).

 58. Moreno-De-Luca, A. et al. Developmental brain dysfunction: revival and expansion of old concepts based on new genetic evidence. 
The Lancet Neurology 12, 406–414 (2013).

 59. Bezgin, G., Lewis, J. D. & Evans, A. C. Developmental changes of cortical white–gray contrast as predictors of autism diagnosis and 
severity. Translational psychiatry 8, 249 (2018).

 60. Fornito, A., Bullmore, E. T. & Zalesky, A. Opportunities and Challenges for Psychiatry in the Connectomic Era. Biological Psychiatry: 
Cognitive Neuroscience and Neuroimaging 2, 9–19, https://doi.org/10.1016/j.bpsc.2016.08.003 (2017).

 61. Grayson, D. S. & Fair, D. A. Development of large-scale functional networks from birth to adulthood: a guide to neuroimaging 
literature. NeuroImage (In Press) (2017).

 62. Di Martino, A. et al. Enhancing studies of the connectome in autism using the autism brain imaging data exchange II. Scientific data 
4, 170010 (2017).

 63. Constantino, J. N. & Gruber, C. P. Social responsiveness scale (SRS). (Western Psychological Services Torrance, CA, 2012).
 64. Bölte, S., Poustka, F. & Constantino, J. N. Assessing autistic traits: cross-cultural validation of the social responsiveness scale (SRS). 

Autism. Research 1, 354–363, https://doi.org/10.1002/aur.49 (2008).
 65. McConachie, H. et al. Systematic review of tools to measure outcomes for young children with autism spectrum disorder. Health 

Technology Assessment 19, 1–506, https://doi.org/10.3310/hta19410 (2015).
 66. Ho, D. E., Imai, K., King, G. & Stuart, E. A. MatchIt: nonparametric preprocessing for parametric causal inference. Journal of 

Statistical Software 42, 1–28 (2011).
 67. Diamond, A. & Sekhon, J. S. Genetic matching for estimating causal effects: A general multivariate matching method for achieving 

balance in observational studies. Review of Economics and Statistics 95, 932–945 (2013).
 68. Savalia, N. K. et al. Motion‐related artifacts in structural brain images revealed with independent estimates of in‐scanner head 

motion. Human brain mapping 38, 472–492 (2017).
 69. O’Brien, L. M. et al. Statistical adjustments for brain size in volumetric neuroimaging studies: some practical implications in 

methods. Psychiatry Research: Neuroimaging 193, 113–122 (2011).
 70. Stout, R. L., Wirtz, P. W., Carbonari, J. P. & Del Boca, F. K. Ensuring balanced distribution of prognostic factors in treatment outcome 

research. Journal of Studies on Alcohol, supplement, 70–75 (1994).
 71. Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B 

(Statistical Methodology) 67, 301–320 (2005).
 72. Hendricks, P. & Ahn, W.-Y. Easyml: Easily Build And Evaluate Machine Learning Models. bioRxiv, 137240 (2017).
 73. Vilares, I. et al. Predicting the knowledge–recklessness distinction in the human brain. Proceedings of the National Academy of 

Sciences 114, 3222–3227 (2017).
 74. Team, R. C. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria 

(2013).
 75. McArtor, D. B., Lubke, G. H. & Bergeman, C. S. Extending multivariate distance matrix regression with an effect size measure and 

the asymptotic null distribution of the test statistic. Psychometrika, https://doi.org/10.1007/s11336-016-9527-8 (2016).

Acknowledgements
Data analysis and interpretation was conducted within the Developmental Imaging research group, Murdoch 
Children’s Research Institute and the Children’s MRI Centre, Royal Children’s Hospital, Melbourne, Victoria. The 
research was supported by the Murdoch Children’s Research Institute, The Royal Children’s Hospital, Department 
of Paediatrics, The University of Melbourne and the Victorian Government’s Operational Infrastructure Support 

https://doi.org/10.1038/s41598-019-45774-z
https://doi.org/10.1093/brain/awr263
https://doi.org/10.1089/brain.2016.0438
https://doi.org/10.1371/journal.pone.0153331
https://doi.org/10.1002/hbm.24074
https://doi.org/10.1186/s13229-015-0022-3
https://doi.org/10.1093/cercor/bhx038
https://doi.org/10.1093/cercor/bhx038
https://doi.org/10.1002/ajmg.b.30267
https://doi.org/10.1111/acps.12034
https://doi.org/10.1016/j.euroneuro.2017.11.018
https://doi.org/10.1186/s13229-016-0089-5
https://doi.org/10.1016/j.bpsc.2016.08.003
https://doi.org/10.1002/aur.49
https://doi.org/10.3310/hta19410
https://doi.org/10.1007/s11336-016-9527-8


1 0Scientific RepoRts |          (2019) 9:9898  | https://doi.org/10.1038/s41598-019-45774-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

Program. The project was generously supported by RCH1000, a unique arm of The Royal Children’s Hospital 
Foundation devoted to raising funds for research at The Royal Children’s Hospital.

Author Contributions
E.P. designed the study, performed data analysis and visualisations and prepared the manuscript. G.B. contributed 
to the study design and manuscript preparation. C.A. contributed to data analysis and visualisations. S.B. and 
M.S. supervised the study and contributed to manuscript preparation.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-45774-z.
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-45774-z
https://doi.org/10.1038/s41598-019-45774-z
http://creativecommons.org/licenses/by/4.0/

	Quantifying individual differences in brain morphometry underlying symptom severity in Autism Spectrum Disorders
	Results
	Discussion
	A subject-level distance-based framework. 
	Future directions. 

	Conclusion
	Methods
	Participants. 
	Image processing and quality control. 
	Subject-level distance-based analysis. 

	Acknowledgements
	Figure 1 Subject-level distance-based pipeline.
	Figure 2 Cortical features selected using regularised regression models.
	Table 1 Descriptive statistics of matched samples.




