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Response of phytoplankton 
to banana cultivation: A case 
study of Lancang-Mekong River, 
southwestern China
Juan Dai1,2, Yinjun Zhou1,2, Haipeng Wu1,3, Yunchao Zhang1,2 & Kongxian Zhu1,2

This study examined the possible effects of banana cultivation on phytoplankton biomass and 
community structure in southwest China along the Lancang-Mekong River. Water and phytoplankton 
samples were collected on March (dry season) and August (rainy season), and physical-chemical 
properties of water, phytoplankton biomass and community structure were determined. the results 
indicated that the banana cultivation resulted in increases in sediment, total phosphorus (tp) and total 
nitrogen (tN) concentrations at estuaries of Lancang-Mekong River branches. Cultivation decreased 
phytoplankton diversity, abundance and biomass, as well as changed the phytoplankton community 
structure at estuaries of branches. sediment concentration (increased by cultivation) was considered 
as the dominant influence factor of phytoplankton biomass and community structure. However, at 
downstream sites (primary channel), banana cultivation did not cause (result from its huge flow) the 
significant changes in physical-chemical properties of water, phytoplankton biomass or community 
structure.

Wetlands are one of the most important ecosystems of the world1–3, and play a critical role in climate change and 
biodiversity protection4,5. Phytoplankton are a key primary producer in freshwater wetlands and oceans6–9, and 
are crucial in global ecosystem structure and function10–12. They could also affect the population and diversity of 
other organisms throughout the food chain in that they are the initial primary producer of the food chain13–15. 
Some phytoplankton species, which incidentally are prominent noxious bloomers (such as: high pollution toler-
ant diatoms, dinoflagellates, and toxin producing cyanobacteria), could cause a deterioration of water quality and 
mortality of some fish species15–17. Phytoplankton are sensitive to changes in multiple environmental factors8,18,19. 
The interactions among turbulent mixing, underwater light availability, nutrient inputs, and grazing pressure 
can strongly effect the composition and diversity of phytoplankton, leading to strong and predictable succession 
patterns of phytoplankton in water bodies8,20–23. All these factors make phytoplankton suitable indicators of mon-
itoring ecological transformations and their magnitude14,24–26.

Banana cultivation is one of the world’s main agriculture activities and is considered to be one that has the 
greatest impact on terrestrial ecosystems27,28. This cultivation is different from other agriculture activities in that 
the plants’ foliage shades the ground inhibiting the establishment of erosion resistant ground cover29,30, resulting 
in lack of water retention and subsequently soil erosion, with the runoff carrying chemical fertilizer and pesticide 
to water bodies29, affecting rivers and lakes ecosystems. Lancang-Mekong River basin is one of the key banana 
growing areas in the world, and Lancang-Mekong River is one of the largest rivers (located in the southeastern 
region of the Eurasian continent) in the world31.

Effects of banana cultivation on ecosystem and biodiversity are a research priority worldwide27,32. Such as, 
Corbi et al.29 studied the effect of banana cultivation on aquatic insect species, and found (1) number of organ-
isms from streams in areas of banana cultivation was higher than that of control area (1105 and 706 individuals, 
respectively) from streams in preserved areas; and (2) the forested streams had higher richness and diversity of 
EPTC (Ephemeroptera, Plecoptera, Trichoptera and Coleoptera) than banana plantation streams. However, the 
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little information that is available concerning the effects of banana cultivation on phytoplankton contained little 
biomass and diversity information.

In this study, we examined the responses of physical-chemical properties of water, biomass and diversity of 
phytoplankton to banana cultivation in Lancang-Mekong River basin. Based on the work, the objectives of the 
study were: (1) to analyze the effects of banana cultivation on biomass and diversity of phytoplankton; and (2) to 
increase our knowledge about the relationship among the water’s physicochemical properties, the biomass and 
diversity of phytoplankton, and anthropogenic activities (banana cultivation).

Materials and Methods
study area. Lancang-Mekong River is one of the largest rivers in the world31,33. It runs through southwestern 
China, Myanmar, Thailand, Laos, Cambodia and Vietnam31,34. Ganlanba is a basin valley, which is located at 
the middle regions of Lancang-Mekong River and its total area is about 56 km2. Banana cultivation is the main 
agriculture activity of this region. The banana seedlings are planted in spring or autumn. After 10~15 months, 
banana fruit is ripe for the first time and then will ripe each year for the next 3~5 years. The fields are frequently 
flooded (especially in the dry season, water is delivered to the field through the collapsible flexible plastic tube 
and dewatering of fields water directly flow into branch waterway) and many times’ fertilization and applying 
pesticide each year in the banana field. The climatic regime is composed of two seasons: the rainy season (from 
May to October) dominated by the southwest monsoon and the dry season (from November to following April) 
dominated by the mainland west monsoon31,35. There is one branch on each side of the river (Fig. 1). The agricul-
tural effluent of this region flows into Lancang-Mekong River through the two branches.

sampling strategy. There were six sampling sites (R1, R2, R3, L1, L2 and L3) in this study (Fig. 1). “R” 
and “L” refers to right and left riverbank respectively, facing downstream. Sites R2 and L2 are estuary con-
fluences of the two branches with the Lancang-Mekong River, where regional agricultural effluent flows into 
Lancang-Mekong River. Sites R1 and L1 are located approx. 500 m upstream of the confluence and are the control 
sites. Sites R3 and L3 are located approx. 500 m downstream of the confluence. The samples of these two sites rep-
resented the downstream samples affected by banana cultivation. Samples were collected from the three sampling 
sites of right riverbank in March 2015 (dry season) and the six sampling sites in August 2015 (rainy season). The 
first letter of the samples name indicated the sample was collected on March (M) or August (A), such as MR1 and 
AR1. Individual water samples were collected with water depth at 0.5, 1.0 and 2.0 m at each site, using a 3 L water 
sampler, then stored in washed polyethylene bottles. Water samples from each of the three different depths were 
pooled into single composite samples for subsequent physical-chemical properties analysis. Additionally, 12 L of 
water from each of the three depths were collected and poured into a phytoplankton net (35 μm-mesh size). The 

Figure 1. The map of sample sites in this study. The map of the Mekong river basin (Left part of Fig. 1) was 
finished by Shannon1 (https://commons.wikimedia.org/w/index.php?curid=65845951). We removed the cities 
from the origin map and increased font sizes of scale. This image is under the CC BY-SA 4.0 license (https://
creativecommons.org/licenses/by-sa/4.0/).
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collected phytoplankton samples were immediately preserved with 1% Lugol’s solution in a labeled bottle on sites. 
Water samples and phytoplankton samples were carried into lab and sample analysis was initiated in 48 h.

Analytical procedures for physical-chemical properties of water. The vertical profiles of the 
physical-chemical properties of each sample site, including the pH, temperature, dissolved oxygen (DO) and total 
dissolved solids (TDS, total content of inorganic salts and organic compounds dissolved in water, or the residue 
left after evaporating (105~110 °C) the filtered water to dryness), were measured in situ to determine the values 
of the mixed layer using the 6600V2 multiparameter meter (Yellow Springs Instruments, Ohio, USA). The total 
phosphorus (TP) was examined by ammonium molybdate tetrahydrate spectrophotometry36. The total nitro-
gen (TN) was determined by ultraviolet spectrophotometry36. The permanganate index (CODMn) was measured 
according to acidity method36. Sediment concentration was measured by oven drying method.

phytoplankton identification and enumeration. Phytoplankton identification and enumeration 
was accomplished using a microscope (Olympus BX 51, Japan) at ×100 magnification according to Utermoeh 
method37. More than 100 fields of view were analyzed for each replicate, and the maximum counting error 
between two replicates was less than 20% upon the calculation of the standing stock of phytoplankton8. Cell 
volume of each species was estimated based on the average cell dimensions according to an appropriate volume 
formula38. The phytoplankton fresh biomass (μg L−1) was calculated according to cell volume (cm3 L−1) and water 
density (1.0 g cm−3)8. Calculation of biomass was performed at the species level.

statistical analyses. Phytoplankton community diversity was calculated by the Shannon-Weiner diversity 
index2. Correlation analysis was completed to determine the relationships between phytoplankton parameters 
and water parameters. It was performed using SPSS (version 11.5).

Canoco (version 4.5, Centre for Biometry, Netherlands) was used to examine the multivariate relationships 
between the phytoplankton community structure and the physical-chemical properties of water. The relative 
abundance of a species was calculated according to its number and the sum of numbers of all 44 species in each 
sample. It was used for the subsequent analysis. Detrended correspondence analysis (DCA) was performed to 
determine whether the data for the phytoplankton community structure followed a unimodal or linear response 
model. The maximum length of the DCA ordination axis was 4.948, which clearly indicated a unimodal species 
response. Accordingly, canonical correspondence analysis (CCA) with default settings was completed to ordi-
nate the phytoplankton community structure (The relative abundance) with the physical-chemical properties of 
water39. Ordination biplots with scaling of inter-species differences displayed phytoplankton community struc-
ture similarities, so that the distances between each centroid points for sample were easily understood2. In for-
ward selections, the Monte Carlo permutation test (499 unrestricted permutations) was performed to determine 
the parameters that significantly affected the phytoplankton community structure39.

Results
Effects of banana cultivation on physical-chemical properties of water. The physical-chemical 
properties of each water sample are shown in Fig. 2. The sediment concentration of all samples at estuaries of the 
branches (L2 and R2) was 1.7–5.0 times higher than those of all adjacent samples (L1 and L3, R1 and R3, respec-
tively) at the same sampling time. The sediment concentration of sample on August was 1.5–4.1 times higher than 
that of the same sampling site on March (such as, MR1 and AR1, MR2 and AR2). Similar TP, TN and temperature 
changes occurred among these samples, as did the sediment concentration. The TP, TN and temperature of all 
samples at estuaries of the branches was (2.9–23 times, 2.1–5.3 times and 0.12–0.44 times, respectively) higher 
than those of all adjacent samples at the same sampling time. The sediment concentration, TP and TN of sample 
on August were usually higher than those of March of the same sampling site. However, the pH, DO, TDS and 
CODMn between samples at estuaries of the branches and adjacent samples had no significant differences. Almost 
all the physical-chemical properties of water at upstream and downstream sites were approximations.

Effects of banana cultivation on phytoplankton abundance and fresh biomass. The total fresh 
biomass of phytoplankton of each sample is shown in Fig. 3. The total fresh biomass of phytoplankton of all 
samples at estuaries of the branches was lower (decreased by 26.4–99.9%) than that of all adjacent samples at 
one same sampling time. The total fresh biomass of phytoplankton of sample on August was lower (decreased by 
66.38–99.95%) than that of the same sampling site on March. The total fresh biomass of phytoplankton of sam-
ples between upstream site and downstream site were approximate. The abundance of the phytoplankton of each 
sample had the similar changes. The abundance and fresh biomass of Cyanophyta, Chlorophyta, Bacillariophyta, 
Cryptophyta, Euglenophyta, Pyrrophyta and Xanthophyta of each sample is shown in Fig. 4. Cryptophyta had the 
maximum fresh biomass in AR2, Bacillariophyta had the maximum fresh biomass in other samples.

The correlations between the total fresh biomass of phytoplankton and physical-chemical properties of water 
are shown on Table 1. The total fresh biomass of phytoplankton was strongly negatively correlated with the sedi-
ment concentration and TN. However, there was a significant positive correlation between the total fresh biomass 
of phytoplankton and the pH or DO. Besides, the temperature, TDS, TP and CODMn were not correlated with the 
total fresh biomass of phytoplankton.

Effects of banana cultivation on phytoplankton community structure. The Shannon-Weiner 
diversity index of phytoplankton of each sample is shown in Fig. 3. The Shannon-Weiner diversity indexes of all 
samples at estuaries of the branches were lower than that of all adjacent samples at one same sampling time, and 
decreased by 15.6–44.1%. The Shannon-Weiner diversity indexes of sample on August were lower than that of 
the same sampling site on March, and decreased by 5.9–23.7%. The correlations between Shannon-Weiner diver-
sity index and physical-chemical properties are shown on Table 1. There was a significant negative correlation 
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between the Shannon-Weiner diversity index and the sediment concentration, temperature, TP or TN. However, 
the pH, DO, TDS and CODMn were not correlated with Shannon-Weiner diversity index.

The CCA biplot of the phytoplankton community structure and the investigated physical-chemical properties 
of water are shown in Fig. 5. As shown in Fig. 5, the phytoplankton community structure of the samples at estuar-
ies of the branches (MR2, AL2 and AR2) had significant differences from those of all adjacent samples. The phy-
toplankton community structure of the samples of upstream of confluence was similar to that of downstream of 
confluence. Table 2 is showing that all of the physical-chemical properties could explain 82.9% of the variation in 
the community-environment relationship. The TP, temperature and sediment concentration exerted highly signif-
icant influences on the phytoplankton community structure. Each physical-chemical property of water explained 
a different aspect of the variation in the community-environment relationship. The community-environment 
relationship variation explained in by the physical-chemical properties of water decreased as follows: TP > tem-
perature > sediment concentration >COD > pH > TDS > TN > DO. All of the aforementioned results of corre-
lation analysis and CCA suggested that the TP, temperature, sediment concentration were the dominant influence 
factors of the phytoplankton community structure.

Discussion
Effects of banana cultivation on physical-chemical properties of water. Our results indicated that 
the banana cultivation caused the increases of the sediment concentration, TP and TN at estuaries of the branches 
of Lancang-Mekong River. This is because of the bare ground of banana fields, which caused by maintenance of 
the vegetal covering29,40. And rainfall and irrigation on this bare ground caused seriously water and soil erosion, 

Figure 2. The physical-chemical properties of each water sample. DO: dissolved oxygen. TDS: total dissolved 
solids. TP: total phosphorus. TN: total nitrogen. CODMn: permanganate index. The value of abscissa showed 
the location of sample site: 1 - upstream of confluence; 2 - confluence of branch; 3 - downstream of confluence. 
MR: sample from right sample site was collected on March. AR: sample from right sample site was collected on 
August. AL: sample from left sample site was collected on August.
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which carried lot of sediment, phosphorus and nitrogen into rivers. However, because flow of the trunk stream 
(about 1500~3000 m3/s) was much larger than that of branches (about 30~70 m3/s), the banana cultivation could 
not cause the significant changes of sediment concentration, TP and TN at downstream sites. We also found the 
sediment concentration, TP and TN of sample on August were usually higher than those of the same sampling 
site on March. It was because that more frequent and intense rainfall in the rainy season caused more seriously 
water and soil erosion. Besides, the temperature at estuaries of the branches was higher than those of all adjacent 
samples at one same sampling time maybe because the trunk stream had a greater depth than that of the branches 
which caused lower temperature at the bottom.

Figure 3. The phytoplankton total fresh biomass and Shannon-Weiner diversity index of each sample. The 
value of abscissa showed the location of sample site: 1 - upstream of confluence; 2 - confluence of branch; 3 - 
downstream of confluence. MR: sample from right sample site was collected on March. AR: sample from right 
sample site was collected on August. AL: sample from left sample site was collected on August.

Figure 4. Abundance (106 cell/L) and fresh biomass (10−3 mg/L) of each phylum of each sample. The value 
of abscissa showed the location of sample site: 1 - upstream of confluence; 2 - confluence of branch; 3 - 
downstream of confluence. MR: sample from right sample site was collected on March. AR: sample from right 
sample site was collected on August. AL: sample from left sample site was collected on August.
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Effects of banana cultivation on phytoplankton. The results of this study showed that the banana cul-
tivation caused the decreases of the total fresh biomass and diversity of phytoplankton at estuaries of the branches. 
The correlation analysis and CCA suggested that the TP, temperature, sediment concentration were the dominant 
influence factors of the phytoplankton community structure. And sediment concentration was significantly nega-
tively correlated with the total fresh biomass and the Shannon-Weiner diversity index of phytoplankton. The TP and 
temperature were significantly negatively correlated with the Shannon-Weiner diversity index of phytoplankton.

Other studies also supported that the total fresh biomass and diversity of phytoplankton were limited by 
higher sediment concentration7,15,41, which was caused by banana cultivation in this study. This was because that 
higher sediment concentration caused lower transparency, which could limit the light penetration. High light 

Total biomass
Shannon-Weiner 
Diversity Index

Sediment concentration −0.705* −0.685*

Temperature −0.554 ns −0.890***

pH 0.767* 0.490 ns

DO 0.901*** 0.537 ns

TDS −0.226 ns 0.181 ns

TP −0.500 ns −0.871**

TN −0.705* −0.735*

CODMn 0.180 ns −0.361 ns

Table 1. Pearson’s correlation coefficients between the parameters. Significance levels are indicated by 
*(p < 0.05), **(p < 0.01), ***(p < 0.001), while ns indicates no significant correlation (p > 0.05).

Figure 5. Canonical correspondence analysis for phytoplankton community structure and physical-chemical 
properties of water. Samples are indicated by open circles. Physical-chemical properties of water are represented 
by solid lines with filled arrows.

Parameters
% Variation 
explains P-value

TP 23.3 0.002

Temperature 20.9 0.012

Sediment concentration 20.9 0.048

CODMn 20.8 0.106

pH 19.0 0.108

TDS 17.0 0.202

TN 15.9 0.226

DO 15.3 0.282

All above together 82.9

Table 2. The results of Monte Carlo permutation test for the test of influence of the physical-chemical 
properties.
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could lead to more photosynthesis and increase of phytoplankton biomass42–44. But phytoplankton in the turbid 
water suffered from severe light limitation7. Other studies also found that the dominant species competitiveness 
with light limiting corresponded to lower diversity15,45,46. Chen et al.47 also reported that the decrease of turbidity 
and enhancing of light penetration could promote the growth of phytoplankton.

In this study, the TP and temperature were significantly negatively correlated with diversity of phytoplankton. 
It was inconsistent with the following viewpoints: (1) higher nutrient (nitrogen and phosphorus) and resource 
availability can stimulated higher activity of phytoplankton, and resulted in higher abundance and diversity of 
phytoplankton7,15,42,48; and (2) higher temperature promoted growth of phytoplankton, which would result in 
higher abundance and diversity7,49. This different was a result of that the effects of phosphorus and tempera-
ture on phytoplankton dynamics could modulate by other factors (such as light and sediment concentration)42. 
Other study also found that higher sediment concentration could limit the light penetration and phytoplankton 
production despite the high nutrient content15,50. Therefore, the sediment concentration may be the dominant 
influence factor of phytoplankton biomass and community structure in this study. The banana cultivation caused 
the increases of the sediment concentration at estuaries of the branches and no obvious changes of that at down-
stream sites, and then caused the changes of phytoplankton further.

Considering the crucial function of phytoplankton to global ecosystem, changes of phytoplankton at estuar-
ies of the branches (which was caused by banana cultivation) mean a series of ecological changes in the estuar-
ies and channels of the branches. And further study is required to examine these changes. Besides, no significant 
change was found in the phytoplankton at downstream sites. This is because that the flow of the trunk stream of 
Lancang-Mekong River (about 1500~3000 m3/s) is much higher than those of the branches (about 30~70 m3/s), and 
the huge flow of the trunk stream diluted the changes of water quality and phytoplankton (caused by banana culti-
vation). However, the larger scale of banana cultivation may cause some changes of phytoplankton at downstream 
sites of the trunk stream of Lancang-Mekong River, which also need further study. Besides, the different responses 
of phytoplankton in euphotic zone and below euphotic zone to banana cultivation also need further study.

Conclusions
The following conclusions were drawn on this paper: the banana cultivation caused the increases of the sed-
iment concentration, TP and TN at the estuaries of branches. And these increases caused the decrease of the 
phytoplankton diversity, abundance and fresh biomass, and the changes of phytoplankton community structure. 
Sediment concentration was considered as the dominant influence factor of phytoplankton biomass and commu-
nity structure. Banana cultivation did not result in material differences in physical-chemical properties of water, 
phytoplankton biomass or community structure at downstream sites due to disproportional volumetric flows and 
resultant dilution of the tributary component.
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