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Seasonally varying effects 
of environmental factors on 
phytoplankton abundance in the 
regulated rivers
Jun Song Kim1,3, Il Won seo2 & Donghae Baek2

This study investigates a seasonally varying response of phytoplankton biomass to environmental 
factors in rivers. Artificial neural network (ANN) models incorporated with a clustering technique, the 
clustered ANN models, were employed to analyze the relationship between chlorophyll a (Chl-a) and 
the explanatory variables in the regulated Nakdong River, South Korea. The results show that weir 
discharge (Q) and total phosphorus (TP) were the most influential factors on temporal dynamics of Chl-
a. The relative importance of both variables increased up to higher than 30% for low water temperature 
seasons with dominance of diatoms. While, during summer when cyanobacteria predominated, 
the significance of Q increased up to 45%, while that of TP declined to about 10%. These tendencies 
highlight that the effects of the river environmental factors on phytoplankton abundance was 
temporally inhomogeneous. In harmful algal bloom mitigation scenarios, the clustered ANN models 
reveals that the optimal weir discharge was 400 m3/s which was 67% of the value derived from the non-
clustered ANN models. At the immediate downstream of confluence of the Kumho River, the optimal 
weir discharge should increase up to about 1.5 times because of the increase in the tributary pollutant 
loads attributed to electrical conductivity (EC).

Riverine ecosystems are significantly impacted by consequences of human activities such as effluents introduced 
from wastewater treatment plants and flow regulation associated with hydraulic structures even if rivers serve as 
essential sources of drinking water and provide habitats for freshwater fishes and invertebrates1,2. Phytoplankton 
have commonly been used as ecological indicators to assess these human effects on freshwater environments 
because phytoplankton blooms are usually results of excessive nutrient loading and extended water residence 
time induced by the artificial flow control3,4.

During the summer season, surface water quality is prone to be contaminated by cyanobacterial blooms that 
degrade water clarity, and even produce a variety of taste-and-odor compounds and toxins5. From early winter 
to late spring, high accumulation of diatoms adversely affects water intake activities by causing filter clogging6. 
For monitoring phytoplankton abundance, chlorophyll a (Chl-a) has widely been accepted as a measure of phy-
toplankton population in rivers and lakes7. Therefore, it is indispensable to understand a relationship between 
Chl-a and river environmental factors in order to predict its seasonal fluctuation and prepare countermeasures 
against phytoplankton blooms.

The Chl-a dynamics is conventionally simulated using numerical models based on an advection-dispersion- 
reaction equation. These kinds of physics-based models usually require not only extensive data related to boundary 
conditions, bathymetry and parameter estimation but also specialized knowledge of physical processes account-
ing for fate and transport of various water quality constituents8. As an alternative to the numerical approaches, 
the numerous studies have increasingly adopted data-driven techniques leveraged on artificial neural networks 
(ANNs) for modeling water quality9–11. Olden (2000) reported that Chl-a abundance was directly associated with 
nutrient and zooplankton variables through the ANN application to the prediction of phytoplankton succession12. 
Jeong et al. (2001, 2006) and Kim et al. (2014) evaluated the variable contribution of the ANN models to the 
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predicted Chl-a, and their results indicated that Chl-a was most sensitive to pH and chemical oxygen demand 
(COD) rather than growth limiting factors generally known as water temperature, phosphorus and nitrogen13–15. 
Wu et al.16 also documented that total phosphorus and dissolved inorganic nitrogen considerably influenced the 
daily dynamics of Chl-a by performing sensitivity analysis with explanatory variables of the ANN models17.

The previous studies hypothesized that the relationship between Chl-a and the explanatory variables is sea-
sonally homogeneous. In riverine and lacustrine systems, high water temperature favors cyanobacterial growth, 
whereas diatoms usually proliferate at low water temperature14,18. Thus, the transition of dominant phytoplank-
ton species occurs with change in water temperature. Here, each of these phytoplankton groups exhibits its own 
growth characteristic as different species have different values of growth rate, half-saturation constant of nutri-
ents such as phosphorus, nitrogen and silica, and optimal water temperature and light intensity19–22. Hence, an 
invariant stimulus can result in heterogeneous responses of Chl-a due to the inherent growth features inherent of 
phytoplankton species predominated in the water body, which changes with water temperature.

The conventional ANN models usually adopted water quality constituents that are byproducts of phyto-
plankton bloom like dissolved oxygen (DO), COD, turbidity and pH, as estimators of Chl-a23. In water bodies, 
phytoplankton produce and consume DO through photosynthesis and respiration, respectively. Simultaneously, 
phytoplankton detritus increases COD and herein resulted in DO depletion through bacterial decomposition24. 
In addition, the rapid accumulation in phytoplankton biomass degrades water transparency with increasing tur-
bidity and cause increase in pH by consuming hydrogen during the photosynthesis25,26. However, the ANN mod-
eling with the above water quality variables not physically affecting the growth dynamics of phytoplankton could 
be prone to mask or distort the cause and effect relationship between Chl-a and the growth limiting factors such 
as water temperature, residence time and nutrient concentrations.

This study is aimed at understanding seasonally varying response of Chl-a to the river environmental factors 
that directly contribute to phytoplankton growth mechanism in riverine systems. In this work, ANN models 
incorporated with a cluster technique (clustered ANN models) were used to consider the effects of seasonal tran-
sition of phytoplankton communities on relationships between Chl-a and input variables by partitioning field 
data according to different ranges of water temperature. The model performance was evaluated by comparison 
with that of the conventional ANN model without clustering. Using the clustered ANN models, this study esti-
mated the relative importance of the environmental variables on Chl-a prediction and furthermore performed 
the scenario-based simulations to propose an optimal flow condition for suppressing the phytoplankton bloom 
in regulated rivers, where flow discharge is artificially controlled by hydraulic structures.

Materials and Methods
Study area. The Nakdong River is one of the major rivers in South Korea, which is about 525 km long and 
includes large tributaries including the Kumho River. This large river is served as important water supply sources 
for about 10 million residents in the south eastern area, passing through the major cities of Busan and Daegu. The 
drainage area is 23,817 km2 with an average channel width and water depth of about 250 m and 7.4 m, respectively. 
The 5-year average precipitation of the Nakdong River watershed was 958 mm during 2013–2017, and 18.4% and 
1.9% of the total watershed area are used as agricultural and industrial complex areas, respectively. The non-point 
source with rainfall-runoff events contributes to about 60% of total phosphorus loading in the study area27.

Corresponding to the latest climate change, multi-purpose weirs were constructed across the Nakdong River 
in 2012 to achieve the flood protection and drought combat, as shown in Fig. 1. After the weir construction, this 
regulated river has suffered the aberrant proliferation of phytoplankton with the change in seasonal patterns 
of river flow28. In the regulated Nakdong River, toxic cyanobacteria such as Microcystis, Aphanizomenon and 
Anabaena have been abundant, and herein resulted in the significant level of cyanobacterial cell counts around 
10,000–20,000 cells/ml during summer owing to the water temperature higher than 25 °C and the extended water 
residence time arisen from the artificial flow control by the weirs29. From winter to early spring, diatoms with the 
prevalence of Stephanodiscus have usually predominated in the study area30.

Field data. This study selected water temperature (WT), total phosphorus (TP) and total nitrogen (TN) as 
predictors of Chl-a in order to only take into account water quality factors physically associated with the phy-
toplankton growth dynamics. The flow velocity representing water residence time can moreover be deemed to 
the significant factor for predicting the phytoplankton abundance. The extended water residence time attributed 
to flow velocity facilitates the phytoplankton accumulation as well as stabilizes the water column to result in 
the thermal stratification, which favors cyanobacterial bloom during summer, in the regulated rivers31,32. In the 
Nakdong River, the weirs has not only fixed water surface elevation to the design level but also controlled flow rate 
using movable weir gates. Herein, flow velocity of the river can be estimated by the discharge from the weirs since 
the water surface elevation and channel width remain constant. For this reason, this study additionally considered 
weir discharge (Q) as the hydraulic predictor of Chl-a.

In the midstream of the Nakdong River, the large urban-industrial complexes are located along the tributaries, 
where wastewater effluents containing excessive loadings of phosphorus and nitrogen are continuously spilled 
into the Nakdong River. Due to this tributary-driven contamination, the water quality after the confluence of 
the tributaries has severely deteriorated33. Especially, phytoplankton blooms have frequently propagated from 
the merging point of the Kumho River which is the largest tributary located in the middle reach of the Nakdong 
River34. The 5-year average electrical conductivity (EC) and Chl-a of the Kumho River are 710 μS/cm (678–780 
μS/cm) and 48.8 mg/m3 (35.6–61 mg/m3), respectively for 2013–2017. These levels are higher than twice the val-
ues observed at the monitoring stations, particularly Dasan station which is located before the confluence of this 
tributary, as shown in Table 1. Here, EC can be the appropriate indicator to explain the tributary effects on the 
seasonal variation of Chl-a in the study area because the tributary influx, which is the external source of Chl-a, 
usually exhibits high concentration of EC induced by the industrial facilities35. Therefore, WT, EC, TN, TP and Q 
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were determined as the input variables of the ANN models to derive the relationship between the river environ-
mental factors and Chl-a using the field-based monitoring data.

The ANN models were constructed at several water quality monitoring stations such as Shinam station, Dasan 
station, and Sangdong station located at upstream, midstream and downstream of the Nakdong River, respec-
tively, as shown in Fig. 1. The 5-year (2013–2017) daily data for WT, EC, TN, TP and Chl-a were available at these 
monitoring stations, and the corresponded data for Q were retrieved from the streamflow gauge stations at the 
multi-purpose weirs located upstream of each monitoring station. Goryung station was additionally selected as 
the prediction site, which is located downstream of the confluence of the Kumho River, to analyze the contribu-
tion of the tributary effluents with the high concentration of EC introduced from the tributary to the phytoplank-
ton biomass. The input and output data of the ANN models are presented in Table 1. From this table, one can 
notice the abrupt rise in average values of EC, TN, TP and Chl-a at Goryung station due to the tributary effect.

Model description. The architecture of ANN models was composed of the input layer, the single hidden lay-
ers, and output layer. In these networks, the input variables in the input layer were multiplied by the weight factors 
to link the connections between the input layer and the hidden layer, and then the bias was added as:

Figure 1. Location of target water quality monitoring stations in the Nakdong River.

Sites WT (°C) EC (μS/cm) TN (mg/L) TP (mg/L) Q (m3/s) Chl-a (mg/m3)

Shinam
(n = 1,474)

15.8 ± 8.9
(0.7–31.7)

216 ± 43
(103–378)

2.42 ± 0.65
(0.78–9.21)

0.021 ± 0.018
(0.002–0.136)

75 ± 109
(2–1,839)

18.3 ± 11.9
(0.4–92.9)

Dasan
(n = 1,023)

18.9 ± 8.5
(2.4–33.5)

291 ± 72
(124–561)

2.63 ± 0.64
(0.88–4.26)

0.029 ± 0.015
(0.007–0.103)

117 ± 221
(2–3,153)

19.2 ± 13.2
(0.1–125.2)

Goryung
(n = 1,031)

17.6 ± 8.6
(2.9–33.6)

416 ± 121
(144–802)

3.85 ± 0.83
(1.59–6.20)

0.035 ± 0.023
(0.006–0.142)

120 ± 208
(3–2,154)

26.7 ± 21.2
(1.2 ± 152.2)

Sangdong
(n = 1,475)

16.9 ± 8.7
(1.7–33.0)

288 ± 78
(124–503)

2.47 ± 0.64
(0.76–6.07)

0.024 ± 0.016
(0.003–0.102)

266 ± 348
(14–3,734)

25.7 ± 16.9
(1.0 ± 109.4)

Table 1. Daily water quality and discharge data collected at monitoring stations in the Nakdong River for 5 
years (2013–2017).
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where i indicates the node in the input layer; xi is the input variable at i; j indicates the node in the hidden layer; 
Wij is the weight factors at j; bj is the bias at j; and N is the number of nodes in the input layer. The values of input 
variable such as WT, EC, TN, TP, and Q had different ranges so that they were scaled to the uniform ranges using 
the min-max normalization technique as following:
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where Xi is the normalized value of the input variables. Wij is the key parameter of the ANN models, and these 
values were optimized during the training phase by minimizing the error between prediction and target. In this 
process, the initial values of Wij were selected by Xavier initialization to initiate the training of the ANN models, 
in which bj was initially set to be zero36. Using this technique, the weight factors were randomly selected from the 
uniform distribution with the interval of ± N1/ .

The values of Hj in the hidden layer were then transferred to the output layer passing through the activa-
tion function. With this treatment, the ANN models can generate the nonlinear relationship between the input 
and output values. This study adopted the tangent hyperbolic function as the activation function, which can be 
described as:

δ =( )H Htanh( ) (3)j j

The values processed with the activation function in the hidden layer were multiplied by the weight factors that 
are located between the hidden layer and the output layer. The output layer included the single node which indi-
cates Chl-a predicted by the ANN models and can be obtained as:
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where Ĉ is the predicted Chl-a; k denotes the node in the output layer; Wjk is the weight factor at k; bk is the bias at 
k; and M is the number of the nodes in the hidden layer. The ANN models were optimized using the cost function 
which represents the sum of squared errors calculated as:
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where n is the number of data; and Ĉi and Ci are the ith predicted and observed Chl-a, respectively. To minimize 
the cost function, all trainable parameters including the weight factors and the bias in the ANN models were 
updated at each epoch using the adaptive gradient descent algorithm37. In this process, the ANN models were 
trained using 70% of the total datasets to estimate the trainable parameters. The remaining 30% datasets were 
used for testing the trained ANN models. Using the optimized parameters, the contribution of the river environ-
mental factors to the Chl-a prediction can be calculated as38:
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where RIi is the relative importance of the ith input variable. This method determines the relative importance of 
each input variable in the ANN models by partitioning the neural network connection weights39.

Data clustering. As aforementioned, the response of Chl-a to the explanatory variables changes according 
to the phytoplankton species dominant in rivers. For this reason, the ANN models need to be structured sepa-
rately for capturing the temporally varying relationship between the river environmental factors and Chl-a. In the 
Nakdong River, the phytoplankton communities such as cyanobacteria and diatoms shifts seasonally so that their 
succession can be explained by the change of the water temperature40. However, it is not usually feasible to iden-
tify the thresholds of the water temperature for differentiating cyanobacteria and diatoms from the time-series 
data of Chl-a. Hence, the total datasets were partitioned into several clusters based on the water temperature by 
adopting K-means clustering in order to construct the multiple ANN models corresponding to the number of the 
clusters. This clustering technique is the algorithm to split the datasets into K clusters, in which the partitioned 
datasets belong to each cluster with the nearest mean. The partition of the datasets was processed by minimizing 
the sum of squares of distances between data and the corresponding cluster centroid as following41:
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where K indicates the number of the clusters; l is the cluster; μ−xi l  is the Euclidean distance between xi and μl; 
xm is the ith observation data; and μl is the centroid of lth cluster. Table 2 summarizes the statistics of the input and 
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output data before and after clustering the datasets at Goryung station. In this table for K = 3, Cluster 31, Cluster 
32 and Cluster 33 represent the datasets belonging to low, intermediate and high water temperature, respectively. 
The datasets collected at other monitoring stations were also clustered following the same manner as demon-
strated in Table 2.

Model performance criteria. To evaluate the performance of the trained ANN models by comparing pre-
dictions with observations, the statistical performance measures were used as follows:
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R2 ranges from 0 to 1 and higher values indicate better model performance. RSR is ratio of RMSE and standard 
deviation of the observed data. APBIAS measures the average tendency of the prediction results to be more 
deviated than the observation data. The optimal value of RSR and PBIAS is 0, which indicates the perfect model 
prediction.

Variables

Non-clustered 
ANN model 2-cluster ANN model 3-cluster ANN model

K = 1 K = 2 K = 3

Cluster 11
(n = 1,031)

Cluster 21
(n = 465)

Cluster 22
(n = 566)

Cluster 31
(n = 343)

Cluster 32
(n = 274)

Cluster 33
(n = 414)

WT
(°C)

17.6 ± 8.6
(2.9–33.6)

9.1 ± 3.9
(2.9–16.5)

24.6 ± 3.9
(16.6–33.6)

7.2 ± 2.4
(2.9–12.2)

17.2 ± 2.7
(12.3–21.8)

26.5 ± 2.5
(21.9–33.6)

EC
(μS/cm)

416 ± 121
(144–802)

483 ± 121
(176–802)

360 ± 89
(144–610)

503 ± 112
(270–802)

392 ± 104
(176–726)

359 ± 95
(144–610)

TN
(mg/L)

3.85 ± 0.83
(1.59–6.20)

4.50 ± 0.61
(3.20–6.20)

3.32 ± 0.56
(1.59–4.68)

4.64 ± 0.55
(3.32–6.20)

3.76 ± 0.59
(2.72–5.37)

3.26 ± 0.59
(1.59–4.46)

TP
(mg/L)

0.035 ± 0.023
(0.006–0.142)

0.024 ± 0.013
(0.006–0.090)

0.044 ± 0.026
(0.008–0.142)

0.023 ± 0.011
(0.007–0.068)

0.029 ± 0.017
(0.006–0.112)

0.048 ± 0.027
(0.008–0.142)

Q
(m3/s)

120 ± 208
(3–2,154)

66 ± 55
(3–459)

164 ± 269
(3–2,154) 57 ± 49(3–459) 105 ± 120

(3–1,196)
181 ± 299
(3–2,154)

Chl-a
(mg/m3)

26.7 ± 21.2
(1.2 ± 152.2)

29.1 ± 22.3
(5.3–138.2)

24.6 ± 19.9
(1.2–152.2)

28.6 ± 20.9
(5.3–136.6)

24.1 ± 20.0
(1.2–138.2)

26.7 ± 21.9
(1.5–152.2)

Table 2. Summary of clustered inputs (WT, EC, TN, TP, Q) and output (Chl-a) data collected at Goryung 
station.

Models

Training Testing

R2 RSR
APBAIS 
(%) R2 RSR

APBAIS 
(%)

SH-1 0.507 0.702 34.2 0.345 0.823 42.1

SH-2 0.639 0.601 28.7 0.423 0.771 38.7

SH-3 0.698 0.551 26.6 0.481 0.735 37.1

DA-1 0.551 0.673 32.2 0.428 0.775 37.2

DA-2 0.726 0.523 24.8 0.570 0.663 32.1

DA-3 0.754 0.497 23.8 0.618 0.623 30.6

GO-1 0.624 0.613 36.4 0.465 0.737 44.4

GO-2 0.772 0.478 28.2 0.565 0.661 35.9

GO-3 0.806 0.441 25.9 0.634 0.609 34.1

SA-1 0.550 0.671 32.7 0.367 0.805 42.1

SA-2 0.703 0.545 26.3 0.454 0.752 37.8

SA-3 0.698 0.549 26.2 0.545 0.682 34.5

Table 3. Prediction accuracy of ANN models with different numbers of clusters.
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Results and Discussion
ANN models without clustering. Before implementing the ANN modeling incorporated with K-means 
clustering, the ANN models without clusters, the non-clustered ANN models (K = 1) were first constructed at 
Shinam station, Dasan station, Goryung station, and Sangdong station. This study employed k-fold cross vali-
dation to determine the optimal number of the hidden neuron for the ANN models, and the optimal number 
was 15 for all prediction sites. Table 3 summarizes the training and testing results at each monitoring station, 
in which SH-1, DA-1, GO-1, and SA-1 denote the non-clustered models for Shinam station, Dasan station, 
Goryung station and Sangdong station, respectively. According to this table, the trained ANN models showed R2 
of 0.507–0.624 at the prediction sites. As a result of testing the trained ANN models, the prediction accuracy was 
R2 of 0.345, 0.428, 0.465, and 0.367 of at Shinam station, Dasan station, Goryung station and Sangdong station, 

Figure 2. Testing results of Chl-a prediction with trained non-clustered, 2-cluster and 3-cluster ANN models 
(the solid line and dotted line indicate a 1:1 linear line and a fitting line to predictions, respectively).
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respectively. Figure 2 is evident that the predicted values of Chl-a tended to be relatively underestimated com-
pared to the observations at all prediction stations.

ANN models with clustering. The clustered ANN models were constructed by partitioning the input and 
output data into 2 and 3 cluster groups (K = 2 and 3) according to the ranges of the water temperature using 
K-means clustering. The optimal number of the hidden neuron was 15 for both ANN models with 2 and 3 clus-
ters, referred to the 2-cluster ANN models and 3-cluster ANN models, respectively at the monitoring stations. 
Figure 2 indicates that the 2-cluster ANN models (SH-2, DA-2, GO-2 and SA-2) showed the enhanced prediction 
accuracy by comparison with that of the non-clustered ANN models. The underestimated predictions of Chl-a, 
caused by the non-clustered ANN models, was diminished with the 2-cluster ANN models. The prediction accu-
racy was even more improved when using the 3-cluster ANN models (SH-3, DA-3, GO-3 and SA-3) that distinc-
tively minimized the deviations from the perfect linear line, as shown in Fig. 2 as the 3-cluster models partitioned 
the datasets into three different groups indicating the diatom season (Cluster 31), transition season (Cluster 32) 
and cyanobacteria season (Cluster 33). The training results of the 3-cluster ANN models showed R2 of 0.690–
0.806, and the trained ANN models resulted in R2 of 0.485, 0.618, 0.634 and 0.545 at Shinam station, Dasan 
station, Goryung station and Sangdong station, respectively, as shown in Table 3. Moreover, RSR and APBIAS 
decreased by about 0.10–0.15 and 6–10%, respectively, compared to those resulted from the non-clustered ANN 
models.

As a result of the 3-cluster ANN modeling, the prediction accuracy for Chl-a in Cluster 32 and Cluster 33 was 
generally lower than that in Cluster 31 at all monitoring stations, as shown in Fig. 3. Ha et al. (2003) and Kim 
et al. (2018a) reported that centric diatoms, Stephanodiscus usually occupy about 85% of total phytoplankton 
population in the Nakdong River from late fall to spring (about 5–15 °C)18,30. Thus, the ANN models adequately 
explained the seasonal behavior of Chl-a in the low water temperature below about 15 °C as the concentration 
of Chl-a in Cluster 31 was governed by the population of the single diatom assemblage. Whereas, in the warm 
seasons, the multiple communities of cyanobacteria such as Microcystis, Anabaena and Aphanizomenon consti-
tute the biomass of total phytoplankton in the study area42. The complex dynamics of the cyanobacteria therefore 
hampered the accurate prediction for Chl-a belonging to Cluster 32 and Cluster 33.

Relative importance of explanatory variables. Figure 4 shows the relative importance of the explan-
atory variables on Chl-a prediction, which was calculated using Eq. (6), at the target stations using both 
non-clustered and clustered ANN models. According to Fig. 4(a,d,g,j), at all prediction sites, the non-clustered 
ANN models revealed that Q was the most dominant factor in predicting the seasonal variation of Chl-a as this 
hydraulic variable contributed 32.5–46.7% to the prediction. On the other hand, less than 20% was contributed 
to the prediction by each of other input variables such as WT, EC, TN, and TP. Since the multi-purpose weirs 
controlled the river discharge, Q accounted for the water residence time which affects the intensity and timing of 
the phytoplankton bloom, and thereby substantially influenced the seasonal dynamics of Chl-a.

Similar to the results of the non-clustered ANN modeling, with the 2-cluster ANN models, Q was the most 
influential input variable on the daily fluctuation of Chl-a. Here, the influence of Q was stronger in Cluster 22 than 
in Cluster 21 while its relative importance increased up to 52.7%, as depicted in Fig. 4(b,e,h,k). Among the nutri-
ent variables, TP exhibited the high values of the relative importance up to 32.2% when predicting Chl-a belong-
ing to Cluster 21. However, for the prediction of Chl-a in Cluster 22, the relative importance of TP drastically 
decreased to about 10% which was occasionally lower than that of TN. These results indicated that TP did not 

Figure 3. Prediction accuracy of 3-cluster ANN models in predicting Chl-a belonging to different clusters.
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always act as the limiting nutrient for the phytoplankton growth despite it has generally been known that the phy-
toplankton growth in the freshwater systems was limited by TP concentration43,44. This seasonal variation in the 
relative importance of the river environmental factors was not captured with the conventional ANN approaches 
like the non-clustered ANN models that assume the temporal homogeneity in the input-output relationship.

The results with the 3-cluster ANN models revealed that the significance of Q was amplified with increase in 
water temperature as the reach-averaged relative importance of Q was 26.0, 38.4 and 46.2% for Cluster 31, Cluster 
32 and Cluster 33, respectively. In the meanwhile, the significance of TP declined as water temperature increased 
as the relative importance of TP ranged 18.0–29.3%, 12.9–19.9% and 7.3–13.4% for Cluster 31, Cluster 32 and 
Cluster 33, respectively, as shown in Fig. 4(c,f,i,l). In the Nakdong River, Chl-a in Cluster 31 represents the diatom 
concentration while that in Cluster 33 usually constitutes the cyanobacterial biomass. Thus, from these results, 
one can notice that TP played a role as the limiting factor for the growth of not cyanobacteria but diatoms, while 
the seasonal variation of cyanobacteria was highly affected by the retention time rather than the nutrient concen-
tration. The previous studies reported that the forming of cyanobacteria was strongly impacted by the artificial 
mixing stimulated by the increase in Q as the enhanced vertical mixing destructs the thermal stratification as well 
as disturbs the buoyancy mechanism to alleviate the intensity of the cyanobacterial bloom4,45,46. Hence, the results 
of the clustered ANN modeling elucidated that the relationship between Chl-a and the river environmental fac-
tors was temporally heterogeneous and dependent on the seasonal succession of the phytoplankton community.

The results also showed that the significance of the river environmental factors changed according to the 
location of the monitoring stations because the relationship between the target water quality and the explanatory 
variables can vary spatially due to the biogeochemical characteristics inherent to the specific locations35. As afore-
mentioned, the water quality variables including Chl-a observed at Goryung station was strongly influenced by 
the effluents introduced from the Kumho River, which constitute the high concentration of EC. Figure 4(i) repre-
sents that the seasonal variation of Chl-a at this monitoring station was considerably explained by EC which con-
tributed 23.6–30.8% to the prediction with the 3-cluster ANN models as the water quality of this hypereutrophic 
Kumho River acted as the external sources of Chl-a. Whereas, the relative importance of EC was almost less than 
20% at other monitoring stations. The tributary inflow therefore needs to be regarded as the explanatory variable 
for the Chl-a prediction in the rivers including the confluence zone.

Figure 4. Relative importance of explanatory variables on predicted Chl-a belonging to different ranges of 
water temperature constituting each cluster in ANN models.
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Impact assessment of weir discharge on cyanobacterial bloom. To propose the countermeasures 
against toxic cyanobacterial bloom prevailing in summer, also known as harmful algal bloom (HAB) which 
severely impacts the ecosystem functioning in the Nakdong River, this study performed the scenario-based sim-
ulation using the 3- cluster ANN models. The mitigation approaches primarily focused on the effects of the 
weir discharge control on the reduction of HAB as Q was the dominant factor over other input variables in the 
prediction of Chl-a belonging to high water temperature (Cluster 33) at all monitoring stations. For the scenario 
generation, Q increased from 20 to 600 m3/s with the increment of 20 m3/s, and the remaining input variables 
were fixed to the average values of the datasets corresponding to Cluster 33 of each monitoring station.

As a result of the scenario-based simulation, with the non-clustered ANN models, the concentrations of Chl-a 
diminished to 50% of the maximum values at all monitoring stations when Q increased up to 600 m3/s, and no 
distinct change in Chl-a was simulated in the further increase in Q, as shown in Fig. 5(a). On the other hand, 
the 3-cluster ANN models demonstrated that the same level of the Chl-a reduction was obtained with Q of 400 
m3/s which was only 67% of the amount estimated by the non-clustered ANN models, as illustrated in Fig. 5(b). 
Consequently, the non-clustered ANN tended to overestimate the optimal level of Q for the HAB control, which 
could mislead the flow management in the Nakdong River.

The seasonal fluctuation of Chl-a at the specific site like Goryung station was very sensitive to the change in 
EC, as demonstrated in Fig. 4(i). The additional scenario-based simulation was thus conducted to investigate the 
effect of EC on determining the optimal value of Q for the HAB reduction. The scenarios were prepared as fol-
lows; Q was set to 250–600 m3/s with the increment of 50 m3/s, and EC ranged 140–500 μS/cm with the increment 
of 20 μS/cm. Other explanatory variables were constant to the average values of the datasets belonging to Cluster 
33 at all target sites, as shown in Table 3.

The simulation results showed that, in the case of Goryung station, the additional amount of Q was required 
to control Chl-a with the increase in EC. Figure 6(a) indicates the abrupt rise in Chl-a in the region of EC ranging 
360–600 μS/cm, which corresponds to 48% of the total EC data at the target site. For example, Chl-a of 40 mg/
m3 was simulated when EC and Q were set to 360 μS/cm which is the average value of Cluster 33 and 400 m3/s 
derived from Fig. 5(b), respectively. However, if EC increased to 460 μS/cm, the corresponded amount of Q was 
560 m3/s to retain the same value for Chl-a (40 mg/m3) as obtained in the former case. In contrast, in the case 
of Sangdong station with Q of 400 m3/s, Chl-a did not change significantly and remained relatively constant to 
around 15–25 m3/s in the range of EC less than 300 μS/cm, which corresponds to 85% of the total EC data at this 
monitoring station, as shown in Fig. 6(b). Hence, in the river reaches adjacent to the confluence of the contam-
inated tributaries, the water quality variable accounting for the tributary effluents should be considered as the 
crucial factor in predicting the phytoplankton abundance and furthermore assessing the optimal level of Q for the 
HAB mitigation during the summer season.

Figure 5. Response of Chl-a to increase in Q, estimated by non-clustered ANN models and 3-cluster ANN 
models.
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Conclusions
This study applied the clustering technique to the ANN models for predicting the seasonal variation of Chl-a by 
capturing the relationship between the river environmental factors and Chl-a at the water quality monitoring 
stations located in the Nakdong River, of which the discharge was regulated by a number of the weirs. The results 
demonstrated that the clustered ANN models more accurately reproduced the temporal distribution of Chl-a. 
With the 3-cluster ANN models, R2 increased to 0.485, 0.618, 0.634 and 0.545 from 0.345, 0.428, 0.465 and 0.367 
at Shinam station, Dasan station, Goryung station and Sangdong station, respectively for 5 years (2013–2017), 
compared to the non-clustered ANN models.

Using the clustered ANN models, this study assessed the relative importance of the river environmental var-
iables on the seasonal dynamics of Chl-a. The results showed that Q contributed more than 45% to the predicted 
Chl-a because the water residence time played a vital role in governing the phytoplankton growth mechanism in 
the flowing water body. In addition, the influence of Q tended to amplify with the increase in the water temper-
ature because the artificial mixing induced by the enhanced Q strongly impacted the timing and magnitude of 
cyanobacterial bloom occurring in summer. Whereas, the relative importance of TP declined to less than 10% 
as water temperature increased even if TP still worked as the key limiting factors for Chl-a belonging to the low 
water temperature, which represented the diatom abundance, as the relative importance of TP increased up to 
about 30%. Therefore, it can be concluded that the relationship between Chl-a and the river environmental factors 
is temporally heterogeneous in the study reach.

Figure 6. Response of Chl-a to increase in EC with different conditions of Q at Goryung station and Sangdong 
station, estimated by 3-cluster ANN models (a dotted line indicates the optimal level of Q derived from 
Figure 5).
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Furthermore, this study proposed the countermeasures against HAB associated with the cyanobacterial 
bloom, taking into account the effect of the flow control on the HAB reduction with the clustered ANN models. 
The results of the 3-cluster ANN models illustrated that Q of 400 m3/s was the optimal level for the HAB miti-
gation. However, at Goryung station, it was found that the mitigation discharge should increase up to 1.5 times 
the original level of Q owing to the increase in EC resulted from the excessive effluents from the Kumho River. 
Therefore, it was important not only to manage the weir discharge but also to reduce the tributary-induced pol-
lutant sources of Chl-a in order to suppress the phytoplankton blooms in the regulated Nakdong River.
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