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Discovery and characterization of 
functional modules associated with 
body weight in broilers
eirini tarsani1, Andreas Kranis  2,3, Gerasimos Maniatis2, santiago Avendano2, 
Ariadne L. Hager-theodorides1 & Antonios Kominakis1

Aim of the present study was to investigate whether body weight (BW) in broilers is associated with 
functional modular genes. To this end, first a GWAS for BW was conducted using 6,598 broilers and the 
high density sNp array. the next step was to search for positional candidate genes and QtLs within 
strong LD genomic regions around the significant SNPs. Using all positional candidate genes, a network 
was then constructed and community structure analysis was performed. Finally, functional enrichment 
analysis was applied to infer the functional relevance of modular genes. A total number of 645 positional 
candidate genes were identified in strong LD genomic regions around 11 genome-wide significant 
markers. 428 of the positional candidate genes were located within growth related QTLs. Community 
structure analysis detected 5 modules while functional enrichment analysis showed that 52 modular 
genes participated in developmental processes such as skeletal system development. An additional 
number of 14 modular genes (GABRG1, NGF, APOBEC2, STAT5B, STAT3, SMAD4, MED1, CACNB1, 
SLAIN2, LEMD2, ZC3H18, TMEM132D, FRYL and SGCB) were also identified as related to body weight. 
Taken together, current results suggested a total number of 66 genes as most plausible functional 
candidates for the trait examined.

Body weight (BW) is an economically important trait for the broiler industry. This trait also presents considerable 
biological interest as it is a typical complex (polygenic) trait. To date, the ChickenQTLdb1 contains over 7,812 
QTL/SNP associations of which 3,582 are related to growth. Several genome wide association studies (GWAS) 
have already been performed for growth traits (e.g.2,3) in the species. The development of the chicken 600k SNP 
array4 facilitates efficient screening for causal loci and genes with relevance to target traits due to the uniform 
coverage across chromosomes and the inclusion of markers within coding regions. Despite the large number of 
findings by GWAS, understanding of the genetic architecture of BW in chicken remains limited5, since only a 
small number of positional candidate genes are confirmed as truly functionally relevant to the trait (e.g. HDAC2 
and GNPDA26,7). The use of various Bioinformatics tools such as gene enrichment analysis8, pathway analy-
sis9 and gene network analysis10 can tackle this problem and aid in identifying the most promising functional 
candidate genes for the trait under study. Moreover, applications such as GeneMANIA11 that is based on the 
guilt-by-association (GBA) principle12 may also facilitate the identification of true causative genetic variants. The 
GBA principle states that gene products, which are protein interaction partners, tend to be functionally related13. 
Furthermore, genes in protein–protein interaction networks (PPINs) are organized into densely linked clusters 
i.e. communities or modules14. Modules present a structurally independent gene sub-network with more interior 
connections and consist of proteins which have the same or similar biological function(s)15. Modules could be 
further distinguished in protein complexes and in dynamic functional modules. Protein complexes are formed 
by several proteins which interact at the same place and time while dynamic functional modules are composed of 
few proteins participating in a specific cellular function not necessarily at the same place and time16. Moreover, 
functional modules consist of one or multiple protein complexes participating in a common biological process17. 
Since modules do not emerge by chance, they can reveal interactions with biological importance within large 
PPINs16,18. The module-based approach has already been used to cluster genes into functional groups and to pre-
dict protein functions19. Investigation of functional modules has mainly been focused on human diseases such as 
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obesity20, breast cancer21,22, coronary artery disease23 and asthma24. Apart from human, functional modules have 
been identified in other species as well, such as in Mus musculus for discrete and rhythmic forelimb movements 
in motor cortex25 and in Gallus gallus for muscle development and intramuscular fat accumulation at different 
post-hatching ages26.

Driven from findings in other species and traits, aim of the present study was first to investigate whether body 
weight in broilers is associated with functional modules and second to propose novel candidate genes for the trait 
in question.

Results
Significant SNPs and positional candidate genes. Figure 1 shows the Q-Q plot of the expected and 
the observed p values (−log10 p values) of all SNPs. The genomic inflation factor (λ) was also estimated as high 
as 0.93. According to Kang et al.27, λ values that lie outside of the conservative 95% confidence interval (0.992 to 
1.008) denote dependency of SNPs. However, as the Q-Q plot clearly shows, there is no evidence of any systematic 
bias due to population structure or analytical approach in our case. As Yang et al.28 emphasize in their paper, it is 
reasonable to expect deviation(s) of λ from 1 for purely polygenic traits such as that examined here in the absence 
of any systematic bias. The Q-Q plot also shows that some SNPs depart from the expected probability and thus 
might be associated with the trait. These SNPs are also displayed in Fig. 1 in a form of a Manhattan plot.

Specifically, there were 12 SNPs detected, across nine autosomes (1, 4, 10, 11, 15, 22, 25, 26 and 27) reaching 
genome-wide significance (FDR p-value < 0.05). A detailed description of the significant (lead) SNPs is provided 
in Table 1. Table 2 displays the extent of genomic regions displaying strong LD (D′ > 0.8) around the lead markers 
that were searched for positional candidate genes. Note that marker rs312758346 (GGA25) was omitted here as 
LD levels around this marker were below the threshold LD value (D′ < 0.8). In total, 645 positional candidate 
genes were identified within the searched genomic regions (Supplementary Table S1). From the candidate genes, 
n = 15 were microRNAs with 13 of them (MIR6672, MIR1720, MIR7-2, MIR3529, MIR1571, MIR1560, MIR1785, 
MIR6662, MIR7454, MIR10A, MIR6663, MIR1735 and MIR6547) published in the miRBase database (http://

Figure 1. Manhattan plot (left) and quantile-quantile plot (right) for BW. Manhattan plot shows the −log10 
(observed p-values) of the genome-wide SNPs (y-axis) across the 28 autosomes (x-axis), and the horizontal line 
denotes the genome-wide significant threshold. With regard to the Q-Q plot, the y-axis represents the observed 
−log10 (p-values) and the x-axis shows the expected −log10 (p-values). Manhattan plot was constructed with 
SNP & Variation Suite (version 8.8.1) software (Golden Helix: http://www.goldenhelix.com) while Q-Q plot 
with the CMplot package (https://github.com/YinLiLin/R-CMplot) in R (http://www.r-project.org/).

SNP ID GGA Position (bp)1 −log10(p-value) FDR p-value

rs13923872 1 112,741,685 6.415 0.0112

rs312691174 4 29,074,989 7.948 0.00037

rs15608447 4 66,885,210 13.489 4.25E-09

rs318199727 10 13,536,548 5.763 0.04111

rs318098582 11 18,651,449 8.513 0.00012

rs317945754 15 3,557,083 5.677 0.04594

rs316794400 22 4,594,855 11.033 6.07E-07

rs317288536 25 976,833 13.035 8.05E-09

rs312758346 25 2,412,866 9.517 1.59E-05

rs317627533 26 4,597,439 9.313 2.12E-05

rs314452928 27 104,022 6.398 0.0105

rs315329074 27 4,528,275 20.513 8.05E-16

Table 1. Genome-wide significant SNPs (FDR p-value < 0.05) for BW. 1Positions are based on Gallus gallus-5.0 
genome assembly.
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www.mirbase.org/) for the species. Moreover, 190 candidate genes were unannotated (LOC) resulting in a total 
number of 455 annotated positional candidate genes. The maximum number of candidate genes (n = 192) was 
identified in a region spanning 998.5 kb (average D′ = 0.98) around marker rs315329074 on GGA27. At the other 
extreme, the smallest number of candidate genes was identified for rs316794400 within a narrow region spanning 
26.6 kb (average D′ = 0.96) on GGA22. Six out of the 11 lead markers were located within annotated genes i.e. 
SLAIN2 (GGA4), ZC3H18 (GGA11), TMEM132D (GGA15), F-KER (GGA25), LEMD2 (GGA26) and CACNB1 
(GGA27).

Reported QtL/associations. Table 2 shows the number of published QTL/associations reported within 
the searched genomic regions. A total of 186 QTL/associations related to growth traits or carcass traits (carcass 
weight, abdominal fat percentage, breast muscle percentage and average daily gain) were identified within the 
searched regions. QTL/associations were distributed across eight chromosomes (1, 4, 10, 11, 15, 22, 26 and 27) 
and a detailed description of the reported QTL can be found in Supplementary Table S2. Note that the searched 
region around rs317288536 (GGA25) is not reported to harbor any QTL/association (Table 2). Furthermore, the 
only QTL reported on GGA22 as well as two additional QTL on GGA26 and GGA27 could not be remapped 
in Gallus gallus−5.0 by the Genome remapping service tool from NCBI database. Nevertheless, based on the 
Gallus gallus-4 genome assembly, the searched regions around rs316794400, rs317627533 and rs314452928 over-
lapped with three QTL (IDs: 95429, 30883 and 55944). The maximum number (n = 65) of QTL/associations was 
reported around rs315329074 (GGA27) and the minimum number (n = 1) around rs316794400 (GGA22). Nine 
out of the 12 lead SNPs on autosomes 1, 4, 10, 11, 15, 26 and 27 lie within 96 out of the 186 growth-related QTL 
(Supplementary Table S2). In addition, nearly all reported QTL on the searched regions on GGA4 (n = 49/50) 
and GGA11 (n = 9/9) contain at least one of the lead markers (rs312691174, rs15608447 and rs318098582 
respectively).

We further sought to examine the locations of the positional candidate genes in the relation to the positions 
of the reported QTL. These results are illustrated in Fig. 2 in forms of circular maps for seven autosomes (1, 4, 10, 
11, 15, 26 and 27). On GGA1, all 33 candidate genes (around rs13923872) are lying in a genomic region spanning 
from 2421 to 196203 kb where 17 relevant QTL have been reported. On GGA4, all 16 candidate genes around 
rs312691174 are located within a region spanning from 4965 to 91268 kb, where all 14 published QTL reside. On 
the same autosome, all genes (n = 36) around the second significant marker (rs15608447) are located in a region 
spanning from 4965 to 91268 kb where 35 QTL relevant to body weight, liver weight, carcass weight, total white 
fat weight have been reported. On GGA10, the region spanning from 693 to 20423 kb around the ‘lead’ marker 
(rs318199727) harbours all the 33 candidate genes and overlaps with 6 growth related QTL. On GGA11, in a 
region spanning from 953 to 20209 kb around rs318098582 there have been 7 reported QTL and 27 candidate 
genes identified. On GGA15, in a region spanning from 1932 to 10689 kb around rs317945754), 6 QTL related to 
growth traits (visceral fat weight, abdominal fat weight and breast muscle weight) are reported and 20 candidate 
genes were identified. Moreover, on GGA26 (rs317627533), 64 out of the 93 candidate genes lie in a narrow region 
(1264 to 4918 kb) where QTL associated with growth traits such as body weight and shank weight, are reported. 
On GGA27 in a regions spanning from 55 to 4520 kb around rs314452928, 2 related QTL were identified includ-
ing 7 out of the 12 candidate genes. All 192 genes around the second marker (rs315329074) on GGA27 were 
located within one published QTL spanning 3788 to 5630 kb that has been associated with thigh percentage. In 
total, 428 out of the 462 positional candidate genes (genes on GGA22 and GGA25 were not included here) were 
located within regions with reported QTL/associations.

Detection of community structure. A network including 402 genes (nodes) and 5294 interactions 
(edges) was generated. Note that for APOA1BP and LOH11CR2A genes the homologous human gene descrip-
tions (NAXE and VWA5A) were used, respectively. Community structure analysis detected 5 modules, formed 
by 401 genes (see Supplementary Table S3). One more module was also detected but this was consisted by only 

SNP ID GGA Position (bp)1

Searched genomic 
range around 
‘lead’ SNP (±bp) D′

Number of 
positional 
candidate genes

Number of  
QTL/associations

rs13923872 1 112,741,685 613,054 0.91 33 20

rs312691174 4 29,074,989 650,472 1 16 14

rs15608447 4 66,885,210 718,407 0.88 36 36

rs318199727 10 13,536,548 737,906 0.83 33 11

rs318098582 11 18,651,449 300,257 0.81 27 9

rs317945754 15 3,557,083 935,183 0.99 20 21

rs316794400 22 4,594,855 26,589 0.96 7 1

rs317288536 25 976,833 1,004,513 0.83 176 —

rs317627533 26 4,597,439 773,988 0.9 93 6

rs314452928 27 104,022 140,067 0.94 12 3

rs315329074 27 4,528,275 998,553 0.98 192 65

Table 2. Number of positional candidate genes and QTL/associations within the searched genomic regions 
(±maximum distance of the farest SNP being in strong LD (D′ >0.8) with the lead SNP; D′: average D′ values 
within the searched genomic region). 1Positions are based on Gallus gallus-5.0 genome assembly.
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one gene (NIPAL1). Thus it cannot be considered as a typical module. Note that this gene network had a strong 
community structure as indicated by the high (0.59) estimated modularity value29. Distribution of the 401 genes 
across the 5 modules is displayed in Fig. 3. Module_2 consisted of 187 genes, module_3 of 22 genes, module_4 of 
18 genes, module_5 of 152 genes and module_6 of 22 genes.

Functional enrichment analysis per module. Four (module_ID: 2–5) out of the five modules exhibited 
enriched GO BPs while only three modules were associated with developmental processes according to QuickGO. 
Specifically, in module_2, a total number of 21 enriched GO BPs (Supplementary Table S4) and 78 participat-
ing genes were identified. According to QuickGO (see Figs 3 and 4), 9 out of the 21 GO BPs were related to 
development with 42 member genes (Supplementary Table S4). In the same module, 8 genes belonging to the 

Figure 2. Circular chromosome maps for seven autosomes presenting combined data of reported QTL 
(n = 183) and positional candidate genes (n = 462). Blue color represents the extent of large sized QTL (50–
196.2 Mb), green color the medium sized QTL (5–50 Mb) and the yellow color is indicative of the small QTL 
(0–5 Mb). Red color indicates the starting and ending positions of positional candidate genes. The position(s) of 
the significant SNPs (labeled in purple color) is also given. The figure was constructed using GenomeVx87.
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homeobox B family genes along with MDFI were found to be enriched in embryonic skeletal system morphogen-
esis (GO:0048704). In module_3, none of the enriched GO BP terms were related to development (Supplementary 
Table S4). In module_4, three significantly enriched BPs (Supplementary Table S4) were identified in 7 member 
genes. Here, the only GO BP term that was associated with development through QuickGO was cell differenti-
ation (GO:0030154) with 4 member genes (PPARD, ELF2, ETV3L and ETV4, Fig. 4). A total number of 29 GO 
BPs were found as significantly enriched in module_5 (Supplementary Table S4). Here, two development related 
processes i.e. multicellular organism growth (GO:0035264) and bone development (GO:0060348) were identified 
by QuickGO (Fig. 4) with 6 involved genes (KAT2A, SP2, ANKRD11, RARA, BGLAP and AKAP13).

Functional candidate genes. An exhaustive list, including 66 modular genes, of the most plausible can-
didate genes for BW is provided in Table 3. From these genes, 52 were participating in enriched developmental 
processes, 7 were growth related genes that were not enriched to any developmental process and 7 were growth 
related genes identified in previous studies. These 66 modular genes were distributed across 7 chromosomes 
(GGA4, GGA10, GGA11, GGA15, GGA25, GGA26 and GGA27) with 47 of them detected in module_2. The 
KRT (keratins) family and B cluster of HOX (homeobox) family genes were also included here.

Discussion
Results of the present study have shown that a typical quantitative trait such as that examined here is associated 
with modular genes exhibiting functional relevance to developmental processes. This means that application of 
functional enrichment analysis on modular genes can facilitate the identification of true causative genes for the 
trait under study. Following this approach, a total number of 52 functional candidate genes could be identified 
in the present study. Example genes that fall in this category were the following: BTG2, ZAR1, MEOX1, KRT14, 
KRT15, TXK, CSF3, ACAN, HOXB, MDFI, NES, IGFBP4, PRELP, PPARD, ELF2, KAT2A, RARA and BGLAP. 
Specifically, BTG2, ZAR1, MEOX1, KRT14 and KRT15 have been reported to participate in cerebellar develop-
ment30, development of follicular oocytes31, somite differentiation32, keratinocytes proliferation33 and pigmen-
tation of muscle tissues34, in chickens, respectively. TXK (TXK tyrosine kinase) has been reported as BW related 
gene35 while CSF3 (colony stimulating factor 3) has been described as a myelomonocytic growth factor in the spe-
cies36. ACAN (aggrecan) is essential for cartilage formation during development in chicken and mouse mutants37 
and the HOX B cluster genes are expressed in chick embryonic development38. The MDFI (MyoD family inhibi-
tor) tumor suppressor gene is known to have a negative effect on myogenic regulatory factors39 while NES (nestin) 
is known as a neural progenitor cell marker during central nervous system development and a marker protein 
for neovascularization40. Furthermore, IGFBP4 (insulin like growth factor binding protein 4) is required for the 

Figure 3. Network modules along with the significantly enriched developmental processes per module. The five 
modules are presented in the three radial networks (on the top) as circles/ellipses with different color together 
with their member genes and the corresponding chromosomes. The diagonal network at the bottom provides 
the significantly enriched developmental processes per module. Figure was constructed using the data.tree and 
networkD3 packages in R (http://www.r-project.org/).
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adipose tissue development41 while PRELP (proline and arginine rich end leucine rich repeat protein) is highly 
expressed in cartilage, basement membranes, and bone development42. PPARD (peroxisome proliferator activated 
receptor delta) is a critical gene for normal adipose development and lipid homeostasis43 while ELF2 (E74 like ETS 
transcription factor 2) plays a key role in the development of lymphocytes44. KAT2A (lysine acetyltransferase 2A) is 
necessary for growth and differentiation of craniofacial cartilage and bone in zebrafish and mice45, RARA (retinoic 
acid receptor alpha) affects the hippocampal development46 and finally BGLAP is produced by osteoblasts shaping 
new bones in chickens47.

However, the search for modular genes that are exclusively enriched in functionally relevant terms has not 
proved to be efficient in identifying all true functional candidate genes. This finding may be fairly supported by 
the fact that 7 more genes (GABRG1, NGF, APOBEC2, STAT5B, STAT3, SMAD4 and MED1) that despite hav-
ing well documented relevance to development were found to be enriched in other but developmental GO BP 
terms. Specifically, GABRG1(gamma-aminobutyric acid type A receptor gamma1 subunit) is reported as a BW 
related gene35 and NGF (nerve growth factor) is a regulator of the somite survival and axial rotation during early 
chicken embryo development48. APOBEC2 (apolipoprotein B mRNA editing enzyme catalytic subunit 2) is known 
as a critical regulator and maintainer of muscle development in mammals and might affect muscle develop-
ment in chickens49. In the species, STAT5B (signal transducer and activator of transcription 5B) is associated with 
growth50. STAT3 (signal transducer and activator of transcription 3) plays a central role in development51, SMAD4 
(SMAD family member 4) is a central mediator of the transforming growth factor β signaling pathway which 
affects among others the cell growth52 and finally MED1 (mediator complex subunit 1) has a key role in mammary 
epithelial cell growth53.

The list with the most plausible candidate genes for the trait was, however, not exhausted in the previous two 
categories since 7 more genes (CACNB1, SLAIN2, LEMD2, ZC3H18, TMEM132D, FRYL and SGCB) with well 
documented implication to BW, were completely omitted in any enrichment analysis. Most interestingly, five of 
the above genes (CACNB1, SLAIN2, LEMD2, ZC3H18 and TMEM132D) contained lead SNPs. CACNB1 (calcium 
voltage-gated channel auxiliary subunit beta 1) has been reported to affect skeletal muscle development54 in mice. 
SLAIN2 (SLAIN motif family member 2) is necessary for the normal structure of microtubule cytoskeleton as it 
controls the microtubule growth during interphase55. LEMD2 (LEM domain containing 2) participates in nuclear 
structure organization56 and plays an important role in mouse embryonic development by regulating various 

Figure 4. GO hierarchical structure for the eleven significantly enriched BPs (denoted with red color) 
associated with developmental process/growth term (denoted with green color). This GO tree was created and 
extracted by QuickGO86.
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Criterion Gene Description Module_ID GGA

modular genes participating in 
enriched developmental processes BTG2 BTG anti-proliferation factor 2 module_2 26

ZAR1 zygote arrest 1 module_2 4

MEOX1 mesenchyme homeobox 1 module_2 27

KRT14 keratin 14 module_2 27

KRT15 keratin 15 module_2 27

TXK TXK tyrosine kinase module_2 4

CSF3 colony stimulating factor 3 module_2 27

ACAN aggrecan module_2 10

HOXB1 homeobox B1 module_2 27

HOXB2 homeobox B2 module_2 27

HOXB3 homeobox B3 module_2 27

HOXB4 homeobox B4 module_2 27

HOXB5 homeobox B5 module_2 27

HOXB6 homeobox B6 module_2 27

HOXB7 homeobox B7 module_2 27

HOXB8 homeobox B8 module_2 27

HOXB9 homeobox B9 module_2 27

HOXB13 homeobox B13 module_2 27

MDFI MyoD family inhibitor module_2 26

NES nestin module_2 25

TBX21 T-box 21 module_2 27

IGFBP4 insulin like growth factor binding protein 4 module_2 27

PRELP proline and arginine rich end leucine rich repeat protein module_2 26

HAPLN2 hyaluronan and proteoglycan link protein 2 module_2 25

HAPLN3 hyaluronan and proteoglycan link protein 3 module_2 10

GABRA4 gamma-aminobutyric acid type A receptor alpha4 subunit module_2 4

BCAN brevican module_2 25

NHLH1 nescient helix-loop-helix 1 module_2 25

ZBTB7B zinc finger and BTB domain containing 7B module_2 25

FZD10 frizzled class receptor 10 module_2 15

TCP11 t-complex 11 module_2 26

PIWIL1 piwi like RNA-mediated gene silencing 1 module_2 15

SPDEF SAM pointed domain containing ETS transcription factor module_2 26

ZFPM1 zinc finger protein, FOG family member 1 module_2 11

CBFA2T3 CBFA2/RUNX1 translocation partner 3 module_2 11

KRT17 keratin 17 module_2 27

CRABP2 cellular retinoic acid binding protein 2 module_2 25

SH2D2A SH2 domain containing 2 A module_2 25

NR1D1 nuclear receptor subfamily 1 group D member 1 module_2 27

STX2 syntaxin 2 module_2 15

TEC tec protein tyrosine kinase module_2 4

ETV3 ETS variant 3 module_2 25

PPARD peroxisome proliferator activated receptor delta module_4 26

ELF2 E74 like ETS transcription factor 2 module_4 4

ETV3L ETS variant 3 like module_4 25

ETV4 ETS variant 4 module_4 27

KAT2A lysine acetyltransferase 2A module_5 27

RARA retinoic acid receptor alpha module_5 27

BGLAP bone gamma-carboxyglutamate protein module_5 25

SP2 Sp2 transcription factor module_5 27

ANKRD11 ankyrin repeat domain 11 module_5 11

AKAP13 A-kinase anchoring protein 13 module_5 10

growth related modular genes 
not significantly enriched to any 
developmental process

GABRG1 gamma-aminobutyric acid type A receptor gamma1 subunit module_2 4

NGF nerve growth factor module_2 26

APOBEC2 apolipoprotein B mRNA editing enzyme catalytic subunit 2 module_5 26

Continued
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signaling pathways such as MAPK (mitogen-activated protein kinase) and AKT (also known as Protein Kinase 
B)57. ZC3H18 (zinc finger CCCH-type containing 18) participates in RNA degradation58 and affects mRNA metab-
olism59. Finally, TMEM132D (transmembrane protein 132D) may function as a tumor suppressor gene60. Finally, 
both FRYL (FRY like transcription coactivator) and SGCB (sarcoglycan beta) have been associated with growth61,62 
in the species.

The two aforementioned gene lists underline the potential limitations of a cluster based method such as that 
used here to assess the biological properties of the candidate gene sets. Specifically, these limitations relate to i) 
grouping of similar terms into a cluster and evaluating the enrichment of functional clusters instead of each indi-
vidual term within the clusters and ii) the evaluation of the identified term clusters separately, while not taken into 
consideration the relationships between clusters63.

Apart from functional enrichment analysis, other analyses such as pathway analysis, gene network analysis 
and GBA gene prioritization analysis could also assist in identifying true causative genetic variants for the trait 
under study. For instance, in a previous study64, the use of GBA gene prioritization analysis on 1,012 positional 
candidate genes revealed 248 functional candidate genes for the same trait. However, fixed genomic regions (of 
1 Mb) around the lead genomic markers were used in that study. A final interesting result of the present study was 
the discovery of 15 microRNAs within the 645 candidate genes for the trait under investigation. One of these, i.e. 
MIR10A has been reported as significant for feed intake in broilers65. MIR10A together with MIR10B have been 
reported to inhibit the development of human, mouse and rat granulosa cells during folliculogenesis66. Finally, 
MIR7-2 has been reported as genomic locus for peroxisome proliferator activated receptor regulation67 and may 
have a functional role in hepatic lipid homeostasis. MicroRNAs have emerged as important regulators of gene 
expression post-transcriptionally and in Gallus gallus are known to play crucial roles in various biological pro-
cesses such as the accumulation of abdominal fat68 and the lipid metabolism69.

In conclusion, the present GWAS revealed a large number of genomic regions and genes implicated in the 
genetic architecture of a complex trait such as the BW that fully complies with the Fisher’s infinitesimal model of 
inheritance. Exploitation of both community structure and functional enrichment analyses highlighted 3 mod-
ules as related to development. Current findings also indicated 52 modular genes participating in developmental 
processes and 14 more modular genes related to BW. Finally, the present study proposed 66 functional candidate 
genes for BW, some of which are novel and some identified candidates in previous studies.

Methods
ethics statement. All animals included in this study were not subjected to any invasive procedures.

Data and quality control. In total, n = 6,727 broilers (n = 3,735 males and n = 2,992 females) from a 
grand-grandparent (GGP) commercial line with records on BW at 35 days of age were made available by Aviagen 
Ltd. Phenotypic records for BW ranged from 1,130 to 2,630 g with an average of 1840.2 g (SD = 194 g). Animals 
were genotyped using the 600k Affymetrix® Axiom® high density genotyping array4 resulting in a total number of 
578,815 SNPs. Only autosomal SNPs (n = 547,705) were considered. Quality control was performed first at a sam-
ple and second at a marker level. At a sample level, 72 females and 57 males were excluded due to call rate <0.99 
and autosomal heterozygosity outside the 1.5 IQR (inter-quartile range) resulting in a number of n = 6,598 sam-
ples. At a marker level, a number of 285,717 SNPs were excluded due to: call rate <0.99, MAF (minor allele fre-
quency) <0.01 and linkage disequilibrium (LD) r2 values greater than 0.99 within windows of 1 Mb inter-marker 
distance(s). A total of 6,598 samples and 262,067 SNPs were retained for GWAS. Quality control was performed 
using the SNP & Variation Suite software (version 8.8.1) of Golden Helix (http://www.goldenhelix.com).

statistical analysis. A multi-locus mixed-model (MLMM) stepwise regression with forward inclusion and 
backward elimination70 of SNPs was employed to identify genome-wide significant markers associated with the 
trait. The following statistical model was applied to the data:

Criterion Gene Description Module_ID GGA

STAT5B signal transducer and activator of transcription 5B module_3 27

STAT3 signal transducer and activator of transcription 3 module_5 27

SMAD4 SMAD family member 4 module_5 25

MED1 mediator complex subunit 1 module_5 27

growth related modular genes 
reported in previous studies CACNB1 calcium voltage-gated channel auxiliary subunit beta 1 module_2 27

SLAIN2 SLAIN motif family member 2 module_5 4

LEMD2 LEM domain containing 2 module_5 26

ZC3H18 zinc finger CCCH-type containing 18 module_5 11

TMEM132D transmembrane protein 132D module_2 15

FRYL FRY like transcription coactivator module_4 4

SGCB sarcoglycan beta module_2 4

Table 3. List of 66 most plausible candidate genes for BW according to the following criteria: modular genes 
participating in enriched developmental processes, growth related modular genes not significantly enriched to 
any developmental process and growth related modular genes reported in previous studies.

https://doi.org/10.1038/s41598-019-45520-5
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where y is the n x 1 vector of phenotypic values of BW for n broilers, X is the n x 55 matrix of fixed effects: sex 
(2 classes), hatch (36 classes) and mating group (17 classes), β is the 55 × 1 vector of corresponding coefficients 
of fixed effects, w is the vector with elements of 0, 1, and 2 for the homozygote of the minor allele, heterozygote, 
and homozygote of the major allele, α is the vector of the fixed effect for the minor allele of the candidate SNP to 
be tested for association, Z is the incidence matrix relating observations to the polygenic random effects, u is the 
vector of polygenic random effects and e is the vector of random residuals.

The random effects were assumed to be normally distributed with zero means and the following covariance 
structure:

σ

σ






=
















Var u
e

G
I
0

0
u

e

2

2

where σu
2 and σe

2 are the polygenic and error variance components, I is the nxn identity matrix, and G is the 
nxn genomic relationship matrix (GRM71) with elements of pairwise relationship coefficient using the 262,067 
SNPs. Τhe genomic relationship coefficient between two individuals j and k, was estimated as follows:

∑ − −
−=

xij pi xik pi
pi pi

1
262, 067

( 2 )( 2 )
2 (1 2 )i 1

262,067

where xij and xik represent the number (0, 1, or 2) of the minor allele for the ith SNP of the jth and kth individuals, 
and pi is the frequency of the minor allele71.

Statistically significant markers were selected at the optimal step of the MLMM stepwise regression according 
to extended Bayesian Information Criterion (eBIC72). P-values of these SNPs were then corrected for multiple 
comparisons using the false-discovery rate (FDR73) correction method. Here, a cut-off FDR p-value less than 
0.0574 was considered as significant. The FDR p-value of 0.05 states that, among all observed results, 5% would 
be false positives.

A Quantile-quantile (Q-Q) plot was also used to analyze the extent to which the observed distribution of the 
test statistic followed the expected (null) distribution. This plot along with the estimation of the genomic inflation 
factor (λ) was done to assess potential systematic bias due to population structure or to the analytical approach28. 
This analysis was performed using the SNP & Variation Suite (version 8.8.1) software (Golden Helix: http://www.
goldenhelix.com).

Detection of candidate genomic regions with strong LD. We first estimated LD levels around each 
lead i.e. significant SNP. We then searched for genomic regions with strong LD around the lead SNPs defined 
as the maximum distance between the lead and the last SNP with D′ ≥ 0.875. Note that, the D′, instead of the r2 
LD measurement, was preferably used here as the first one is reported to be independent76 or less dependent77 
on MAF. All LD calculations were performed using the SNP & Variation Suite (version 8.8.1) software (Golden 
Helix: http://www.goldenhelix.com).

Identification of reported QTL and positional candidate genes. Next, we searched for growth/fat-
ness related QTL in the ChickenQTLdb1 and positional candidate genes in the NCBI database78,79, within the 
strong LD genomic regions. Positions of QTL were remapped from Gallus gallus 4 to Gallus _gallus-5.0 assembly 
using the Genome Remapping Service from NCBI database80.

Detection of community structure and functional module characterization. A gene network 
using all positional candidate genes was first constructed integrating the available Homo sapiens genes database 
(updated 17/3/2017) via the GeneMANIA V.3.4.1 plug-in11 in Cytoscape V3.6.0 (http://cytoscape.org/ 81). The 
gene network was built according to 7 types of interaction terms i.e. co-expression, co-localization, genetic inter-
action, pathway, physical interaction, predicted and shared protein domains. The automatic weighting method for 
network construction was also used while the number of related genes was set to zero.

Detection of community structure i.e. the appearance of densely interconnected nodes (modules) was then 
performed using the Girvan and Newman’s clustering algorithm29 via the GLay82 of clusterMaker83 plugin in 
Cytoscape81. This algorithm identifies modules within networks by repetitively removing edges with the highest 
“betweeness” i.e. edges between modules with higher values of betweeness rather than edges within modules. 
The strength of the network division into modules was also quantified using the modularity measure29. Typically, 
modularity values ranging from 0.3 to 0.7 are indicative of strong community structure29.

Modular genes were then subjected to GO Biological Process (BP) term enrichment analysis using the DAVID 
functional annotation tool (https://david.ncifcrf.gov/, version 6.8)84. The Homo sapiens species was also selected 
for the input gene list and as whole genome background for enrichment analysis. The following settings were used 
during this analysis: an EASE score (a modified Fisher exact p-value85) cut-off = 0.05 and a minimum number of 
genes per GO BP term = 2. GO biological processes with p-values lower than 0.05 were considered as significantly 
enriched. The QuickGO86 web-based tool was subsequently used to examine each resulting significantly enriched 
GO BP through browsing the hierarchical structure in the GO annotation database. GO BPs associated with 
developmental process or growth parent term(s) were considered as functionally relevant to the trait under study.

https://doi.org/10.1038/s41598-019-45520-5
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Data Availability
The data that support the findings of this study are available from Aviagen Ltd. but restrictions apply to the availa-
bility of these data, which were used under license for the current study, and so are not publicly available. Data are 
however available from the authors upon reasonable request and with permission of Aviagen Ltd.
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