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Phonon blockade in a 
nanomechanical resonator 
quadratically coupled to a two-level 
system
Hai-Quan Shi1,2, Xun-Wei Xu2 & Nian-Hua Liu1,3

We investigate phonon statistics in a nanomechanical resonator (NAMR), which is quadratically 
coupled to a two-level system, by driving the NAMR and two-level system simultaneously. We find that 
unconventional phonon blockade (UCPNB), i.e., strong phonon antibunching effect based on quantum 
interference, can be observed when driven fields are weak. By increasing the strengths of the driving 
fields, we show the crossover from the UCPNB to the conventional phonon blockade (CPNB), which 
is induced by the strong nonlinear interaction of the system. Moreover, under the strong coupling 
condition for CPNB, quantum interference effect can also be used to enhanced the phonon blockade by 
optimizing the phase difference of the two external driving fields.

Phonon blockade1 is a quantum effect for preventing the excitation of more than one phonon in a nanomechan-
ical resonator (NAMR), which provides us an effective way to generate single phonons. For the potential appli-
cation in phononic quantum information processing2–4, phonon blockade has draw more and more attentions 
in recent years5–18. The various proposals for realizing phonon blockade so far can be classified into two types 
namely conventional phonon blockade (CPNB)1,5–14 and unconventional phonon blockade (UCPNB)8,15–18.

The mechanism for CPNB is attributed to the strong nonlinearity in the system1. The strong nonlinearity 
results in the enharmonic energy level in system, thus the second phonon cannot be excited for the large detun-
ing. Specifically, the strong nonlinearity for mechanical mode can be induced by dispersive (far off-resonant) 
NAMR-qubit coupling1,5–7, a NAMR resonant coupled to a qubit8 or a two-Level defect9, quadratically optome-
chanical coupling10–13, and the coupling between nitrogen-vacancy (NV) centers and a mechanical mode14.

Different from the CPNB, UCPNB is the counter-intuitive phenomenon that strong phonon antibunching can 
be observed with weak nonlinearity8,15–18. Physically, the strong phonon antibunching for UCPNB is based on the 
destructive interference between different paths for two-phonon excitation8, that UCPNB is usually realized by 
coupling an auxiliary system to the mechanical mode. Recently, UCPNB was predicted in many different systems, 
e.g., resonant coupled NAMR-qubit system8, coupled nonlinear mechanical resonators15,16, quadratically optom-
echanical system17, and hybrid optomechanical system18.

In this paper, we propose to observe phonon blockade with a quadratically coupling between a NAMR and a 
two-level system (TLS). The quadratically coupling between a NAMR and a TLS provides us an effective way to 
generate two phonons at one time19,20. We note that the phonon blockade by the quadratically coupling between 
a NAMR and a TLS has been studied in a recent work7. However, different from the previous study7, we will focus 
on the crossover from the UCPNB to CPNB and discuss the phonon blockade induced by the combination of 
quantum interference effect and strong nonlinearity of the system, which have not been revealed in previous 
works.
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Results
Theoretical model.  In this paper, we shall investigate a system in which a nanomechanical resonator is 
quadratically coupled to a TLS. As shown in Fig. 1, the quadratically coupling between NAMR and TLS can be 
implemented in a superconducting NAMR-qubit system19 [Fig. 1(a)], or in a phononic crystal with NV centers 
located near the surface14,20 [Fig. 1(b)]. We assume that the NAMR is driven by a mechanical pump with ampli-
tude εm and frequency ωb and the TLS is driven by an external field with the strength εp and frequency ωd, respec-
tively. The Hamiltonian for the system in the rotating reframe with respect to

†ω ω σ σ= + =+ − R t i b bt i t( ) exp( ) is given by ( 1)b d

( )H b b J b b e b2 ( ) H c , (1)m
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where b and b† denote the annihilation and creation operators of the NAMR with frequency ωm; σ+ and σ− are the 
raising and lowering operators of TLS with the frequency splitting ω0; we assume that the frequencies satisfy the 
conditions, ω0 = 2ωm and ωd = 2ωb, and Δ = ωm − ωb is the detuning between NAMR and driving field. θ is the 
phase difference between the two external driving fields. J is the quadratically coupling strength between the 
NAMR and TLS. Without loss of generality, J is assumed to be real.

To quantify the statistics of the phonons in the NAMR, we consider the equal-time second-order correlation 
function in the steady state defined by
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where †≡n b bb  is the mean phonon number. The behavior of the system is described by the master equation21 
for the density matrix ρ
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Figure 1.  The schematic sketch of (a) a nanomechanical resonator coupled to a superconducting qubit19,25, (b) a 
phononic crystal with the NV center ensembles located near the surface14,20,26.
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where ρ ρ ρ ρ= − +† † †L o o o o o o o[ ] ( )/2 denotes a Lindbland term for an operator o, κ is damping rate of the TLS 
and γ is damping rate of the NAMR; nσ,th and nm,th are the mean numbers of the thermal phonons, given by the 
Bose-Einstein statistics nσ,th = [exp(ℏω/kBT) − 1]−1 and nm,th = [exp(ℏωm/kBT) − 1]−1 with the Boltzmann con-
stant kB and the environmental temperature T. The second-order correlation function g (0)b

(2)  can be calculated by 
solving the master equation (3) numerically within a truncated Fock space.

Numerical results.  Generally, the UCPNB can be discriminated from the CPNB by the optimal conditions 
for phonon blockade. Based on the Hamiltonian given in equation (1), the optimal conditions for UCPNB can be 
obtained analytically (the derivation is given in the the section of Methods). When θ ≠ Nπ/2 (N is an integer), the 
optimal conditions for UCPNB are
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When θ = Nπ/2, the optimal conditions for UCPNB become

Δ = 0, (7)opt

ε κ θ
ε γ

= − .J cos2
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The optimal detuning for CPNB is Δopt = 0 for resonant single-phonon driving, which is the same as the opti-
mal detuning for the UCPNB in the special case for θ = Nπ/2.

In Fig. 2(a), we show the equal-time second-order correlation function g (0)b
(2)  as a function of the detuning 

Δ/γ with θ = 0.6π ≠ Nπ/2 and J ≈ 0.4γ given by equation (5). We note that the optimal phonon blockade appears 
at detuning Δ ≈ −0.52γ for T = 20 mK, which is in good agreement with the analytical result Δopt ≈ −0.57γ given 
by equation (4). As equations (4) and (5) are the optimal conditions for UCPNB and the coupling strength is weak 
(J < γ), the phonon blockade discovered here should be based on the quantum interference, i.e., the UCPNB. The 
mean phonon number nb versus the detuning Δ/γ is shown in Fig. 2(b) for different temperatures: T = (20, 30, 40) 
mK. One can also find that the phonon antibunching becomes weaker with the increase of the temperature as well 
as the thermal phonons.

In order to achieve a larger number of mean phonons and improve the robustness against the thermal phon-
ons, we discuss the effect of the driving strengths on the phonon statistics. g (0)b

(2)  and nb are plotted as functions 
of the mechanical driving strength εm/γ with optical driving strength ε ε γ= 10 /p m

2  in Fig. 3(a,b), or /p m
2ε ε γ=  in 

3(c) and 3(d). At nonzero temperature, the phonon blockade can be enhanced by properly increasing the driving 
strengths according to the temperature. Moreover, the mean phonon number for phonon blockade in the strong 
coupling regime with J ≈ 6.74γ in Fig. 3(d) is much larger than the one in the weak coupling regime with 

Figure 2.  (a) The equal-time second-order correlation function g (0)b
(2)  and (b) mean phonon number nb are 

plotted as functions of the detuning Δ/γ for different temperatures: T = (20, 30, 40) mK. The other parameters 
are εm = 0.06γ, εp = 0.06γ, θ = 0.6π, κ = 10γ, ω0 = 2ωm = 2π × 8 GHz, and J ≈ 0.4γ is given by equation (5).
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J ≈ 0.674γ in Fig. 3(b), so that the phonon blockade effect in the strong coupling regime is more robust against 
than the one in the weak coupling regime.

It is worth mentioning that with the enhancing of the mechanical driving strength εm as well as the coupling 
strength J, the optimal parameters for UCPNB fail to fit the optimal conditions for phonon blockade. g (0)b

(2)  is 
plotted as a function of the coupling strength J/γ with detuning Δ given by equation (4) for different mechanical 
driving strengths in Fig. 4(a). When the mechanical driving εm/γ is very weak, e.g., εm/γ = 0.08, there is an opti-
mal value of J ≈ 0.64γ, which is agree with the analytical result J ≈ 0.72γ given by equation (5) for UCPNB. 
According to equation (5), the optimal coupling strength J for UCPNB increases with the mechanical driving 

Figure 3.  (a) g (0)b
(2)  and (b) nb are plotted as functions of the mechanical driving strength εm/γ with optical 

driving strength 10 /p m
2ε ε γ=  for different temperatures: T = (20, 30, 40) mK. (c) g (0)b

(2)  and (d) nb are plotted as 
functions of the mechanical driving strength εm/γ with optical driving strength /p m

2ε ε γ=  for different 
temperatures: T = (40, 80, 120) mK. Δ ≈ −0.574γ is obtained from equation (4), and J ≈ 0.674γ in (a) and (b), 
as well as J ≈ 6.74γ in (c) and (d) are obtained from equation (5). The other parameters are θ = 0.6π, κ = 10γ, 
and ω0 = 2ωm = 2π × 8 GHz.

Figure 4.  (a) g (0)b
(2)  is plotted as a function of the coupling strength J/γ with detuning Δ given by equation (4) 

for different mechanical driving strengths: (1) εm/γ = 0.08, (2) εm/γ = 0.1, (3) εm/γ = 0.15, (4) εm/γ = 0.2. (b) 
glog [ (0)]b10

(2)  is plotted as a function of the detuning Δ/γ with the coupling strength J given by equation (5) for 
different mechanical driving strengths: (I) εm/γ = 0.06, (II) εm/γ = 0.2, (III) εm/γ = 0.4, (IV) εm/γ = 0.6. The 
other parameters are εp = 0.06γ, θ = 0.6π, κ = 10γ, ω0 = 2ωm = 2π × 8 GHz, and T = 20 mK.
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strength εm. When the mechanical driving εm/γ = 0.2, g (0)b
(2)  decreases monotonically with the coupling strength 

J, which is remarkably different from the optimal coupling J ≈ 4.5γ given by equation (5) for UCPNB. Moreover, 
glog [ (0)]b10

(2)  is plotted as a function of the detuning Δ/γ with the coupling strength J given by equation (5) for 
different mechanical driving strengths in Fig. 4(b). With the increase of the mechanical driving strength, the 
optimal detuning for phonon blockade is shifted from Δ ≈ −0.52γ to Δ ≈ 0, which is also not in accordance with 
the prediction of UCPNB given by equation (4) for an invariant optimal detuning Δopt ≈ −0.57γ. In fact, when 
θ ≠ Nπ/2 (N is an integer), the phonon blockade in the strong coupling condition with optimal detuning Δ ≈ 0 is 
induced by the strong nonlinearity, i.e., CPNB. Figure 4(a,b) show the crossover from the UCPNB to the CPNB 
by enhancing the mechanical driving strength εm as well as the coupling strength J.

Lastly, we will shown that, under the strong coupling condition for CPNB, quantum interference effect for 
UCPNB can also be used to enhanced the CPNB by optimizing the phase difference of the two external driving 
fields. In Fig. 5(a), glog [ (0)]b10

(2)  is plotted as a function of the detuning Δ/γ for different phase difference: 
θ/π = (0.2, 0.3, 0.5). It is clear that g (0)b

(2)  is dependent on the phase difference θ. The minimal value of 
glog [ (0)]b10

(2)  by scanning the detuning Δ/γ is plotted as a function of the phase difference θ/π in Fig. 5(b). Under 
the strong coupling condition, the minimal value of glog [ (0)]b10

(2)  is obtained with θ = π/2. This can be under-
stated by the fact that, when θ = π/2, the optimal detunings for UCPNB and CPNB are both Δ = 0, and the CPNB 
is enhanced by the quantum interference effect for UCPNB.

Discussion
The direct detection of single phonons is still an outstanding challenge in the present experiments. In some 
recent experiments22,23, the phonon correlation has been measured indirectly by detecting the correlations of the 
emitted photons from an optical cavity optomechanically coupled to a mechanical mode, which provides us an 
effective way to investigate phonon statistics experimentally. In addition, indirect phonon detection has also been 
proposed by the interaction between the mechanical mode and a superconducting microwave resonator5 or NV 
centers24.

In summary, we have studied phonon blockade in a NAMR which is quadratically coupled to a TLS. We have 
shown that UCPNB can be observed in the weak coupling regime based on the destructive interference. In order 
to increase phonon number and improve the robustness against the thermal noise, we gradually enhanced the 
driving strengths. We have also shown the crossover from the UCPNB to the CPNB by increasing the mechanical 
driving strength and the coupling strength. In addition, the CPNB can be enhanced by optimizing the phase 
difference of the two external driving fields for the combination of quantum interference effect and strong non-
linearity of the system.

Methods
Assume that the NAMR has been cooled to its ground state, we shall derive the optimal conditions for UCPNB 
approximately under the weak driving condition {εp, εm} < min{κ, γ}. The wave function can be expanded on a 
Fock state basis as

C g C e C g C g, 0 , 0 , 1 , 2 , (9)g e g g0 0 1 2ψ| 〉 = + | 〉 + | 〉 + | 〉 + 

where g and e denote the ground and excited states of the TLS, and m represents the Fock state with m phonons 
in the NAMR, and the coefficient |Cgm|2 (|Cem|2) is the occupying probability corresponding to the state |g, m〉 (|e, 
m〉). Under the weak driving condition, i.e. {εp, εm} < min{κ, γ}, we will have |Cg0| ≫ {|Ce0|, |Cg1|, |Cg2|} ≫ {|Ce1|, 
|Cg3|} ≫ …, so the wave function can be truncated to the two-phonon states approximately.

Substituting the wave function in equation (9) and the Hamiltonian in equation (1) into the Schrödinger’s 
equation id|ψ〉/dt = H|ψ〉, then the dynamical equations for the coefficients Cgm and Cem are shown as

Figure 5.  (a) glog [ (0)]b10
(2)  is plotted as a function of the detuning Δ/γ for different phase difference: θ/π = (0.2, 

0.3, 0.5). (b) The minimal value of glog [ (0)]b10
(2)  by scanning the detuning Δ/γ is plotted as a function of the 

phase difference θ/π. The other parameters are J = 5γ, εm = 0.2γ, εp = 0.06γ, θ = 0.6π, κ = 10γ, ω0 = 2ωm = 2π × 8 
GHz, and T = 20 mK.
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In the steady state, i.e. dCgm/dt = dCem/dt = 0, and under the condition for phonon blockade, i.e. Cg2 ≈ 0, we 
obtain the linear equations for the coefficients Ce0, Cg1 and Cg0 as

i C i C0
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From equations (13 and 14), Ce0 and Cg1 are given by
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Substituting Ce0 and Cg1 into equation (15), we obtain

ε
γ

ε
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+
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As |Cg0| ≈ 1 ≠ 0, then we get the conditions for the optimal parameters Jopt and Δopt as

ε κ θ θ ε γ+ Δ + =J( cos2 4 sin2 ) 0, (19)m p
2

ε θ κ θ εΔ − + Δ = .J(4 cos2 sin2 ) 2 0 (20)m p
2

The optimal parameters for UCPNB given in equations (4–8) are obtained by solving the equations (19 and 20).
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