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Simultaneous Coinfection of 
Macaques with Zika and Dengue 
Viruses Does not Enhance Acute 
Plasma Viremia but Leads to 
Activation of Monocyte Subsets 
and Biphasic Release of Pro-
inflammatory Cytokines
William G. Valiant1, Mary J. Mattapallil2, Stephen Higgs3, Yan-Jang S. Huang3, 
Dana L. Vanlandingham3, Mark G. Lewis4 & Joseph J. Mattapallil   1

The consequences of simultaneous infection with Zika (ZIKV) and Dengue (DENV) viruses are poorly 
understood. Here we show that rhesus macaques experimentally coinfected simultaneously with ZIKV 
and DENV-2 demonstrated ZIKV or DENV replication without an enhancement of either infection. 
Coinfection was accompanied by an increase in the proportions of CD14+CD16+ pro-inflammatory 
subsets of monocytes and release of pro-inflammatory cytokines in the plasma. Numerous cytokines 
such as I-TAC, Eotaxin, RANTES, MCP-1, IFNγ and MIG demonstrated a biphasic peak that coincided 
with the differences in kinetics of ZIKV and DENV replication suggesting that viral replication likely 
differentially modulated the release of these cytokines. Red blood cell indices significantly declined 
during acute infection suggesting transient anemia, and was accompanied by elevated levels of muscle, 
liver and renal injury markers. These findings have implications for understanding the pathogenesis 
of coinfection in ZIKV and DENV endemic regions, and is the 1st report of an experimental coinfection 
using the rhesus macaque model for ZIKV and DENV infections.

Zika virus (ZIKV) and dengue virus (DENV) are flaviviruses that are transmitted by Aedes aegypti mosquitoes 
and co-circulate in the same endemic regions. Numerous reports have documented coinfection of the same indi-
vidual with both ZIKV and DENV1–6. Monoinfection with either ZIKV or DENV usually causes mild febrile 
illness in most individuals though ZIKV infection in some pregnant women has been associated with congenital 
brain abnormalities in the newborn, and Guillain-Barré Syndrome in adults7–9, whereas secondary DENV infec-
tion has been shown to cause dengue hemorrhagic fever. Interestingly, secondary exposure to DENV after prior 
infection with ZIKV has been associated with significant enhancement of infection that was associated with the 
induction of high levels of binding non-neutralizing cross- reactive antibodies that were induced during primary 
infection with ZIKV10–13. As has been reported during Antibody dependent enhancement (ADE) of DENV fol-
lowing infection with a heterologous serotype, the enhancement of DENV infection after ZIKV exposure was 
accompanied by the release of pro-inflammatory mediators and activation of monocyte/macrophages10–13.
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Although the potential for ADE has been well documented following secondary exposure to a heterologous 
serotype of DENV, little is known about the pathogenic outcome of simultaneous infection with ZIKV and DENV. 
Aedes aegypti mosquitoes were shown to be infected with both ZIKV and DENV and capable of transmiting 
these viruses simultaneously suggesting that there is a potential for mosquitoes to transmit both viruses at the 
same time to the human host14. Chaves et al.15 demonstrated that A. aegypti mosquitoes were highly permissive 
to coinfection with ZIKV and DENV and readily transmitted both viruses to BALB/c mice. In line with this, 
approximately 27% of arbovirus infected human subjects examined in Nicaragua were found to be viremic for 
ZIKV, DENV and CHIKV16. Likewise, detectable levels of ZIKV and DENV genomes were reported in the serum 
of two travelers who returned from French Polynesia and New Caledonia17.

Other studies have reported coinfection with ZIKV and DENV in human subjects. Carrillo-Hernandaz 
et al.18 reported that 6.7% of the 82 subjects they examined in Columbia for infection with ZIKV, DENV and 
Chikungunya (CHIKV) were co-infected with ZIKV and DENV. Azeredo et al.19 reported that out of the 106 
confirmed cases of ZIKV, DENV and CHIKV, 38% and 26.8% were infected with either DENV or ZIKV alone, 
whereas 13.4% of subjects were positive for both ZIKV and DENV. Estofolete CF et al.20 examined 1254 suspected 
cases of arbovirus infections in Sao Jose Rio Preto between January and November of 2016, and found that 12 
of the subjects were co-infected with ZIKV and DENV. A majority of coinfected individuals reported symptoms 
of myalgia, headache, fever, exanthema, arthralgia, and a minority of them reported conjunctival hyperemia, 
abdominal pain, and vomiting, whereas 2/12 subjects reported alarm signs of DENV although none of them 
showed signs of severe dengue. We have previously shown that coinfection with ZIKV and DENV was associated 
with the induction of high levels of neutralizing antibodies against both viruses leading to a delayed induction of 
ADE12,21. Other studies22 have shown that coinfection with ZIKV and DENV decreased the potential of CD4+ T 
cells to secrete cytokine such as IFNγ and TNFα22.

There is little information about the acute consequences of simultaneous coinfection with ZIKV and DENV. 
We sought to address this gap in our knowledge using the rhesus macaque model10,21,23–29 where we infected 
macaques with both ZIKV and DENV-2 simultaneously and assessed the effect on the kinetics of plasma virema, 
plasma cytokine levels, and monocyte/macrophage activation. Our results show that both ZIKV and DENV rep-
licated at levels similar to what have been reported in monoinfected animals without any enhancement of either 
ZIKV and DENV viremia10,21. Acute viremia was associated with activation of monocyte/macrophage subsets and 
release of numerous pro-inflammatory mediators that have implications for pathogenesis in the coinfected host.

Results
Coinfection with ZIKV and DENV-2 does not alter plasma viral kinetics.  We have previously shown 
that prior exposure to ZIKV significantly enhanced DENV-2 viremia in rhesus macaques that was associated with 
high levels of DENV binding non-cross-neutralizing antibodies induced by ZIKV10,21. We sought to determine if 
simultaneous infection with ZIKV and DENV-2 in the absence of pre-existing cross-reactive antibody responses 
would lead to enhancement of infection. Rhesus macaques (n = 5) were infected simultaneously with ZIKV (106 
TCID50) and DENV-2 (105 TCID50) at the same site subcutaneously. We examined ZIKV and DENV-2 viral loads 
in plasma samples that were collected longitudinally over a period of 8 weeks (Fig. 1). Our results showed that 
ZIKV viral loads peaked at 5 logs/ml of plasma at day 3 post-infection (PI) whereas DENV-2 viral loads peaked 
at 4 logs/ml of plasma as reported previously10 suggesting that coinfection did not have a substantial effect on the 
replication kinetics of both viruses. Surprisingly, ZIKV viremia was readily detectable at day 1 PI as compared to 
day 2 PI for DENV-2 yet early ZIKV replication was not found to enhance DENV-2 viremia. Low levels of ZIKV 
was detectable in 2/5 animals at day 7 PI whereas 4/5 animals had <3 logs of DENV-2/ml of plasma at day 7 PI. 
By day 14 PI both ZIKV and DENV-2 plasma viral loads were below the levels of detection.

Acute viral replication is associated with alterations in serum markers of tissue injury during 
coinfection with ZIKV and DENV-2.  To determine if simultaneous infection with ZIKV and DENV was 
accompanied by tissue damage, we examined the levels of Serum glutamic pyruvic transaminase (SGPT), Serum 
glutamic oxaloacetic transaminase (SGOT), Alkaline phosphatse, albumin and Creatine Phosphokinase (CPK), 
in serum samples that were collected longitudinally after infection and compared them to pre-infection values 
(Fig. 2a–f).
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Figure 1.  Simultaneous coinfection with ZIKV and DENV-2 does not alter the kinetics of plasma viremia 
in vivo. The kinetics of ZIKV (red) and DENV-2 (blue) viral loads in plasma of rhesus macaques (n = 5) that 
were simultaneously coinfected with both viruses at the same site subcutaneously. Error bars represent standard 
error.
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SGPT, also called Alanine aminotransferase (ALT) and SGOT, also called Aspartate aminotransferase (AST) 
are liver enzymes that play a role in hepatocyte integrity, whereas Alkaline phosphatase is a canicular enzyme 
that is essential for bile production30. Serum albumin is a marker for liver function mass as albumin is synthe-
sized in the liver30. An increase in the serum levels of SGPT and SGOT is indicative of acute and chronic liver 
injury31. Our results showed that coinfection with ZIKV and DENV-2 significantly enhanced serum levels of both 
SGPT (F(9,40) = 12.39, p < 0.0001) and SGOT (F(9,40) = 15.57, p < 0.0001) during the 1st week of infection, with 
both enzymes reaching peak levels at day 4 PI, suggesting that coinfection is accompanied by increased levels 
of serum markers associated with acute liver injury. There was no significant difference in the level of Alkaline 
phosphatase whereas serum albumin levels (F(9,40) = 3.003, p = 0.0079) declined significantly following infection 
though the level of decline was variable. Previous studies have reported that ZIKV was isolated from the subjects 
who presented with jaundice during an outbreak in Africa32,33. Wu et al.34 at reported that a patient infected with 
ZIKV experienced signs of liver injury, a decrease in albumin levels, and an increase in lactic dehydrogenase, 
alpha-hydroxybutyric dehydrogenase and creatine kinase in the serum. Others have reported similar changes in 
rhesus macaques infected with ZIKV35, whereas increases in both SGPT and SGOT levels during acute stages of 
DENV infection have been well documented. There is, however, little or no information regarding changes in liver 
enzymes during the early acute phase of coinfection with ZIKV and DENV. SGPT and SGOT levels declined to 
baseline or below baselines by day 7–14 PI.

CPK is a tissue specific enzyme that is significantly expressed only in skeletal muscle, heart and brain and 
studies have shown that serum levels of CPK are elevated during muscle injury36–42. Coinfection with ZIKV 
and DENV-2 was associated with a significant increase in serum CPK levels during the 1st week of infection 
(F(9,40) = 2.607, p = 0.0180) suggesting that infection is likely accompanied by acute muscle damage.

Numerous studies have reported that ZIKV is shed in the urine for long periods of time, whereas others 
have reported that ZIKV damages the epithelial cells in the kidneys43–50. To determine if coinfection with ZIKV 
and DENV-2 was associated with abnormal kidney function, we examined the ratio of Blood Urea Nitrogen to 
Creatinine (B/C ratio) in serum that was collected longitudinally and compared them to pre-infection values 
(Fig. 2f). The B/C ratio has been used extensively to examine kidney function and acute injury51,52. Our results 
showed that B/C ratio was significantly elevated following infection with ZIKV and DENV-2 and stayed elevated 
though 8 weeks of infection (F(9,40) = 3.960, p = 0.0011). Taken together these results suggest that coinfection 
alters normal kidney function during the early stages of infection.

0 1 2 3 4 5 7 14 28 56
80

90

100

110

120
Albumin 

F(9,40) = 3.003 
P = 0.0079 

B/C Ratio 

0 1 2 3 4 5 7 14 28 56
0

50

100

150

200 F(9,40) = 3.960 
P = 0.0011 

Alkaline Phosphatase 

0 1 2 3 4 5 7 14 28 56
60

80

100

120

140

160 F(9,40) = 0.9729 
P = 0.4765 

SGPT 

0 1 2 3 4 5 7 14 28 56
0

50

100

150

200

250 F(9,40) = 12.39 
P < 0.0001 

SGOT 

0 1 2 3 4 5 7 14 28 56
0

100

200

300

400

500 F(9,40) = 15.57 
P < 0.0001 

CPK 

0 1 2 3 4 5 7 14 28 56
0

500

1000

1500

2000 F(9,40) = 2.607 
P = 0.0180 

a) b)   c)

d)       e)   f)

Days Post Infection 

%
 R

el
at

iv
e 

to
 D

ay
 0

 
%

 R
el

at
iv

e 
to

 D
ay

 0
 

Days Post Infection 

Figure 2.  Serum markers of tissue injury are significantly elevated during the acute phase of coinfection with 
ZIKV and DENV-2. Kinetics of (a) SGPT (Serum glutamic pyruvic transaminase), (b) SGOT (Serum glutamic 
oxaloacetic transaminase), (c) Alkaline Phosphatase, (d) serum Albumin, (e) CPK (Creatine Phosphokinase), 
and (f) BUN/creatinine ratio (B/C ratio) in serum that was collected longitudinally from rhesus macaques 
(n = 5) coinfected with ZIKV and DENV-2. Line represents day 0 values. Statistical differences were determined 
using One-way ANOVA and a p < 0.05 was considered significant. Error bars represent standard error.
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Red blood cell indices are significantly lower during the early acute phase of coinfection with ZIKV 
and DENV-2.  To determine if coinfection was associated with changes in the red blood cell indices, we examined 
red blood cell (RBC), reticulocyte and platelet counts, hematocrit (HCT), Mean Corpuscular Hemoglobin (MCH), 
Mean Corpuscular Hemoglobin Concentration (MCHC), and Mean Cell Volume (MCV) following coinfection with 
ZIKV and DENV-2 and compared them to preinfection values (Fig. 3a–g). We observed a significant drop in RBC 
counts (F(9,40) = 12.39, p < 0.0001) and HCT (F(9,40) = 7.180, p < 0.0001) by day 2 PI that remained significantly 
lower till day 14 PI and recovered to baseline levels by day 28 PI (Fig. 3a,b). In contrast to RBC counts, platelet counts 
(F(9,40) = 6.214, p < 0.0001) declined marginally during the 1st 5 days of infection after which it increased significantly 
by day 7 PI and remained above baseline levels till day 56 PI (Fig. 3c). Interestingly, reticulocyte counts (F(9,40) = 27.31, 
p < 0.0001) showed a significant decline relative to baseline during the 1st 5 days after infection and then significantly 
increased by day 7 PI to peak at day 14 PI and returned to baseline levels by day 56 PI (Fig. 3d). Previous studies have 
reported that 2/12 patients coinfected with ZIKV and DENV experienced a decline in platelet counts20.

MCH that measures hemoglobin (Hb) amount/red cell showed a steady decline and stayed below baseline levels 
during the 56 days of infection though this difference was not significant due to variation between animals (Fig. 3e). 
On the other hand, MCHC (F(9,40) = 17.83, p < 0.0001), which is a measure of the amount of Hb relative to cell size, 
remained at baseline levels till day 4 PI after which it significantly declined and stayed low till day 28 PI after which it 
recovered to near baseline levels by day 56 PI (Fig. 3f). MCV (F(9,40) = 9.420, p < 0.0001) which is a measure of the 
average size of red cells marginally declined steadily till day 4 PI relative to baseline and then significantly increased at 
day 5 PI and stayed high till day 14 PI after which it declined to below baseline levels by day 56 PI (Fig. 3g).

Taken together, the hematological changes described above suggests that coinfection with ZIKV and DENV-2 
was associated transient anemia during the acute phase of infection. The average body weight of the 5 animals 
(~7.2 Kg) used in the study did not change over the course of 8 weeks of infection. Additionally, minimal blood 
volumes were collected at each of the time points suggesting that these changes were not likely due to sampling.

Coinfection with ZIKV and DENV-2 is associated with a significant increase is pro-inflammatory 
cytokines during the course of infection.  Previous studies have shown that high levels of 
pro-inflammatory mediators was associated with increased pathogenesis of flavivirus infections53,54. To determine 
if coinfection with ZIKV and DENV was accompanied by release of cytokines, we quantified plasma cytokine 
levels using the Cytokine Monkey Magnetic 29-Plex Panel for Luminex™ Platform (Thermofisher Scientific, 
Waltham, MA) that simultaneously quantifies 29 cytokines (FGF-basic, IL-1β, G-CSF, IL-10, IL-6, IL-12, 
RANTES, Eotaxin, IL-17, MIP-1α, GM-CSF, MIP-1β, MCP-1, IL-15, EGF, IL-5, HGF, VEGF, IFNγ, MDC, I-TAC, 
MIF, IL-1RA, TNFα, IL-2, IP-10, MIG, IL-4 and IL-8) and compared them to pre-infection values (Fig. 4a–j and 
Suppl. Fig. 1).
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Figure 3.  Red blood cell indices significantly decline during the acute phase of coinfection with ZIKV and DENV-
2. Kinetics of (a) Red blood cell counts (RBC counts), (b) Hematocrit (HCT), (c) Platelet counts, (d) Reticulocyte 
counts, (e) Mean Corpuscular Hemoglobin (MCH), (f) Mean Corpuscular Hemoglobin Concentration (MCHC), 
and (g) Mean Cell Volume (MCV) in serum that was collected longitudinally from rhesus macaques (n = 5) 
coinfected with ZIKV and DENV-2. Line represents day 0 values. Statistical differences were determined using One-
way ANOVA and a p < 0.05 was considered significant. Error bars represent standard error.
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We observed a significant increase in plasma levels of IL-17 (F(8,36) = 6.634, p < 0.0001), IL-4 (F(8,36) = 23.23, 
p < 0.0001), FGF (F(8,36) = 3.294, p = 0.0064), Eotaxin (F(8,36) = 2.598, p = 0.0236), RANTES (F(8,36) = 2.831, 
p = 0.0152), TNFα (F(8,36) = 3.218, p = 0.0073), MIG (F(8,36) = 2.637, p = 0.0220), I-TAC (F(8,36) = 3.698, 
p = 0.0030), MCP-1 (F(8,36) = 5.482, p = 0.0001), and MIP-1α (F(8,36) = 6.494, p < 0.0001). Interestingly, 
Eotaxin, RANTES, MIG, I-TAC and MCP-1 demonstrated a biphasic peak with a lower peak at day 1 PI followed 
by a second higher peak at either day 5 or 7 PI. On the other hand, IL-17 and FGF (Fig. 4a,c) were significantly 
elevated during the 1st 3 days following infection after which they declined to baseline levels. In contrast, IL-4 
(Fig. 4b) significantly increased at day 4 PI and remained elevated until day 14 PI. The rest of 19 cytokines in the 
panel did not differ significantly as compared to pre-infection values (Suppl. Fig. 1). Previous studies have shown 
that MCP-1, I-TAC and numerous other cytokines were significantly elevated during flavivirus infections10,55–60. 
Macaques coinfected with ZIKV and DENV-2 did not show signs of rash or other symptoms that are normally 
associated with severe disease that may be due to the limitations of the model.

Significant expansion of pro-inflammatory CD14+CD16+ monocytes during coinfection with 
ZIKV and DENV-2.  Monocyte/macrophages are thought to be a major target cell for both ZIKV and 
DENV61,62 and a major source of pro-inflammatory cytokines63. We examined the effect of coinfection on the 
absolute numbers of monocytes (Fig. 5a) and the frequency of monocyte/macrophage subsets in peripheral blood 
that was collected at day 1, 3, 4, 5, 7, 14, and 28 PI using flow cytometry and compared them to each animals day 
0 values (Fig. 5b,c). Monocyte/macrophage subsets were discriminated based on the differential expression of 
CD14 and CD16 on Lin (CD3/8/20)− HLA-DR+ myeloid cells and divided into classical (CD14+CD16−), inter-
mediate (CD14+CD16+), non-classical (CD14−CD16+), and double negative (CD14−CD16−) subsets based on 
the classification reported in earlier studies64.

There was no difference in the absolute numbers of peripheral blood monocytes during the course of 
infection as compared to pre-infection values (Fig. 5a). Although the absolute numbers of monocytes did not 
change, coinfection was associated with changes in the frequency of monocyte subsets (Fig. 5b,c). The fre-
quency of CD14+CD16− monocytes marginally increased following coinfection with ZIKV and DENV that 
did not significant differ from that of baseline. In contrast to CD14+CD16− monocytes, the proportions of 
CD14+CD16+ monocyte subsets significantly increased following coinfection and stayed elevated even at day 28 
PI (F(7,32) = 2.644, p = 0.0282). Previous studies have shown that the proportions of CD14+CD16+ subsets were 
increased during either ZIKV or DENV infections as compared to healthy controls10,55,56. Others have reported 
that CD14+CD16+ monocytes were a primary source of pro-inflammatory cytokines65 suggesting that coinfec-
tion with ZIKV and DENV was likely associated significant activation of pro-inflammatory subsets of monocytes 
and release of pro-inflammatory mediators in response to ZIKV and DENV. There was no apparent difference in 
the proportion of CD14−CD16+ subsets relative to baseline that was most likely due to variation between animals, 
whereas the proportion of CD14−CD16− subsets significantly declined during the 1st 1 week after coinfection 
(F(7,32) = 2.324, p = 0.0490).
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Figure 4.  Pro-inflammatory cytokine levels are significantly elevated during the acute phase of coinfection with 
ZIKV and DENV-2. Kinetics of (a) IL-17, (b) IL-4, (c) FGF, (d) Eotaxin, (e) RANTES, (f) TNFα, (g) MIG, (h) 
I-TAC, (i) MCP-1, and (j) MIP-1α in plasma that was collected longitudinally from rhesus macaques (n = 5) 
coinfected with ZIKV and DENV-2. Statistical differences were determined using One-way ANOVA and 
p < 0.05 was considered significant. Error bars represent standard error.
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Discussion
Both ZIKV and DENV are endemic in the same regions and transmitted by A. aegypti mosquitoes that are prev-
alent in these regions. Although both these flaviviruses are known to cause mild disease in most people, there is 
limited information regarding the clinical outcomes of coinfection with both ZIKV and DENV. Recent studies 
have documented the potential for mosquitoes to be coinfected with ZIKV and DENV and effectively transmit 
these infections simultaneously raising the possibility that people in endemic areas can be coinfected with both 
the viruses. Alternatively, an individual could be infected by mosquitoes carrying either DENV or ZIKV and 
become coinfected with both viruses. Numerous reports have documented cases of individuals who have been 
infected with both ZIKV and DENV though the consequences of such coinfections are poorly understood66–69. 
We, and others, have previously shown the prior exposure to ZIKV induces cross-reactive antibody responses 
that in the absence of cross-neutralization, significantly enhances DENV viremia. Interestingly, rhesus macaques 
that were simultaneously coinfected with ZIKV and DENV-2 had plasma viral loads similar to what has been 
reported previously for ZIKV or DENV-2 monoinfected animals10 suggesting that simultaneous coinfection did 
not modulate kinetics of either ZIKV or DENV-2 replication; ZIKV viremia was readily apparent at day 1 PI, 
whereas DENV viremia was detectable only at day 2 PI, however, there was no significant enhancement of DENV 
viremia in the presence of higher ZIKV viral loads or vice versa.

The lack of significant changes in the kinetics of viral replication was somewhat of a surprise given the fact that 
the primary target cells for both ZIKV and DENV are monocytes/macrophages. Although coinfection was not 
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Figure 5.  Proportions of pro-inflammatory monocyte subsets are significantly elevated during coinfection 
with ZIKV and DENV-2. (a) Absolute number of monocytes in peripheral blood, (b) representative dot plots 
showing changes in monocyte subsets in peripheral blood that was collected longitudinally from a single 
animal at day 0, 3, 5, and 28 after coinfection with ZIKV and DENV-2. Monocyte subsets were discriminated 
based on the expression of CD14 and CD16 on Lin (CD3/CD8/CD20)−HLA-DR+ myeloid cells. (c) Kinetics 
of peripheral blood monocyte subsets in rhesus macaques that were coinfected with ZIKV and DENV-2. Line 
represents day 0 values. Statistical differences were determined using One-way ANOVA and p < 0.05 was 
considered significant. Error bars represent standard error.
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accompanied by a significant change in the absolute number of monocytes in blood, we observed a shift in the 
phenotype of monocyte/macrophage subsets with a significant increase in the proportions of pro-inflammatory 
CD14+CD16+ monocyte subsets as early as day 1 PI, that expanded further over the course of infection. Similar 
changes have been reported in other viral infections70,71. It is likely that ZIKV and DENV either replicate within 
different intracellular compartments of monocyte/macrophage subsets or that they infect and replicate in dif-
ferent target cells, since there is little or no evidence in the literature to show if ZIKV and DENV superinfect the 
same cells in vivo. The kinetics of viral replication, however, seems to suggest that both ZIKV and DENV likely 
replicate independently of the each other without significantly modulating each other’s replication. Additional 
studies are needed to address this question in greater detail.

Activation of monocyte/macrophages was accompanied by significant increases in numerous 
pro-inflammatory cytokines that have been implicated in the pathogenesis of DENV infections72. Interestingly, 
a number of cytokines (Eotaxin, RANTES, MIG, I-TAC and MCP-1) appeared to show a biphasic peak with a 
lower peak at day 1 PI that coincided with the onset of ZIKV viremia and a second higher peak at day 5 PI that 
coincided with peak DENV-2 viremia suggesting that coinfection with ZIKV and DENV-2 appear to differentially 
modulate host cytokine responses. A majority of these cytokines are known to be monocyte/macrophage derived 
suggesting that activation of these subsets during coinfection likely drives the release of these pro-inflammatory 
cytokines. Interestingly, IL-17 and FGF was significantly upregulated only during the 1st 1–3 days PI whereas 
IL-4 was significantly elevated only after day 4 PI, a time point that coincided with a decline in ZIKV viremia. 
Previous studies have reported that DENV infection was associated with secretion of Th2 cytokines such as IL-4 
and IL-1073. Schaeffer et al.74 showed that infection of dermal CD14+ cells by DENV was significantly enhanced 
in the presence of IL-4, whereas Fernando et al.75 reported that both IL-10 and IL-17 were elevated during the 
early stages of severe DENV infection. Elevated levels of IL-10 and IP-10 were found to play a role in DENV 
disease severity associated with vascular leakage76. Both IL-6 and MIP-1α were significantly elevated as early as 
day 1 PI and remained elevated through the course of infection suggesting that the pro-inflammatory environ-
ment persists for longer periods of time even after plasma viremia levels had declined to levels below the limits 
of detection.

Coinfection was accompanied by a dramatic decrease in Red blood cell indices namely, RBC counts and HCT 
during the 1st 14 days following infection, whereas MCH steadily declined starting at day 1 PI and remained 
below baseline levels even at day 56 PI. Platelet and reticulocyte counts declined below baseline levels during 
the 1st 5 days following coinfection after which they significantly increased. On the other hand, MCHC that is 
a measure of the amount of Hb relative to the size of RBC remained steady during the 1st 4 days followed by a 
significant decline below baseline levels. Taken together, these results suggest that coinfection was associated with 
anemia that became apparent as early as 2 days PI. Previous studies have reported that severe DENV infection was 
associated with anemia in some subjects66–69.

Although coinfection was not associated with altered viral kinetics, serum levels of muscle, liver and kidney 
injury markers such as CPK, SGOT, SGPT and B/C ratio significantly increased during the early stages of infec-
tion and coincided with the kinetics of plasma viremia. Previous studies have shown that increased levels of CPK 
during DENV infections were associated with neuromuscular weakness and myositis77–79. Elevated levels of CPK 
was reported to correlate with rhabdomyolysis during DENV fever80,81. Others have implicated TNFα as a myo-
toxic cytokine82. In support of this hypothesis, plasma TNFα levels were found to be significantly upregulated in 
animals coinfected with ZIKV and DENV-2. Likewise numerous studies have reported an increase in markers of 
liver dysfunction such as SGOT and SGPT during severe DENV infections in human subjects that peaked around 
day 5–675,77,83, and incidence of acute kidney damage have been documented during DENV infections84. Taken 
together, these results suggest that coinfection with ZIKV and DENV is associated with changes in markers of 
acute tissue injury.

In conclusion, our results show that macaques simultaneously coinfected with ZIKV and DENV-2 do not 
significantly alter the acute kinetics of either ZIKV or DENV-2 plasma viremia but is accompanied by signifi-
cant activation of pro-inflammatory monocyte/macrophage subsets and release of numerous pro-inflammatory 
mediators that have been shown to play a role in severe disease. Interestingly, these changes coincide with changes 
in Red blood cell indices, and serum levels of CPK, SGPT, SGOT and B/C ratio suggesting that coinfection was 
accompanied by transient anemia and acute tissue injury.

Methods
Animals, infection and samples.  Healthy rhesus macaques of Indian origin (n = 5; 4 males and 1 female; aver-
age body weight of 7.2 Kg; average age 9 years) acquired by Bioqual Inc. (Rockville, MD) that were seronegative for 
ZIKV and DENV were used in this study. Animals were housed at Bioqual and cared for in accordance with local, 
state and federal policies in an Association for Assessment and Accreditation of Laboratory Animal Care International 
(AAALAC)-accredited facility. All the animal experiments were performed as per protocols, that were reviewed and 
approved by Institutional Animal Care and Use Committee at Bioqual Inc. in accordance with relevant guidelines and 
regulations, and samples were obtained through a tissue sharing protocol. All five animals were infected subcutaneously 
with 1 ml of 106 TCID50/ml of Zika virus (Puerto Rico Strain; Genbank KU501215) and 105 TCID50/ml of DENV-2 
virus (strain 16681) at the same time and site. The challenge titer was based on previous studies10,26,85.

Peripheral blood samples were collected longitudinally at day 0, 1, 2, 3, 4, 5, 7, 14, 28 and 56. Peripheral 
blood mononuclear cells (PBMC) were obtained by density gradient centrifugation and cryopreserved along 
with plasma and serum at each time point. Cumulative Blood Counts (CBC) including platelet and reticulocyte 
counts, Red blood cell indices (RBC counts, HCT, MCH, MCHC, MCV etc) and serum chemistry was performed 
at IDEXX Laboratories, Inc. (Rockville, MD).
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Absolute quantification of plasma viral loads by qRT-PCR.  Plasma viral loads were determined by 
real-time quantitative RT-PCR using RNA that was obtained from plasma using the QIAamp MinElute Virus 
spin kit (Qiagen) and reverse transcribed using a mixture of random hexamers and anchored oligo-dT primers. 
Synthesized cDNA was PCR amplified using Zika (forward: GGAAAAAAGAGGCTATGGAAATAATAAAG, 
reverse: CTCCTTCCTAGCATTGATTATTCTCA, probe: AGTTCAAGAAAGATCTGGCTG) and DENV-2 (for-
ward: CAGGGTGTGGATTCAAGAAAACCCATGG, reverse: TGCTTGTTAACCCAATCAATGAGCC, probe: 
ACTCCAGTG/ZEN/GAATCATGGGAGGAAATCCCA) specific primers and probes10,86. PCR reactions were set up 
in triplicate using Taq-polymerase (Bioline USA, Inc., (Taunton, MA) and assayed in the 7500 Taqman instrument 
(Applied Biosystems) under the following conditions: 48 °C for 30 minutes, 95 °C for 10 minutes followed by 40 cycles 
of 95 °C for 15 seconds and 1 minute at 60 °C. The number of ZIKV and DENV-2 copies were determined using ZIKV 
and DENV-2 standards as described previously10. The limit of detection was 50 copies/ml.

Cytokine levels in plasma.  Plasma cytokine levels were determined using the Cytokine Monkey Magnetic 
29-Plex Panel for Luminex™ Platform (Thermofisher Scientific, Waltham, MA) that simultaneously quantifies 
29 cytokines namely, FGF-basic, IL-1β, G-CSF, IL-10, IL-6, IL-12, RANTES, Eotaxin, IL-17, MIP-1α, GM-CSF, 
MIP-1β, MCP-1, IL-15, EGF, IL-5, HGF, VEGF, IFNγ, MDC, I-TAC, MIF, IL-1RA, TNFα, IL-2, IP-10, MIG, IL-4 
and IL-8. Plasma samples were diluted at a ratio of 1:2 in assay diluent as per manufacturer’s instructions. The 
assay was repeated for each sample and the average concentration was determined for each cytokine. Plates were 
analyzed using Luminex xMAP technology on a Bio-plex 200 system (Biorad). Collected data was analyzed, and 
the concentrations were determined using Bioplex manager software 6.1. The operator was blinded to the identity 
of the samples prior to each assay and data was unblinded after analysis.

Antibodies and flow cytometry.  Peripheral blood mononuclear cells (PBMC) were labeled with a panel 
of anti-CD3-Pacific blue (PB), CD8-PB, VIVID live dead stain, CD20-PB, CD14-FITC, HLA-DR-ECD and 
CD16-Cy-7-APC. Monocyte subsets were discriminated based on the differential expression of CD14 and CD16 
on CD3/CD8/20−HLA-DR+ myeloid cells. All the antibodies were titrated using rhesus macaque PBMC. Labeled 
cells were washed and fixed in 0.5% PFA and analyzed on a LSR-II flow cytometer. One million total events were 
collected for analysis. Collected data was analyzed using Flowjo 9.6 software. The operator was blinded to the 
identity of the samples and data was unblinded after analysis.

Data analysis.  Statistical analysis was performed using GraphPad Prism Version 5.0 software (GraphPad 
Prism Software, Inc. San Diego, CA). Differences between time points were determined using One-way ANOVA 
followed by post-hoc analysis using Tukey’s multiple comparisons test. A p < 0.05 was considered significant. 
Error bars represent standard error. All data generated during this study are included in the manuscript and 
available on request.
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