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essential role of prostaglandin e2 
and the EP3 receptor in lymphatic 
vessel development during 
zebrafish embryogenesis
Ryo Iwasaki1, Kyoshiro Tsuge  1, Koichiro Kishimoto1, Yuta Hayashi1, Takuya Iwaana1, 
Hirofumi Hohjoh1, Tomoaki Inazumi1,2, Atsuo Kawahara3, soken Tsuchiya1,2 & 
Yukihiko Sugimoto  1,2

Lymphatic endothelial cells arise from the venous endothelial cells in embryonic lymphatic 
development. However, the molecular mechanisms remain to be elucidated. We here report that 
prostaglandin (pG) e2 plays essential roles in the embryonic lymphatic development through the EP3 
receptor, one of the PGE2 receptors. Knockdown of the EP3 receptor or inhibition of cyclooxygenases 
(COX; rate-limiting enzymes for PG synthesis) impaired lymphatic development by perturbing 
lymphatic specification during zebrafish development. These impairments by COX inhibition were 
recovered by treatment with sulprostone (EP1/3 agonist). Knockdown of the EP3 receptor further 
demonstrated its requirement in the expression of sex determining region Y-box 18 (sox18) and nuclear 
receptor subfamily 2, group F, member 2 (nr2f2), essential factors of the lymphatic specification. The 
EP3 receptor was expressed in the posterior cardinal vein (region of embryonic lymphatic development) 
and the adjacent intermediate cell mass (ICM) during the lymphatic specification. COX1 was expressed 
in the region more upstream of the posterior cardinal vein relative to the EP3 receptor, and the COX1-
selective inhibitor impaired the lymphatic specification. On the other hand, two COX2 subtypes did 
not show distinct sites of expression around the region of expression of the EP3 receptor. Finally, 
we generated EP3-deficient zebrafish, which also showed defect in lymphatic specification and 
development. Thus, we demonstrated that COX1-derived PGE2-EP3 pathway is required for embryonic 
lymphatic development by upregulating the expression of key factors for the lymphatic specification.

The lymphatic system is a major component of the vertebrate vasculature and plays pivotal roles in the collection 
of interstitial fluid, absorbance of dietary lipids, and trafficking of immune cells1. Development of the lymphatic 
system begins in the early developmental stages, and lymphatic endothelial cells develop from endothelial cells in 
the posterior cardinal vein2,3. Vascular endothelial growth factor c (vegfc) and its receptor, fms-related tyrosine 
kinase 4 (flt4; also known as vascular endothelial growth factor receptor 3, vegfr3) are key factors for lymphatic 
specification4–8. Vegfc released by the dorsal aorta induces the lymphatic specification through binding to flt4 
expressed in venous endothelial cells. Sex determining region Y-box 18 (sox18), a member of sox transcription 
factor family, is also essential for the lymphatic specification through the induction of transcriptional factors, 
such as nuclear receptor subfamily 2, group F, member 2 (nr2f2; also known as COUP transcription factor 2, 
COUP-TFII)8–10. Nr2f2 controls the expression of lymphatic genes, such as lymphatic vessel endothelial hya-
luronic receptor 1b (lyve1b; a lymphatic marker)11–13. Additionally, apelin (apln), collagen and calcium bind-
ing EGF domains 1 (ccbe1), and wingless-type MMTV integration site family, member 5b (wnt5b) (secreted 
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proteins) were reported to promote lymphatic development6,14–16. On the other hand, bone morphogenetic pro-
tein 2b (bmp2b) was shown to negatively modulate the development of lymphatic endothelial cells17.

Prostaglandin (PG) E2 is an arachidonate metabolite that is synthesized via a pathway with cyclooxygenase 
(COX) as the rate-limiting enzyme. PGE2 has been shown to exert a variety of actions by binding to four specific 
G-protein-coupled receptors (EP1, EP2, EP3, and EP4) on the plasma membrane of neighboring cells in humans 
and mice18,19. The EP1 receptor is coupled to Gq to increase intracellular Ca2+ concentrations. The EP2 and 
EP4 receptors are coupled to Gs and increase intracellular cAMP concentrations via the activation of adenylyl 
cyclase. The EP3 receptor is coupled to Gi, and mediates the inhibition of adenylyl cyclase and the upregulation 
of intracellular Ca2+ concentrations20,21. The formation of lymphatic vessels is known to occur during not only 
embryogenesis but also the progression of various cancers22, and COX2-derived PGE2 was found to facilitate lym-
phangiogenesis during tumor development through the EP3 receptor in mice23,24. In addition, PGE2 was shown 
to accelerate the formation of lymphatic vessels through the EP3 receptor in granulation tissues25,26. These data 
suggest the possibility that the PGE2-EP3 pathway plays important roles in the formation of lymphatic vessels. 
However, it remains unknown whether the PGE2-EP3 pathway is involved in the development of lymphatic ves-
sels during embryogenesis.

To identify the role of the PGE2-EP3 pathway in lymphatic vessel development during embryogenesis, we 
used zebrafish as a model organism, because zebrafish embryos are optically clear and undergo rapid early devel-
opment outside the maternal body27. In addition, zebrafish share many similarities in their molecular mecha-
nisms of lymphatic vessel formation with other vertebrates, and express three COX subtypes (COX1, COX2a, and 
COX2b) and eight PGE2 receptor subtypes (EP1a, EP1b, EP2a, EP2b, EP3, EP4a, EP4b, and EP4c)28–31. Here, we 
report novel functions of the PGE2-EP3 pathway in the formation of lymphatic vessels during early development.

Results
the pGe2-EP3 pathway is involved in lymphatic vessel formation during early development. To 
investigate whether the PGE2-EP3 pathway regulates lymphatic vessel formation in embryogenesis, we analyzed the 
effects of EP3 receptor knockdown on zebrafish lymphatic development using Tg(fli1a:egfp) embryos, in which both 
blood and lymphatic vessels are labeled27,32. We used two splice-blocking morpholino antisense oligos (MOs), EP3 
MO1 and MO2 (Supplementary Fig. S1A, Supplementary Table S1). Quantitative analysis showed that injection of EP3 
MO1 or MO2 both markedly decreased the mature mRNA expression level of the EP3 receptor at 24 hours post fertili-
zation (hpf) (Supplementary Fig. S1B). To evaluate lymphatic vessel formation, we analyzed the parachordal lymphang-
ioblast (PL) at the horizontal myoseptum, which is commonly used to study lymphatic development in zebrafish9,27. 
In control (Cont) MO-injected embryos, the PL was fully formed in most of the segments at 52 hpf (Fig. 1A,B). On the 
other hand, PL formation was severely impaired in morphants injected with EP3 MO1 or MO2 (Fig. 1A), and the ratio 
of PL-positive segments was also significantly reduced in these morphants (Fig. 1B). We then investigated whether 
indomethacin, a non-selective COX inhibitor28, induces lymphatic vessel defects. In vehicle-treated embryos, PL was 
normally formed in the horizontal myoseptum at 52 hpf. On the other hand, treatment with indomethacin inhibited 
PL formation and significantly reduced the ratio of PL-positive segments (Fig. 1C,D). This effect of indomethacin was 
substantially recovered by cotreatment with sulprostone, an EP1/3 agonist30 (Fig. 1C,D). Furthermore, we investigated 
the formation of thoracic duct (TD), which is located immediately ventral to the dorsal aorta in the trunk, at 5 days post 
fertilization (dpf) (Fig. 1E,F). In Cont MO-injected embryos, the TD was fully formed in most of the segments. On the 
other hand, TD formation was severely impaired in morphants injected with EP3 MO1 and MO2 (Fig. 1E), and the 
ratio of TD-positive segments was significantly reduced in the EP3 MO1-injected morphants (Fig. 1F). These results 
indicated that the PGE2-EP3 pathway plays an important role in lymphatic vessel formation during early development.

the pGe2-EP3 pathway is required for lymphatic specification from venous to lymphatic 
endothelial cells. Lymphatic endothelial cells are generated from pre-existing endothelial cells of the poste-
rior cardinal vein from approximately 24 to 36 hpf, and subsequently sprout from the posterior cardinal vein after 
36 hpf and migrate to colonize embryonic tissues. To identify the lymphatic development process in which the 
PGE2-EP3 pathway is involved, we performed time-dependent inhibition of PG synthesis by treatment with indo-
methacin for a limited time (Fig. 2A). There was no significant difference in the ratios of PL-positive segments 
between vehicle treatment and indomethacin treatment from 12 to 24 hpf, when the posterior cardinal vein devel-
ops. On the other hand, indomethacin treatment from 24 to 36 hpf significantly reduced the ratio of PL-positive 
segments. The degree of reduction by the treatment from 24 to 36 hpf was equivalent to that by the treatment 
from 24 to 60 hpf. These data suggest the importance of the PGE2-EP3 pathway in the lymphatic specification 
process. Therefore, to determine whether the PGE2-EP3 pathway acts during the first steps of lymphatic develop-
ment, we analyzed the expression levels of lyve1b, which is a lymphatic marker13. Compared with control mor-
phants, EP3 receptor morphants had significantly lower expression levels of lyve1b at both 24 and 36 hpf (Fig. 2B). 
Whole-mount in situ hybridization (WISH) analysis demonstrated that lyve1b was expressed around the poste-
rior cardinal vein in Cont MO-injected embryos at both 24 and 36 hpf (Fig. 2C,D). By contrast, embryos injected 
with EP3 MO1 showed substantial decreases in lyve1b-derived signals around the posterior cardinal vein at both 
time points (Fig. 2C,D). Embryos treated with indomethacin also showed decreased expression levels of lyve1b at 
24 hpf (Fig. 2E). This effect of indomethacin was significantly recovered by cotreatment with sulprostone but not 
ONO-AE1-259 (an EP2 agonist)31 or ONO-AE1-329 (an EP4 agonist)31 (Fig. 2E). WISH analysis of embryos at 
24 hpf demonstrated that indomethacin markedly reduced lyve1b-derived signals around the posterior cardinal 
vein, where lyve1b-derived signals were observed in vehicle-treated embryos (Fig. 2F). Lyve1b-derived signals 
that were decreased by indomethacin were recovered to the levels similar to that of vehicle-treated embryos by 
the cotreatment of sulprostone (Fig. 2F). These results indicated that the PGE2-EP3 pathway contributes to the 
formation of lymphatic vessels by regulating the lymphatic specification, which is the first step of lymphatic devel-
opment during embryogenesis.
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Figure 1. Role of the PGE2-EP3 pathway in lymphatic vessel formation. (A) Tg(fli1a:egfp) embryos were 
injected with Cont MO, EP3 MO1, or MO2. Images of the trunks were taken at 52 hpf. (B) The ratio of PL-
positive segments in nine consecutive segments of (A) was quantitated. Each value represents the mean ± SEM 
(N = 3–4). (C) Tg(fli1a:egfp) embryos were treated with vehicle (Veh) or indomethacin (Indo; 100 μM) in 
the absence or presence of sulprostone (Sulp; 1 μM) from 0 to 52 hpf. Images were taken at 52 hpf. (D) The 
ratio of PL-positive segments in nine consecutive segments of (C) was quantitated. Each value represents the 
mean ± SEM (N = 3). (E) Tg(fli1a:egfp) embryos were injected with Cont MO, EP3 MO1, or EP3 MO2. Images 
of the trunks were taken at 5 dpf. (F) The ratio of TD-positive segments in eight consecutive segments of Cont 
MO- or EP3 MO1-injected morphants was quantitated. Each value represents the mean ± SEM (N = 5–9). 
**P < 0.01 vs Cont MO. DA: dorsal aorta; ISV: intersomitic vessel; PL: parachordal lymphangioblast; TD: 
thoracic duct. The PL is indicated by arrowheads, and the TD is indicated by arrows. The number at the bottom 
right of each panel indicates the number of embryos demonstrating the phenotype shown in the panel over the 
total number of embryos analyzed in a representative experiment.
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Figure 2. Role of the PGE2-EP3 pathway in the lymphatic specification from venous to lymphatic endothelial 
cells. (A) Tg(fli1a:egfp) embryos were treated with Veh or Indo (100 μM) for the indicated times. The ratio 
of PL-positive segments at 60 hpf was quantified. Each value represents the mean ± SEM (N = 5). **P < 0.01 
vs Veh. (B) Relative expression levels of lyve1b were quantified by RT-qPCR in morphants at 24 and 36 hpf. 
Values are shown relative to the value obtained with Cont MO at 24 hpf. Each value represents the mean ± SEM 
(N = 3–4) *P < 0.05, **P < 0.01 vs Cont MO at each corresponding time. (C,D) Expression of lyve1b was 
analyzed by WISH in morphants at 24 hpf (C) and 36 hpf (D). (E,F) Zebrafish embryos were treated with Veh 
or Indo (100 μM) in the absence or presence of EP agonists (10 μM) from 0 to 24 hpf. The expression level of 
lyve1b was quantified by RT-qPCR (E). The values are shown relative to the value obtained with Veh. Each value 
represents the mean ± SEM (N = 3–4). Expression of lyve1b was analyzed by WISH at 24 hpf (F). The number 
at the bottom right of each panel indicates the number of embryos demonstrating the phenotype shown in the 
panel over the total number of embryos analyzed in a representative experiment.
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Expression levels of genes involved in the lymphatic specification. To analyze the function of the 
PGE2-EP3 pathway in the lymphatic specification, we investigated the mRNA expression level of various genes 
(vegfc, flt4, sox18, nr2f2, apln, ccbe1, wnt5b, and bmp2b) crucially involved in the lymphatic specification4–10,14–17. 
By reverse transcription-quantitative PCR (RT-qPCR), we analyzed the expression levels of these genes in EP3 
receptor morphants at 24 and 36 hpf (Fig. 3A–H), which are early and late phases of lymphatic specification, 
respectively. At both 24 and 36 hpf, expression levels of sox18 were significantly decreased in EP3 receptor mor-
phants compared with control morphants (Fig. 3C). Expression levels of nr2f2 at 36 hpf were also significantly 
decreased in EP3 receptor morphants, although expression levels of nr2f2 at 24 hpf did not change (Fig. 3D). 
There was no significant difference in the expression levels of vegfc, flt4 (also known as a vein marker at 24 hpf), 
apln, ccbe1, wnt5b, and bmp2b (Fig. 3A,B,E–H). Because nr2f2 is expressed in not only the posterior cardinal vein 
but also the cranial and spinal cord10, we then examined the expression of nr2f2 around the posterior cardinal 
vein at 24 and 36 hpf by WISH analysis (Fig. 3I,J). Signals of nr2f2 were detected in the posterior cardinal vein and 
spinal cord in the trunk of Cont MO-injected embryos. In the trunk of EP3 MO1-injected embryos, nr2f2-derived 
signals were decreased only in the posterior cardinal vein but not the spinal cord, specifically in 36 hpf but not 24 
hpf. These data indicated that the EP3 receptor plays important roles in the expression of sox18 and nr2f2 in the 
lymphatic specification.

Figure 3. Expression of genes involved in lymphatic specification. (A–H) Relative expression levels (at 24 
and 36 hpf) of genes involved in lymphatic specification were quantified by RT-qPCR in morphants injected 
with Cont MO or EP3 MO1. Values are shown relative to the value obtained with Cont MO at 24 hpf. Each 
value represents the mean ± SEM (N = 3). *P < 0.05, **P < 0.01 vs Cont MO at each corresponding time. (I,J) 
Expression of nr2f2 was analyzed by WISH in morphants at 24 and 36 hpf. The number at the bottom right of 
each panel indicates the number of embryos demonstrating the phenotype shown in the panel over the total 
number of embryos analyzed in a representative experiment.

https://doi.org/10.1038/s41598-019-44095-5


6Scientific RepoRts |          (2019) 9:7650  | https://doi.org/10.1038/s41598-019-44095-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

COX1-derived PGE2 regulates the lymphatic specification through the EP3 receptor. We per-
formed WISH analysis to identify the sites of EP3 receptor expression during the lymphatic specification. As 
previously reported33, EP3 receptor-derived signals were detected around blood vessels of the trunk at 24 hpf 
(Fig. 4A). To analyze these expression sites in more detail, we compared the signals of the EP3 receptor with those 
of several tissue markers at 24 hpf, namely, hes-related family bHLH transcription factor with YRPW motif 2 
(hey2; an aorta marker)34, flt4 (a vein marker)35 and GATA binding protein 1a (gata1a; an erythrocyte progen-
itor marker)36, which is reported to be exclusively expressed in the intermediate cell mass (ICM) between the 
dorsal aorta and the posterior cardinal vein at this developmental stage36. The signals of the EP3 receptor were 
located ventral to those of hey2 and around those of flt4 and gata1a (Fig. 4A). Furthermore, we made transverse 
sections of these embryos that were subjected to WISH analysis (Fig. 4B). As previously reported34, hey2-derived 
signals were detected under the notochord in transverse sections. Signals of flt4 were located in a more ventral 
region than signals of hey2, and signals of gata1a were observed in a region between those of hey2 and flt4. EP3 
receptor-derived signals appeared to be located in the region with both flt4-derived and gata1a-derived signals. 
These results indicated that the EP3 receptor is expressed in the ICM and the posterior cardinal vein, where lym-
phatic endothelial cells are generated.

COX are rate-limiting enzymes for the biosynthesis of PGE2. As zebrafish have three subtypes of COX (COX1, 
COX2a, and COX2b), we tried to identify the specific COX subtypes involved in the lymphatic specification. 
We first performed WISH analysis at 24 hpf to identify the region of expression of each COX subtype during 
the lymphatic specification. COX1-derived signals were detected in the region more upstream of the posterior 
cardinal vein relative to EP3 receptor-derived signals (Fig. 5A). On the other hand, COX2a- and COX2b-derived 
distinctive signals were not detected in the trunk of zebrafish embryos (Fig. 5A). To clarify whether COX1 is 
involved in the lymphatic specification, we treated zebrafish embryos with a COX1-selective inhibitor, SC-56037 
and investigated the expression levels of lyve1b at 24 hpf using WISH analysis. SC-560 diminished lyve1b-derived 
signals around the posterior cardinal vein (Fig. 5B). The decrease in lyve1b-derived signals was recovered by 
cotreatment with sulprostone (Fig. 5B). These results suggested that COX1-derived PGE2 plays important roles in 
the lymphatic specification from venous to lymphatic endothelial cells during early development.

Impairment of lymphatic specification and development by EP3 receptor deficiency. To 
confirm the role of the EP3 receptor in the lymphatic specification, we finally generated EP3 receptor-deficient 
(EP3−/−) zebrafish using transcription activator-like effector nucleases (TALEN)38. Sequencing analysis showed 
that a stop codon was introduced into the transmembrane II region of the wild-type EP3 receptor by the dele-
tion of seven base-pairs in transmembrane I (Fig. 6A). EP3+/− and EP3−/− zebrafish were born at approximately 
expected Mendelian ratio and were viable (Fig. 6B). We then performed the Ca2+ mobilization assay to confirm 
whether this deletion actually results in a loss of the function of the EP3 receptor. Although HeLa cells trans-
fected with a construct encoding the wild-type EP3 receptor dose-dependently induced Ca2+ mobilization by 
sulprostone, HeLa cells transfected with a construct encoding the mutant EP3 receptor did not respond to sul-
prostone (Fig. 6C). Subsequently, we investigated the expression levels of lyve1b in EP3+/− and EP3−/− zebrafish 
to evaluate the effects of EP3 receptor deficiency on the lymphatic specification. Compared with EP3+/+ zebrafish, 
EP3−/− zebrafish but not EP3+/− zebrafish had significantly lower expression levels of lyve1b at 24 hpf (Fig. 6D). 
Additionally, WISH analysis showed that the expression levels of lyve1b around the posterior cardinal vein were 
remarkably decreased in EP3−/− zebrafish but not EP3+/− zebrafish at 36 hpf (Fig. 6E). Finally, we investigated 
the expression of lyve1b at 52 hpf using WISH analysis to analyze PL formation in EP3−/− zebrafish (Fig. 6F). In 
EP3+/+ zebrafish, lyve1b signals were detected in the horizontal myoseptum, indicating adequate PL formation. 
On the other hand, signals of lyve1b were not detected in EP3−/− zebrafish, indicating failure of PL formation. 
These results indicated the importance of EP3 receptor expression in lymphatic specification and development. 
Thus, the defects of lymphatic specification and development observed upon EP3 receptor knockdown and inhi-
bition of PG synthesis were also observed in EP3 receptor gene-deficient mutants.

Figure 4. EP3 receptor mRNA is expressed in the posterior cardinal vein and the neighboring ICM. (A,B) 
Regions of expression of marker genes and the EP3 receptor were analyzed by WISH at 24 hpf (A) and 
subsequently by microscopic examination of their cross-sections (B). Arrowheads indicate the regions where 
the signals derived from each gene were observed.
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Discussion
In this study, we showed for the first time that the PGE2-EP3 pathway plays an essential role in embryonic lym-
phatic development, by regulating the lymphatic specification, which is the first step of embryonic lymphatic 
development (Figs 1, 2, 5, 6). We found that the EP3 receptor is important for the expression of sox18 and nr2f2 
but not for vegfc, flt4, apln, ccbe1, wnt5b, and bmp2b (Fig. 3). The EP3 receptor was expressed in the posterior 
cardinal vein and the neighboring ICM (Fig. 4). On the other hand, COX1, but not two COX2 subtypes, was 
expressed in the region more upstream of the posterior cardinal vein relative to the region of expression of the 
EP3 receptor, and contributed to lymphatic specification (Fig. 5). Lymphatic vessels develop from endothelial 
cells in the posterior cardinal vein. Therefore, normal development of the posterior cardinal vein is important 
for lymphatic vessel development2,3. Our data using RT-qPCR and WISH analyses indicated that the expression 
levels of flt4, used as a maturation marker of venous endothelial cells, were not altered in EP3 receptor morphants 
at 24 hpf, when the posterior cardinal vein is fully developed (Fig. 3 and data not shown). Our observation in 
Tg(fli1a:egfp) zebrafish also showed that the posterior cardinal vein of EP3 receptor morphants was similar to 
that of control morphants at both 24 and 36 hpf (data not shown). Additionally, lymphatic vessel development 
was not impaired by the inhibition of PG synthesis from 12 to 24 hpf, when the posterior cardinal vein develops 
(Fig. 2A). These data indicated that the EP3 receptor does not affect the development of PCV, at least on evalua-
tion of lymphatic development. However, further detailed studies are needed to precisely determine whether the 
PGE2-EP3 pathway is involved in the differentiation and/or maturation of the posterior cardinal vein, at a level at 
which there is no effect on lymphatic development.

We found that the EP3 receptor plays important roles in the expression levels of sox18 and nr2f2 (Fig. 3). 
These genes are transcriptional factors that facilitate the lymphatic specification8–10. It was reported that sox18 
genetically interacts with vegfc in the early phase of lymphatic development9, and that sox18 is required for 
the expression of nr2f2 in zebrafish at 24 hpf11. Therefore, most of the effects of the EP3 receptor on the lym-
phatic specification might be exerted by the regulation of sox18 expression. These two transcriptional factors 
are expressed in the posterior cardinal vein10,39, where embryonic lymphatic development begins. Interestingly, 
EP3 receptors were found to be expressed in the posterior cardinal vein and the neighboring ICM (Fig. 4). These 
results suggested that the functions of the EP3 receptor in lymphatic specification were exerted directly (in the 
posterior cardinal vein) or indirectly (by certain secreted or plasma membrane-associated factors supplied from 
the adjacent ICM through a paracrine or juxtacrine route). Then, we investigated in vitro whether the EP3 recep-
tor expressed in venous endothelial cells accelerates differentiation toward lymphatic endothelial cells as a direct 
consequence of endothelial cell-autonomous activation of the EP3 receptor. However, stimulation by the selective 
human EP3 receptor agonist ONO-AE-248 did not upregulate the expression levels of the lymphatic marker 
LYVE1 in human umbilical vein endothelial cells (HUVECs), even when the human EP3 receptor was overex-
pressed in HUVECs (data not shown). On the other hand, expression levels of secreted regulatory factors such as 
apln, ccbe1, wnt5b, and bmp2b were not affected by knockdown of the EP3 receptor at both 24 and 36 hpf (Fig. 3). 
Additionally, there have been no reports to our knowledge regarding plasma membrane-localized molecules that 
are involved in the lymphatic specification. Further studies are required to fully understand the molecular mech-
anism of the lymphatic specification promoted by the PGE2-EP3 pathway.

In this study, we found that COX1-derived PGE2 accelerated the lymphatic specification during embryonic 
lymphatic development (Fig. 5), and the EP3 receptor had no effect on the expression levels of vegfc and flt4 
(Fig. 3). In contrast to our study, COX2-derived PGE2 was reported to accelerate lymphangiogenesis through the 
EP3 receptor in tumor implantation and granulation formation models23,25,26. Mice and human cells were used 
in these models and PGE2 upregulated the expression of Vegfc and Flt4 through the EP3 receptor. Although the 

Figure 5. COX1-derived PGE2 is involved in the lymphatic specification. (A) Expression of COX1, COX2a, 
and COX2b was analyzed by WISH at 24 hpf. (B) Zebrafish embryos were treated with Veh or SC-560 (25 μM) 
in the absence or presence of Sulp (10 μM) from 0 to 24 hpf, and the expression of lyve1b was analyzed by WISH 
at 24 hpf. The number at the bottom right of each panel indicates the number of embryos demonstrating the 
phenotype shown in the panel over the total number of embryos analyzed in a representative experiment.
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Figure 6. Effect of EP3 receptor deficiency on lymphatic specification and development. (A) Sequence alignment 
of the wild-type and mutant EP3 receptor. The seven base-pair deletion in mutant EP3 receptor is indicated by a 
dotted line. Transmembrane (TM) regions of the wild-type EP3 receptor are indicated by gray boxes. (B) Number 
of live births of EP3+/+, EP3+/−, and EP3−/− zebrafish. (C) HeLa cells were transfected with an expression vector 
encoding either the wild-type or mutant EP3 receptor. After 24 h, cells were incubated with loading buffer for 1 h and 
then treated with Veh or Sulp. Induced intracellular Ca2+ mobilization was evaluated by AUC analysis. *P < 0.05, 
**P < 0.01 vs Veh. Each value represents the mean ± SEM (N = 3). (D) Relative expression levels of lyve1b were 
quantified by RT-qPCR in EP3+/+, EP3+/−, and EP3−/− zebrafishs at 24 hpf. Values are shown relative to the value 
obtained with EP3+/+. Each value represents the mean ± SEM (N = 8–12) *P < 0.05 vs EP3+/+. (E) Expression 
of lyve1b was analyzed by WISH in EP3+/+, EP3+/−, and EP3−/− zebrafish at 36 hpf. (F) Expression of lyve1b was 
analyzed by WISH in EP3+/+ and EP3−/− zebrafish at 52 hpf. The PL is indicated by an arrowhead. The number at the 
bottom right of each panel indicates the number of embryos demonstrating the phenotype shown in the panel over 
the total number of embryos analyzed in a representative experiment.
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reason for these differences is unclear, a likely explanation is that these discrepancies may be owing to differ-
ences of venous endothelial cell types among species and tissues, and differences between embryos and adults. 
Additionally, the different results might be explained by the absence or presence of inflammation. In tumor 
implantation and granulation formation models, inflammation was induced and immune cells invaded the tis-
sues. It has been reported that migrated macrophages produce Vegfc through the PGE2-EP3 pathway in granula-
tion formation models25,26. On the other hand, there have been no reports stating that immune cells are involved 
in embryonic lymphatic development, particularly in lymphatic specification. Sox18 was reported to be critical 
for tumor-induced lymphangiogenesis40. It is therefore possible that the PGE2-EP3 pathway might promote lym-
phangiogenesis in tumors and granulation tissues by the upregulation of not only Vegfc and Flt4 expression but 
also Sox18 expression.

In summary, we found that the PGE2-EP3 pathway plays crucial roles in the lymphatic specification from 
venous to lymphatic endothelial cells through the upregulation of sox18 and nr2f2. These data strongly suggest a 
novel function of COX1-PGE2-EP3 pathway in the formation of the lymphatic system during early development.

Materials and Methods
Materials. The following materials were obtained from the sources indicated; PGE2, sulprostone, and SC-560 
from Cayman Chemical (Ann Arbor, MI), indomethacin from Sigma-Aldrich (St. Louis, MO), Calcium 5 Assay 
Kit from Molecular Devices (Sunnyvale, CA), LightCycler 480 SYBR Green I Master and blocking reagent from 
Roche Diagnostics (Mannheim, Germany). The EP-specific agonists, ONO-AE1-259 (EP2) and ONO-AE1-329 
(EP4), were generous gifts from Ono Pharmaceutical Co. (Osaka, Japan). All other chemicals were commercial 
products of reagent grade.

Zebrafish line and maintenance. A wild-type zebrafish strain was obtained from National BioResource 
Project Zebrafish (RIKEN, Japan). The transgenic zebrafish line Tg(fli1a:egfp) has been described previously27,32, 
and was used to monitor lymphatic development. Zebrafish were maintained at 28.5 °C under a 14 h-light/10 
h-dark cycle. Embryos were maintained in 1/3 ringer solution buffer at 28.5 °C. All experimental protocols were 
approved by Kumamoto University (24-060, F29-195). All experiments with zebrafish were performed in accord-
ance with the guidelines of Kumamoto University.

Morpholino antisense oligos. EP3 MO1 (targeting the splice site between exon 1 and intron 1), EP3 MO2 
(targeting the splice site between intron 1 and exon 2), and Cont MO were purchased from Gene Tools, LLC 
(Philomath, OR). Each MO (10 ng) was injected into the yolk of 1–2 cell stage embryos. The sequence of each MO 
is shown in Supplementary Table S1.

RNA extraction and RT-qPCR. Total RNA was extracted from zebrafish embryos at the indicated stages 
using Sepasol RNA I Super G (Nacalai Tesque, Kyoto, Japan), and was subjected to RT with PrimeScript RT 
Master Mix (Takara Bio, Shiga, Japan). Synthesized cDNA was subjected to qPCR using a LightCycler (Roche 
Applied Science, Penzberg, Germany) and Fast Start DNA Master SYBR Green I according to the manufacturer’s 
instructions. Crossing point values were acquired by the second derivative maximum method. The expression 
level of each gene was quantified using external standardized dilutions. Relative expression levels among samples 
were normalized by the value of gapdh. Sequences of the used primers are shown in Supplementary Table S2. The 
specificity of qPCR was confirmed by the lengths and melting temperatures of the amplified products.

Whole-mount in situ hybridization. Total RNA was isolated from zebrafish embryos, and cDNA was 
synthesized using SuperScript III (Invitrogen, San Diego, CA) and oligo (dT) primers. The coding sequence of 
each gene (lyve1b, nr2f2, hey2, and flt4,) were amplified from the cDNA by PCR and cloned into the pTA2 vec-
tor (Toyobo, Osaka, Japan). Primer sequences used in the PCR are shown in Supplementary Table S3. Cloning 
of the coding sequences of gata1a, the EP3 receptor, COX1, COX2a, and COX2b was performed as previously 
described20,41. These plasmids were linearized by restriction enzymes. Digoxigenin (DIG)-labeled anti-sense RNA 
was transcribed from each linearized vector by in vitro transcription using DIG mix and transcription buffer 
(Roche Diagnostics). These RNA was purified by ethanol precipitation, dissolved in hybridization buffer (50% 
formamide, 5× SSC, 5 mM ethylenediaminetetraacetic acid, 0.1% Tween-20, and 1 mg/mL torula RNA), and used 
as hybridization probes. WISH was performed as previously described41. After fixation by 4% paraformaldehyde, 
zebrafish embryos at 52 hpf were incubated in 3% hydrogen peroxide solution to remove dark pigments. Embryos 
stained with WISH were embedded in OCT Compound (Sakura, Tokyo, Japan) and transverse sections (10–20 
μm) were prepared using a cryostat (Leica Microsystems, Wetzlar, Germany). Images were taken with a fluores-
cence microscope (BZ-X700; KEYENCE, Osaka, Japan) and were processed using the attached software or Adobe 
Photoshop (Adobe, San Jose, CA).

Generation of EP3 receptor-mutant zebrafish. TALEN plasmids were constructed using a two-step 
assembly system, as described previously42. Briefly, six or fewer TAL effector repeat domains were ligated into 
the pFUS vector43. Subsequently, each pFUS vector and last TAL effector repeat were ligated into the pCS2 vec-
tor as a TALEN plasmid44. The TALEN plasmids were linearized by Not I digestion, and TALEN mRNA was 
transcribed using the mMESSAGE mMACHINE SP6 kit (Life Technologies, Gaithersburg, MD) and purified 
using the RNeasy Mini Kit (QIAGEN, Hilden, Germany). Forward and reverse TALEN mRNA (400 pg each) 
was simultaneously injected into zebrafish blastomeres at the one-cell stage. To detect genome modification in 
zebrafish, we utilized the heteroduplex mobility assay as reported previously45. The sequences of the primers used 
in the heteroduplex mobility assay are shown in Supplementary Table S4. To check the functional ability of the 
TALEN-induced EP3 receptor mutant, the Ca2+ mobilization assay was performed using the FLIPR Calcium 5 
Assay Kit (Molecular Devices, Sunnyvale, CA) according to the manufacturer’s instructions. HeLa cells were 
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grown in modified Eagle’s medium (Sigma-Aldrich) supplemented with 10% fetal bovine serum at 37 °C in a fully 
humidified CO2 atmosphere. Wild type or mutant EP3 receptor constructs were transfected into HeLa cells using 
FuGENE HD (Promega, Madison, WI) according to the manufacturer’s instructions. After 24 h, transfected cells 
were labeled with calcium 5 loading buffer for 1 h, and stimulated with sulprostone. Fluorescence (excitation, 
485 nm; emission, 515 nm) was monitored for 90 seconds on FlexStation III (Molecular Devices) and the area 
under curve (AUC) was evaluated as induced intracellular Ca2+ mobilization.

Statistical analysis. Data are shown as the mean ± SEM. Comparison of two groups was analyzed by the 
Student’s t-test. For comparison of more than two groups with comparable variances, one-way ANOVA was per-
formed, and the Tukey’s test was subsequently used to evaluate the pairwise group difference. P-values less than 
0.05 were considered to indicate significant differences.
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