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privacy-preserving Quantum 
sealed-bid Auction Based on 
Grover’s search Algorithm
Run-hua shi1,2 & Mingwu Zhang1

sealed-bid auction is an important tool in modern economic especially concerned with networks. 
However, the bidders still lack the privacy protection in previously proposed sealed-bid auction 
schemes. In this paper, we focus on how to further protect the privacy of the bidders, especially the non-
winning bidders. We first give a new privacy-preserving model of sealed-bid auction and then present 
a quantum sealed-bid auction scheme with stronger privacy protection. our proposed scheme takes 
a general state in N-dimensional Hilbert space as the message carrier, in which each bidder privately 
marks his bid in an anonymous way, and further utilizes Grover’s search algorithm to find the current 
highest bid. By O(lnn) iterations, it can get the highest bid finally. Compared with any classical scheme 
in theory, our proposed quantum scheme gets the lower communication complexity.

Nowadays, quantum computations and quantum communications1 have received extensive attention and gained 
lots of promising achievements, e.g., quantum cryptography2, quantum teleportation3 and quantum artificial 
intelligence4,5.

Early 70s in the last century, Stephen Wiesner first presented the idea of quantum cryptography (e.g., quantum 
money). However, unfortunately, his innovative idea could not be immediately accepted at that time. Until 1984, 
C. H. Bennett and G. Brassard6 revived the research of quantum cryptography by presenting famous quantum key 
distribution (QKD) protocol, later called BB84 protocol.

The security of quantum cryptography is guaranteed by the physical principles of quantum mechanics, so 
it can provide unconditional security in theory. Since Bennett and Brassard presented the first quantum key 
distribution (i.e., BB84 QKD) protocol, quantum cryptography has been widely studied and rapidly developed. 
Nowadays, many results have been reported, such as quantum secret sharing7, quantum secure direct commu-
nication8–10, quantum encryption11, quantum signature12–14, quantum authentication15,16, and blind quantum 
computation17,18.

In addition, there are also many well-known issues involving the protection of privacy in classical setting such 
as electronic voting, electronic auction, electronic payment, and so on. Furthermore, these issues have also been 
studied extensively in quantum setting, and accordingly there have appeared the corresponding quantum proto-
cols, such as quantum voting19, quantum auction20, quantum e-payment21, and so on.

In this paper, we focus on quantum auction, especially a specific type of quantum auction, i.e., quantum 
sealed-bid auction (QSA). In currently existing QSA schemes, there is only one winning bidder, who will win the 
auction finally, but the auctioneer needs to know all bids of all bidders, including the non-winning bidders. That 
is, even if the non-winning bidder cannot win the auction, he still needs to privately send his bid to the auctioneer. 
In certain settings, these QSA schemes do not meet the higher secure requirements, because the non-winning 
bidders lack the privacy protection, which has been the focus of everyone’s attention in modern society. In this 
paper, we mainly consider how to further protect the privacy of the non-winning bidders in QSA.

Related Works
Electronic auction plays an important role in modern economy especially concerned with networks. Generally, 
electronic auction can be mainly classified into three categories: English auction, Dutch auction and Sealed-bid 
auction. The traditional English auction is a public ascending price auction. In this auction, the auctioneer first 
gives a base price, and then some bidder bids a higher price than the base price. Furthermore, the next bidder 
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outbids the last bidder, and the process continues until no one else bids a higher price. Finally, the item is sold 
to the highest bidder at the highest bid. On the contrary, the Dutch auction is a public descending price auction. 
The auctioneer in Dutch auction begins with a high asking price which is lowered until some bidder is willing to 
accept the auctioneer’s price. Difference from the former two auctions, the sealed-bid auction needs to protect the 
privacy of the bids and ensure the fairness among the bidders. That is, any eavesdropper cannot get any private 
information about the bids, and the auctioneer cannot help any bidder to win the auction unfairly. During tradi-
tional sealed-bid auction, the bidder does not know the bids of others. After all bids are transmitted privately to 
the auctioneer, the auctioneer selects out the highest bid and announces it and the corresponding winner.

The first quantum sealed-bid auction protocol was proposed by Naseri in 200920. The auction protocol intro-
duced a multi-party quantum secure direct communication protocol to privately transmit the bids. However, Qin 
et al.22 and Yang et al.23 independently pointed out that there was a secure flaw in Naseri’ protocol, i.e., a malicious 
bidder could obtain all private bids without being found by performing double Controlled NOT attack or using 
fake entangled particles. Then they improved Naseri’s original protocol by inserting some decoy particles into 
the transmitted particles. In addition to the detecting strategy of the decoy particles, there still appeared other 
defense strategies24,25 to prevent these attacks. Furthermore, Zhao et al.26 found that these previously proposed 
protocols were unfair, i.e., a malicious bidder could collude the dishonest auctioneer to perform a collusion attack 
to win the auction unfairly. Accordingly, they presented a security protocol for QSA with post-confirmation26. 
Subsequently, in order to enhance the security of QSA or ensure the feasibility of QSA, many quantum protocols 
with post-confirmation were proposed27–33. In 2017, we presented an economic and feasible quantum sealed-bid 
auction protocol based on single photons in both the polarization and the spatial-mode degrees of freedom34. In 
our protocol, the post-confirmation mechanism uses single photons instead of entangled EPR pairs, and it does 
not require quantum memory. Therefore, our protocol is a practical and feasible quantum sealed-bid auction.

In all previously proposed quantum sealed-bid auction (QSA) protocols, it requires all bidders to send their 
real bids to the auctioneer. Even if the bidder can not win the auction, the auctioneer also knows his or her real 
bid. However, in practical settings, the bidders who will not be able to win the auction don’t want to reveal their 
real bids. That is, the non-winning bidders lack the privacy protection in current QSA schemes. In this paper, we 
present a strong privacy-preserving QSA model. In our model, anyone cannot get the real bid of other bidders, 
even for the auctioneer. So the privacy of the bidders can be better protected in our model. In addition, the bids 
of the bidders are anonymous, i.e., no one can discern who these bids belong to. Furthermore, we design a novel 
privacy-preserving QSA scheme based on Grover’s search algorithm. The proposed scheme not only guarantees 
the correctness and fairness of the auction, but also ensures the privacy and anonymity of the bidders, even for the 
auctioneer. Compared with the current existing quantum sealed-bid auction, our proposed scheme can provide 
stronger privacy protections, which are urgently requirements in modern network society.

Results and Discussion
privacy-preserving quantum sealed-bid auction. System model. Here we first present our system 
model for privacy-preserving quantum sealed-bid auction (PQSA), in which there are two kinds of participants, 
i.e., an auctioneer (Alice) who wants to sell an item at the highest possible price and n bidders (Bob1, Bob2, …, 
Bobn) who want to buy the item alone at the lowest possible price. In our PQAS model, suppose that there is a 
circle quantum channel among the auctioneer and all bidders (see the solid line in Fig. 1) and there is a classical 
channel between any two participants (see the dashed line in Fig. 1).

Initially, Alice has a valuation price (x) of the item, and each bidder (Bobi) has a private bid (xi) for the item. 
Furthermore, we assume that the valuation price and all bids are not changed during the whole auction. Finally, 
Alice can select out the highest bid. If the highest bid is greater than or equal to her initial valuation price, then she 
will announce the winner and the highest bid. Otherwise, she will declare the failure to all bidders. In addition, 
our PQSA should meet the following secure and privacy requirements:

Figure 1. A system model of QAS.
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The auctioneer’s privacy: All bidders can not get any private information about the auctioneer’s initial valua-
tion price (x) before announcing the winner or the failure of the auction.

The bidder’s privacy: No one can get the private bid of the bidder without risking the auctioneer’s detection.
Anonymity: The bidder’s bid is anonymous for all participants, including the auctioneer. That is, even if a 

dishonest participant or an outsider attacker gets a bid, he or she cannot identify whose bid it is.
Public verifiability: When the winner is announced, anyone can verify the authenticity of the winning bid. 

This attribute can defend the collusion attack between the malicious bidder and the dishonest auctioneer.
Fairness: The auctioneer cannot help a malicious bidder to win the auction illegally without being found by 

other bidders.

Proposed scheme. In the following scheme, we mainly consider the honest-but-curious model, which is similar 
to the semi-honesty model in the classical setting. That is, the parties honestly execute the protocol, but they try to 
find out as much as possible about the other inputs despite following the protocol. Furthermore, suppose that the 
initial valuation price and all bids lie in ZN = {0, 1, 2, …, N − 1}. For simplicity, we assume that all bids are distinct. 
In addition, we assume that there is a public hash H(·).

Step 1. Each bidder Bobj (j =  1, 2, … , n) randomly selects an integer rj ∈  ZN and computes 
= ⊕ ⊕b H r H r x( ( ))j j j j . Then the bidder Bobj sends bj to all other participants by the classical channel. That is, 

the bidder Bobj commits xj to all other participants, but no participant can get xj only from bj without rj. In addi-
tion, the auctioneer Alice also needs to commit x to all bidders, i.e., she selects a random number r ∈ ZN, computes 

= ⊕ ⊕b H r H r x( ( )) and sends b to all bidders by the classical channel.
Step 2. Repeat the following procedures p + q times, including the normal procedure (to find the highest bid) 

p times and the test procedure (to detect the dishonesty or attacks) q times, where p = lnn, and q is a secure 
parameter, e.g., q = p. That is, Alice randomly selects to execute the following normal procedure with the proba-
bility of 

+
p

p q
 or the following test procedure with the probability of 

+
q

p q
.

The normal procedure: (1.1) Alice first prepares a general state ψ = ∑ | 〉=
− ih N i

N
h

1
0

1  and a basis state |0〉t, which 
are both logN qubits. Furthermore, Alice performs logN CNOT gate operators35 on the product state ψ| 〉 | 〉0h t, 
where each qubit of the first logN qubits is the control qubit and the corresponding qubit of the second logN 
qubits is the target qubit (see Fig. 2). Here we call the resultant state |ψ0〉, which is written as
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Clearly, |ψ0〉 is an entangled state. Here, the subscript h and t denote two registers, where the register h will stay at 
home and the register t will be transmitted through the quantum channel. Then Alice sends the register t to the 
first bidder Bob1 through the quantum channel.

(1.2) After receiving the register t, the bidder Bob1 prepares a basis state |0〉 in an auxiliary register, and applies 
an oracle operator UBob1

 to the register t and the auxiliary register, where the oracle operator UBob1
 is defined by

∑ ∑| 〉 ⊗ | 〉 → | 〉 | ⊕ 〉=
−

=
−U

N
i

N
i f i x: 1 0 1 0 ( , ) ,

(2)Bob i
N

t i
N

t0
1

0
1

11

with

Figure 2. Quantum circuit for the preparation of the initial state.
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Let  ψ = ∑ | 〉 | 〉 | 〉=
− i i f i x( , )

N i
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h t1
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0
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1  ( i .e . ,  the  state  of  the  whole  quantum system).  Obviously, 
ψ = | 〉 | 〉 | 〉+x x[ 1

N h t1
1

1 1 ∑ | 〉 | 〉 | 〉≠ i i 0 ]i x h t1
. That is, the oracle operator UBob1

 is utilized to mark the item x1.
(1.3) Furthermore, the bidder Bob1 sends the two registers (i.e., ∑ | 〉 | 〉=

− i f i x( , )
N i

N
t

1
0

1
1 ) to the second bidder 

Bob2 through the quantum channel.
(1.4) After receiving ∑ | 〉 | 〉=

− i f i x( , )
N i
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t
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1
1 , similarly, the bidder Bob2 applies an oracle operator UBob2

 to 
∑ | 〉 | 〉=
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t

1
0

1
1 , where the oracle operator UBob2

 is defined by his bid x2 as follows:
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1 2 . Furthermore, the bidder Bob2 sends two transmitted registers 
(i.e., ∑ | 〉 | ⊕ 〉=

− i f i x f i x( , ) ( , )
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N
t

1
0

1
1 2 ) to the next bidder Bob3 though the quantum channel. Afterward, the bidder 

Bob3 executes the similar process of the bidder Bob2, and so on. This process is repeated n times in total, so that 
every bidder has marked his bid by an oracle operator. Then, the final quantum state will be in

∑
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(1.5) Finally, the bidder Bobn sends all remaining qubits of the marked state |ψn〉 back to the auctioneer Alice 
through the quantum channel.

(1.6) After receiving the whole state |ψn〉, Alice again applies ⊗CNOT Nlog  on two registers h and t, i.e., the first 
2logN qubits of |ψn〉, where each qubit of the first logN qubits is the control qubit and the corresponding qubit of 
the second logN qubits is the target qubit. Call the resultant state ψ| ⟩~ n. That is,
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(1.7) Furthermore, Alice measures the second register t, i.e., the second logN qubits of the whole quantum 
system, in the computational basis. If the measured result is |0〉, then she will continue to execute the next step; 
Otherwise she will believe that there is at least one dishonest bidder or outsider attacker and end this auction.
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and then applies an oracle operator UAlice to φ| ⊗ |⟩ ⟩0n , where the oracle operator UAlice is defined by
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(1.9) Alice applies the Grover’s search algorithm36 to |φA〉 for finding a marked state |j〉|1〉|1〉, which implies 
j ∈ {x1, x2…, xn} and j ≥ x (i.e., finding a bid xi greater than or equal to x). Alice makes a measurement on the first 
register. Let the result of the measurement be y. If y > x and satisfy |y〉|1〉|1〉), then replace x with y.

The test procedure: (2.1) Alice first prepares a quantum state ψ| 〉 =
〉 + 〉

h
i0

2
h h , where i ∉ {x1, x2…, xn} (Note. i 

may be selected by Alice’s experience and the valuation price, e.g., i could be a large enough number in ⁎ZN), and 
another quantum basis state |0〉t. Similarly, Alice further performs logN CNOT gate operators on the product 
state |ψ〉h|0〉t to generate an entangled state ψ 〉 =

〉 〉 + 〉 〉i i
0

0 0
2

h t h t . Here the subscript h and t denote two registers, 
where the register h will stay at home and the register t will be transmitted through the quantum channel. Then 
Alice sends the register t to the first bidder Bob1 through the quantum channel.

(2.2) All bidders cannot distinguish the quantum states from the normal procedure and the test procedure, so 
they continue to execute the same oracle operators as the normal procedure (i.e., (1.2–1.5)) to mark their respec-
tive bids in the transmitted quantum state |ψi〉. However, i ∉ {x1, x2…, xn}, so ψ 〉 = 〉

〉 〉 + 〉 〉 0n
i i0 0

2
h t h t . Finally, the 

bidder Bobn sends all remaining qubits of the state |ψn〉 back to the auctioneer Alice through the quantum 
channel.

(2.3) After receiving the state |ψn〉, Alice again applies ⊗CNOT Nlog  on two registers h and t, i.e., the first 2logN 
qubits of |ψn〉, where each qubit of the first logN qubits is the control qubit and the corresponding qubit of the 
second logN qubits is the target qubit. Then Alice should get ψ 〉 = 〉 〉

〉 + 〉⁎ 0 0n
i

t
0

2
h h .

(2.4) Furthermore, Alice measures the first register by a von Neumann measurement {P+i, P−i}, where P+i and 
P−i are defined by37,

= | 〉〈 | + | 〉〈 | + | 〉〈 | + | 〉〈 |+P i i i i1
2

( 0 0 0 0 ), (12)i

= | 〉〈 | − | 〉〈 | − | 〉〈 | + | 〉〈 | .−P i i i i1
2

( 0 0 0 0 ) (13)i

Obviously, P+i + P−i = I and P+iP−i = 0. If the measurement result is in | 〉 + | 〉i0
2

h h , then she will further measure 
the latter two registers in computational basis. If three measurement results are in | 〉 + | 〉i0

2
h h , |0〉t and |0〉, respec-

tively, then she will continue to execute the next step. Otherwise Alice will believe that there is at least one dishon-
est bidder or outsider attacker and end this auction.

Step 3. After executing the procedures of Step 2 (p + q) times, including the normal procedure p times and 
the test procedure q times, if the return result y is greater than or equal to her initial valuation price, Alice will 
announce y, i.e., the current highest bid (y ∈ {x1, x2, …, xn}). Otherwise Alice will open her commitment x (i.e., 
the initial valuation price) by opening the random number r simultaneously, declare the failure of the auction and 
terminate this auction. That is, there is not a bid greater than or equal to her initial valuation price, so this auction 
is fail. Of course, all participants may verify its truth by comparing H(r ⊕ H(r ⊕ x)) with the corresponding value 
b committed in Step 1.

Step 4. If there is a bid xj greater than the current highest bid y, the bidder Bobj will broadcast a complaint 
about the incorrectness of the current highest bid. Furthermore, if there is a complaint, Alice will ask for the bid of 
the complainer, and then she will update the current highest bid with it. But if there are two or more complaints, 
Alice will think there are dishonest bidders or outsider attackers and accordingly terminate this auction.

Step 5. Furthermore, if each bidder does not further receive any complaint, then he will believe that the 
current highest bid is highest. Suppose y = xk, i.e., the bidder Bobk should be the winner of the auction. Finally, 
in order to win the auction successfully, the bidder Bobk must publish his random number rk and his bid xk, i.e., 
open his commitment. All participants will compute H(rk ⊕ H(rk ⊕ xk)) and verify its authenticity by comparing 
it with the corresponding value bk committed in Step 1. In addition, Alice also needs to open her commitment x 
and accepts the verification of all bidders. If there is no error, the auctioneer Alice and all bidders will believe the 
auction is fair.

Analysis. Correctness. Our PQSA scheme is based on Grover’s search algorithm, which can find a solution 
with a high probability1,36. Assume the failure probability of Grover’s search algorithm is 

δ
1 , where δ ≥ e (Note. e is 

the Euler’s constant, which is the base of natural logarithms (approximately 2.7183)). Let E(N, t) be the expecta-
tion value of the number of iterations (i.e., the number of repeating Grover’s search algorithm in Step 2) for find-
ing the highest bid of N items in which t items are marked38. Then we write a recurrence equation for E(N, t) as:

= − + … + + .E N t
t

E N t E N( , ) 1 [ ( , 1) ( , 1)] 1 (14)

So we get

∑= +=
−tE N t E N i t( , ) ( , ) , (15)i

t
1
1

∑− − = + − .=
−t E N t E N i t( 1) ( , 1) ( , ) ( 1) (16)i

t
1
2

Subtracting Eqs (16) from (15) and rearranging, we get
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= − + .E N t E N t
t

( , ) ( , 1) 1
(17)

Writing the same equation for (t − 1), …, 2 and adding all of them, we get,

= + + + + .E N t E N
t

( , ) ( , 1) 1
2

1
3

1
(18)

Obviously, E(N, 1) = 1. That is, there is only one marked item in the general state of N items, so it only needs to 
execute Grover’s search algorithm once to get the highest bid with the high probability of −

δ
1 1 . Furthermore, it 

will give,

= + + + + .E N t
t

( , ) 1 1
2

1
3

1
(19)

From Eq. (19) we can get,

∫≤ = .E N t
t

dt t( , ) 1 ln (20)
t

1

In our PQSA scheme, there are at most n marked item, i.e., all bids are greater than the initial valuation price. So 
an upper bound is achieved for t = n, when we get,

≤ .E N n lnn( , ) (21)

Therefore, we can repeat Grover’s search algorithm to obtain the highest bid with a probability of −
δ( )1

n1 ln
 after 

lnn repetitions of this algorithm. That is, the failure probability ε of Step 2 to obtain the highest bid is 
δ( ) n1 ln

. 
When δ ≥ e, we can get

ε
δ

=






 ≤







 ≤ .

e n
1 1 1

(22)

n nln ln

The failure probability of 
n
1  is very small, so we only tolerate a complaint in Step 4. Therefore, if all participants 

honestly execute the procedures, our PQSA scheme is correct.
In above analysis, we assume that Grover’s search algorithm has some probability of failure, i.e., the probability 

of finding the marked item is not exactly 1. Furthermore, Long39 presented a modified version of Grover’s search 
algorithm that searches a marked state with full successful rate. So, if we use Long’s algorithm in our proposed 
protocol, it can get the better result theoretically.

Security. First, we analysis the proposed scheme can resist all kinds of outsider attacks. For an outsider attacker, 
he can intercept the transmitted messages, including classical messages and quantum messages. If the outsider 
attacker wants to get xi from ⊕ ⊕H r H r x( ( ))i i i  without ri, it is equivalent to break Hash function. At present, 
there is still not efficient method to break secure Hash function (e.g., SHA-1, SHA-2) by quantum computers or 
quantum algorithms. So, in the following we main analysis the possible attack to the transmitted quantum 
messages.

Firstly, the outsider attacker may perform an intercept-and-resend attack, i.e., he can intercept the transmitted 
quantum messages, and resend a fake quantum messages back to Alice. For example, the attacker intercepts the 
partial qubits of the state ψ| 〉 = 

∑ | 〉 | 〉 〉+∑ | 〉 | 〉 〉
∉ … ∈ …i i j j0 1n N i x x x h t j x x x h t

1
{ , , } { , , }n n1 2 1 2

 in the normal model. Clearly, 
the state |ψn〉 held by Alice and the attacker is an entangled state, where the reduced density matrixes of the sub-
system held by them are ∑ 〉〈 |=

− i i
N i

N1
0

1  and 
∑ 〉〈 | + ∑ 〉〈 |∉ … ∈ …i i j j, 0 , 0 , 1 , 1

N i x x x j x x x
1

{ , , } { , , }n n1 2 1 2
, respectively. 

Though the reduced density matrix held by the attacker hides all private bids, the attacker cannot extract all by the 
principle of quantum mechanics. That is, even if the attacker measures his intercepted subsystem, he cannot get 
all private bids (i.e., all marked items). In fact, he can get at most one bid (i.e., one marked item) with a low prob-
ability because n ≪ N, and the bid does not reveal any identity of the bidder. However, if the attacker intercepts the 
partial qubits of the state ψ| 〉 = 〉

〉 〉 + 〉 〉 0n
i i0 0

2
h t h t  in the test model, then the reduced density matrix of the subsys-

tem held by himself is 〉〈 | + 〉〈 |i i0, 0 0, 0 , 0 , 0
2

, which is independent of all bids. That is, the intercepted subsystem can-
not contain any private information about any private bid.

However, the attacker cannot distinguish the transmitted quantum states from the normal model and the test 
model. So, if the attacker measures his intercepted subsystem to get a bid, then he will be found later by Alice with 
great risk. For example, if the attacker measures the state ψ| 〉 = 〉

〉 〉 + 〉 〉 0n
i i0 0

2
h t h t  of the test model in the compu-

tation basis, the state |ψn〉 will be collapsed into |0〉h|0〉t|0〉 or |i〉h|i〉t|0〉 with the probability of 1
2

, respectively. 
Later, Alice performs the test procedure in (2.4) of Step 2, so she can easily find this attack.

Of course, if the attacker sends a fake quantum system back to Alice, instead of the true subsystem inter-
cepted by him, it will be easily found by Alice in (1.7) or (2.4) of Step 2. Therefore, our scheme can resist the 
intercept-and-resend attack.

Secondly, we analyze a more complicated attack, that is, the outsider attacker performs an entangle-and-measure 
attack that he first prepares an ancillary quantum system and further entangles his ancillary quantum system and the 
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intercepted subsystem by a local unitary operator, and afterward he can measure the ancillary quantum system to 
get the partial information about the private bids. The attacker’s dishonest action can be described by a local uni-
tary operator ∼U, which is simply defined by,

η ξ η| 〉| 〉 = | 〉| 〉 + − | 〉
∼U j j j V j0 ( ) 1 ( ) , (23)j j

where |V(j)〉 is a vector orthogonal to |j〉|ξ(j)〉, i.e.,

ξ〈 |〈 | 〉 =j j V j( ) ( ) 0 (24)

In order to completely pass the honest test (see (1.7) or (2.4) of Step 2), it can easily deduce that ηj = 1. That is, the 
whole quantum system sent back to Alice in the normal model should be in the following state after performing 
the operator ∼U:

∑ ∑

∑ ∑

ψ

ξ ξ

| 〉 〉 =








| 〉 | 〉 〉 + | 〉 | 〉 〉








〉

= 


| 〉 | 〉 〉| 〉+ | 〉 | 〉 〉| 〉.

∼ ∼

∉ … ∈ …

∉ … ∈ …

U U
N

i i j j

N
i i i j j j

0 1 0 1 0

1 0 ( , 0) 1 ( , 1)
(25)

n
i x x x

h t
j x x x

h t

i x x x h t j x x x h t

{ , , } { , , }

{ , , } { , , }

n n

n n

1 2 1 2

1 2 1 2

After successfully passing the honest test, the state of the whole quantum system is in,

∑ ∑ξ ξ


| 〉 〉| 〉+ | 〉 〉| 〉.∉ … ∈ …N
i i j j1 0 ( , 0) 1 ( , 1)

(26)i x x x h j x x x h{ , , } { , , }n n1 2 1 2

After performing UAlice in (1.8) of Step 2, the state of the quantum system becomes,

∑ ∑ξ ξ


| 〉 〉 〉| 〉+ | 〉 〉 | 〉.∉ … ∈ …N
i i j f j x j1 0 0 ( , 0) 1 ( , ) ( , 1)

(27)i x x x h j x x x h{ , , } { , , } 2n n1 2 1 2

At this moment, if the attacker measures his ancillary quantum system, then he will get ξ(i, 0) with a higher 
probability or ξ(j, 1) with a lower probability, because n ≪ N actually, where the latter includes a bid. However, if 
Alice further executes Grover’s search algorithm to find a marked state ξ| 〉 〉 〉| 〉j j1 1 ( , 1) , then the attacker will get 
ξ(j, 1) with a high probability. Now, he can get a bid, but he cannot distinguish his identity.

However, our scheme still has another model, i.e., the test model. If the attacker performs the 
entangle-and-measure attack in the test model, the whole quantum system sent back to Alice should be in the 
following state after performing the operator ∼U:

ψ

ξ ξ

| 〉 =
〉 〉 〉 + 〉 〉 〉

〉

=
〉 〉 〉| 〉 + 〉 〉 〉| 〉.

∼ ∼U U
i i

i i i

0 0 0 0
2

0

0 0 0 (0, 0) 0 ( , 0)
2 (28)

n
h t h t

h t h t

After Alice executes the procedure of (2.3) in Step 2, the quantum system will become 
ψ 〉 =

ξ ξ〉 〉 〉 | 〉 + 〉 〉 〉 | 〉⁎
n

i i0 0 0 (0, 0) 0 0 ( , 0)
2

h t h t . At this moment, if Alice continues to execute the test procedure of (2.4), 
i.e., she performs a von Neumann measurement {P+i, P−i} on the first register, then she will get the following 
results,

ψ ψ= 〈 | ⊗ ⊗ ⊗ | 〉 =+ +
⁎ ⁎p P I I I 1

2
, (29)i n i n

ψ ψ= 〈 | ⊗ ⊗ ⊗ | 〉 =− −
⁎ ⁎p P I I I 1

2
, (30)i n i n

ψ ξ ξ⊗ ⊗ ⊗ | 〉
=

| 〉 + | 〉
⊗ 〉 ⊗ 〉 ⊗

| 〉 + | 〉+

+

⁎P I I I
p

i i0
2

0 0 (0, 0) ( , 0)
2

,
(31)

i n

i

h h
t

ψ ξ ξ⊗ ⊗ ⊗ | 〉
=

| 〉 − | 〉
⊗ 〉 ⊗ 〉 ⊗

| 〉 − | 〉
.−

−

⁎P I I I
p

i i0
2

0 0 (0, 0) ( , 0)
2 (32)

i n

i

h h
t

That is, she will get | 〉 + | 〉i0
2

h h  or | 〉 − | 〉i0
2

h h  with the probability of 1
2

, respectively. Obviously, Alice will detect the 
attack with the probability of 1

2
.

Finally, we consider that the attacker tries to add some false marked items in the returned state |ψn〉 by the 
oracle operators to manipulate the auction. On the one hand, if the false marked items are smaller than the high-
est bid, it will not affect the correctness of the auction; On the other hand, if a certain false marked item is greater 
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than the highest bid, it will be easily found because no bidder claims the false bid. Even if a collusion bidder claims 
the false bid, obviously he will not successfully pass the public verification.

In a word, no matter which attack the outsider attacker performs, he cannot get any private information with-
out risking Alice’s detection, and cannot manipulate the auction yet. That is, our scheme can resist the outsider 
attacks.

In addition, by the system model defined in the section of 3.1, PQSA should meets five secure and privacy 
requirements. In the following section, we will prove that our proposed PQSA scheme can meet all these secure 
and privacy requirements.

(1) The auctioneer’s privacy: From the scheme proposed above, we can easily see that the transmitted quan-
tum messages do not include any information about Alice’s initial valuation price x. In addition, among all quan-
tum oracle operators utilized by our proposed scheme, it is only the oracle operator UAlice concerning x. However, 
UAlice only is performed in Alice’s registers, and these quantum states transferred by the operator UAlice will be 
measured timely by Alice. So, if a dishonest bidder (or an outsider attacker) wants to steal Alice’s private informa-
tion, he can only perform the entangle-and-measure attack. However, we have analyzed the infeasibility of this 
attack above, because he cannot yet discern the normal model and the test model. If he performs the 
entangle-and-measure attack in the test model, his dishonesty will be found by Alice with the probability of 1

2
.

(2) The bidder’s privacy: As we have analyzed above, any outsider attacker cannot get any private bid without 
risking the auctioneer’s detection. In fact, for a bidder, he cannot get more information from the transmitted 
quantum messages than the outsider. If a dishonest bidder performs an attack, no matter concerned with meas-
urement or entanglement, similarly, he will risk to be found later by the auctioneer. In short, no one can get the 
private bid of the bidder without risking the auctioneer’s detection.

(3) Anonymity: By the proposed scheme, each bidder marks his bid in the transmitted quantum state |ψi〉. 
However, each bidder marks his bid in an anonymous way, i.e., the marked item in |ψi〉 does not leave any identity.

For a dishonest bidder, e.g., Bob2, if he wants to get the specific bid of Bob1 when receiving |ψ1〉, he can perform 
Grover’s search algorithm to find |x1〉t|1〉 because Bob2 knows that there is only one marked item (i.e., x1) in |ψ1〉. 
However, if Alice selects the test model in Step 2, she can easily find this dishonesty because the final measure-
ment result will be |0〉h or |i〉h, instead of | 〉 + | 〉i0

2
h h . That is, the dishonest bidder Bob2 cannot get the bid of the first 

bidder Bob1 without risking Alice’s detection. In addition, after performing Grover’s search algorithm, if Bob2 
directly sends a fake state to the next bidder, not |x1〉t|1〉, obviously it will be easily found by Alice in (1.7) or (2.4) 
of Step 2.

As for the other bidder Bobi, even if he performs the similar attack to get |x1〉t|1〉 by Grover’s search algorithm, 
he still cannot get the specific identity of xj because of j ∈ {1, 2, …, i − 1}. Even if multiple bidders collude to per-
form this attack, it will be found later by Alice with the probability of 

+
q

p q
. In addition, this attack also brings a 

risk of the failure of the auction, because our proposed scheme only permits at most one complaint when 
announcing the highest bid.

At present, we only assume that there is a circle quantum channel among the auctioneer and all bidders in 
our PQAS model. For the current technical conditions, obviously this model is more feasible. In fact, if there is 
a quantum channel between any two parties, the quantum messages can be transmitted in a random order, i.e., 
from Bobi to random Bobj, not Bobi+1, such that it can provide the perfect anonymity of the bids.

For the auctioneer Alice, she can receive the returned state |ψn〉, in which all bids have be marked in an anon-
ymous way. Furthermore, she can get a marked item |y〉|1〉|1〉 by Grover’s search algorithm, but she cannot know 
y belongs to who because of y ∈ {1, 2, …, n}.

Therefore, our proposed scheme can ensure that the bidder’s bid is anonymous for all participants, including 
the auctioneer.

(4) Public verifiability: On the one hand, when the highest bid xk is announced publicly, it needs to accept the 
comparisons of all other bidders to decide whether it is greater than their respective bids. On the other hand, to 
further win the auction successfully, the highest bidder Bobk requires to open his commitment xk to accept the 
verifications of the authenticity of the bid xk. As you know, there is not a perfect secure quantum bit commitment 
based on the No-Go Theorem40–42. So we utilizes a practical and efficient classical bit string commitment, in 
which it can not get xk only from ⊕ ⊕H r H r x( ( ))k k k  without rk, unless cracking the secure hash function, e.g., 
SHA-1, SHA-2. By the opening information rk, anyone can verify the authenticity of the winning bid xk. Even if 
the auctioneer wants to help a malicious bidder Bobj to win this auction, but they cannot revise the hash value 

⊕ ⊕H r H r x( ( ))j j j , which was published in advance, so the fake bid ⁎rj  (implying >⁎r rj k) cannot pass the verifi-
cation finally. That is, this attribute can defend the collusion attack between the malicious bidder and the dishon-
est auctioneer. In fact, bit string commitments ensures that the initial valuation price and all bids can not changed 
during the whole auction, otherwise the cheating will be found easily.

(5) Fairness: Since all bidders and the auctioneer need to commit their bids and the valuation price at the 
beginning of the auction, and the successfully winning bid needs to be verified publicly by all participants finally, 
no one can manipulate the auction, even for the auctioneer. That is, the auctioneer cannot help a malicious bidder 
to win the auction illegally without being found by other bidders. Therefore, our proposed scheme can guarantee 
the fairness of the auction.

We have analyzed the security of proposed scheme in ideal settings. However, in practical settings, there may 
be some faults (e.g., noise and error) in the quantum channels and quantum measurements. In order to ensure 
its security in practical settings, one can use the fault tolerant technologies, such as decoherence-free states and 
error-correcting code. In addition, we can use classical authenticated channels and quantum authenticated chan-
nels to ensure the correctness of distributing messages.
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Performance. The proposed scheme is mainly based on Grover’s search algorithm. By the previous analysis, the 
number of iterations (i.e., the number of repeating Grover’s search algorithm in Step 2) for finding the highest bid 
is less than or equal to lnn, which is its upper bound, so both the computational complexity and the communica-
tional complexity are O(lnn), i.e., to execute O(lnn) Grover’s search algorithms and to distribute O(lnn) quantum 
messages. To complete the task, any classical scheme needs to distribute O(n) messages in theory, where each 
message gets a bid in an anonymous way, and then finds the highest bid by comparing O(n) times. Obviously, our 
proposed quantum scheme gets the lower communicational complexity than any classical scheme.

In addition, to make our scheme work, the key step is to construct the efficient circuits implementing the ora-
cle operators. In our scheme, we define two kinds of oracle operators to mark items in a general state. Similarly, 
using the techniques of reversible computation1, we can construct a classical reversible circuit which takes (x, y) 
- representing an input register initially set to x and a one bit output register initially set to y - to (x, y ⊕ f(x)), by 
modifying the usual (irreversible) classical circuit for doing the classical function f(x).

At present, Grover’s search algorithm and its variants have been implemented by the newest reports43–45, espe-
cially in IBM quantum cloud46. So, with the rapid development of quantum computing and quantum information 
processing, we believe that our proposed PQSA scheme is feasible in the near future.

Conclusions
In this paper, we define a new privacy-preserving quantum sealed-bid auction model, and further present a 
novel privacy-preserving quantum sealed-bid auction scheme based on Grover’s search algorithm. The proposed 
scheme not only guarantees the correctness and fairness of the auction, but also ensures the privacy and anonym-
ity of the bidders, even for the auctioneer. Compared with the current existing quantum sealed-bid auction, our 
proposed scheme can provide stronger privacy protections, which are urgently requirements in modern network 
society. So the proposed scheme has wider popularization and application prospects.

In addition, we actually give an efficient quantum approach to privately find the optimal solution under the 
constraint conditions among multiple distributed participants, which can also be generalized into other secure 
applications, e.g., an election satisfying more than half of votes.

Data Availability
Data sharing is not applicable as no datasets were used during the current study.
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