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Α Quantum Pattern Recognition 
Method for Improving Pairwise 
Sequence Alignment
Konstantinos Prousalis & Nikos Konofaos

Quantum pattern recognition techniques have recently raised attention as potential candidates in 
analyzing vast amount of data. The necessity to obtain faster ways to process data is imperative where 
data generation is rapid. The ever-growing size of sequence databases caused by the development of 
high throughput sequencing is unprecedented. Current alignment methods have blossomed overnight 
but there is still the need for more efficient methods that preserve accuracy in high levels. In this work, 
a complex method is proposed to treat the alignment problem better than its classical counterparts 
by means of quantum computation. The basic principal of the standard dot-plot method is combined 
with a quantum algorithm, giving insight into the effect of quantum pattern recognition on pairwise 
alignment. The central feature of quantum algorithmic -quantum parallelism- and the diffraction 
patterns of x-rays are synthesized to provide a clever array indexing structure on the growing sequence 
databases. A completely different approach is considered in contrast to contemporary conventional 
aligners and a variety of competitive classical counterparts are classified and organized in order to 
compare with the quantum setting. The proposed method seems to exhibit high alignment quality and 
prevail among the others in terms of time and space complexity.

Figuring out similar portions among two or more strings of symbols is a complicated computing task as different 
degrees of similarity may be considered. Determining the correspondences between a target subsequence and a 
reference sequence consists a hard but also a qualifiedly tractable problem known as sequence alignment (SA) or 
mapping. The alignment of sequences remains an active research area of great importance for natural language 
processing, business and marketing research, forensics, ecology, epidemiology, medicine, and especially in biolog-
ical studies. Mapping and studding segments of various genomes has become indispensable for basic research in 
the interdisciplinary field of genomics. The alignment process rearranges sequences introducing spaces, or gaps, 
making insertions or deletions (indels), translocation and inversion operations, in order to achieve the optimal 
matching. Mutation or other evolutionary natural mechanisms are usually the reasons for all these random mod-
ifications on the original biological sequences.

Modern sequencing technologies are described by the term ̈ Next Generation Sequencing¨ (NGS)1, a.k.a. par-
allel or deep sequencing. These technologies achieve ultra-high throughput sequencing allowing billions of bases 
being sequenced within a single day, and more specifically they produce the reads which are smaller portions of a 
genome sequence of a living organism. Genome databases are continuously loaded with experimentally generated 
raw sequence data resulting in huge amounts of unprocessed clusters of reads.

Separately from the remarkable progress of sequencing technologies, current computational methods of struc-
tural and functional determination of biological sequences create an increasing gap, due to their slower and costly 
implementation. The alignment of sequences can generally be performed in two ways: (a) the pairwise sequence 
alignment and (b) the multiple sequence alignment. The first way considers only two sequences at a time whereas 
the second considers more than two related sequences at a time. Obviously, multiple alignment is more advanta-
geous than pairwise since it provides more information. However, the implementation of multiple alignments is 
a difficult task as it seeks solutions to more complex methods such as heuristics or repetitive optimization strate-
gies. In any case, multiple alignment approaches are highly based on pairwise alignment methods.

The first approach to align the similarity between two sequences is traced back to 1970, when Gibbs and 
McIntyre2 introduced the similarity matrix, also known as dot-plot. Due to its limited capacity to encompass 
and analyze large sequences, other methods were inquired in ¨dynamic programming¨ (D.P.). In particular, the 
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inventions of Smith-Waterman3,4 (S.W.) and Needleman-Wunsch5 (N.W.) algorithms were the greatest examples 
in D.P. These algorithms are based on a scoring framework providing optimal alignment solutions. The perfor-
mance of both S.M. and N.W. algorithms depends on the lengths of the reference SR and the query SQ sequences, 
LR and LQ respectively, achieving O(LRLQ) runtime and memory resources. Then, the word methods (a.k.a. k-mer 
or k-tuple) were introduced to speed-up the alignment process. In the last two decades, combinatorial strategies 
were invented like seed-and-extend and q-gram filter to optimize the speed and the accuracy of the alignment 
result.

On the parallel, the field of pattern recognition has been extended over the quantum information and comput-
ing settings. In 2001, both R. Schützhold and C.A.Trugenberger set the concept of quantum pattern recognition 
(QPR). R. Schützhold mentions a quantum algorithm which runs on a probe structure line those in diffraction 
experiments and detects easily patterns6. Trugenberger proposed the quantum analogue of the classical asso-
ciative memory7,8 confronting the problem of capacity shortages but probabilistically retrieving incomplete or 
noisy inputs. R. Zhou and Q. Ding mention in 2008 an alternative way9 of QPR with 100% probability to retrieve 
the query pattern which is highly based on an improved version of Grover’s search algorithm. Using quantum 
multi-pattern search algorithm10 may be possible to achieve pairwise SA but such a technique demands a rela-
tively complex way in producing quantum original states if a high number of patterns exist. In 2009, R. Neigovzen 
et al. describe a notable QPR scheme11 which according to its authors combines the idea of a classical Hopfield 
neural network with adiabatic quantum computation and E. A. Fard et al. present a quantum neural network12.

In this study, we expand our previously reported method13 which seems to outperform its classical counter-
parts at least in terms of time and computing resources. The reported method explains how it is possible to turn 
R. Schützhold’s pattern recognition schema into a novel alignment approximation by utilizing the central concept 
of the old but infallible technique of dot-matrix plots. In fact, the crossing points of the dots on the matrix are 
simulated onto an array structure lattice plane like those in diffraction experiments offering a different approach 
to the alignment process.

It is assumed that our aligner is a complex device which can handle large sequences on a lattice plane surface 
made by non-linear Kerr media and run R. Schützhold’s QPR algorithm in a quantum computing system. The 
physical realization of such a device may be an apparatus consisting of a Laue diffraction system with a probing 
light beam (e.g. X-rays or electrons) and two computational subunits: one with a classical processor and one 
with a quantum processor. The R. Schützhold’s QPR algorithm is analytically described in the Methods section 
splitting it into five steps. The most complex parts are the quantum black box14, or BB, and the quantum Fourier 
transform (QFT)14,15. The classical computing subunit is needed to run calculations of Laue’s equations in order 
to localize and specify candidate line-patterns.

Specification of the QPR Circuit
According to R. Schützhold’s QPR algorithm two registers are used as an index structure for the formation of a 
dot-plot like diffraction pattern. The regX register for the horizontal and the regY register for the vertical index-
ing. A third one-qubit register is entangled with the other two registers and a single measurement of it let in 
superposition only the dot cells (reflective cells). Then the QFT enhances the amplitude of the superposition at 
the proper index coordinates on the plane revealing the existence of prominent line patterns. A few more runs of 
the algorithms may be needed to secure the detection result and some further classical calculations will locate the 
pattern. The circuit model of the quantum part of this algorithm is depicted in Fig. 1.

In an over-simplifying way, the action of a Hadamard transform (gate H) on |0〉 in Fig. 1 sets the two coordinate 
registers into a superposition of the input state. Assuming that the X and Y coordinate registers have n and m qubits 
respectively, the expression ⊗H n or ⊗H m denotes this action. The operator of the H gate is defined in Eq. (1).
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The symbol “⊗” represents the tensor product. The coordinate registers come into a superposition by the 
application of the Hadamard gates which is described by Eq. (2).
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Figure 1.  Circuit model of R. Schützhold’s quantum pattern recognition method.
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The BB sub-circuit acts similarly to the black boxes of the milestone algorithms of P. Shor and L. Grover. The 
application of a unitary operation as BB affects the state of each qubit concurrently and this is quantum parallel-
ism. Actually, this can be viewed as a function f(x) that evaluates for many different values of x simultaneously, as 
f(x): {0, 1}L → {0, 1}. Starting from the state |ψ0〉 = |x〉|0〉 then we see that BB|ψ0〉 = |x〉|f(x)⊕0〉 = |x〉|f(x)〉. Since 
the domain is a binary w-bit string and the range a one-bit, it is possible to consider x as the address of a cell in the 
rectangular array and the one-bit result f(x) as a flag identifier on whether the cell is a reflective one or not. The 
unitary operation of the BB may be constructed by phase shift gates Ru of π …π π π

+ −or, , ,
2 2 2n m2 1  turns as the 

next unitary operation is the QFT. The Ru unitary transformation, a.k.a. phase-Shift, is defined in Eq. (3),
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and its operation modifies the phase ϕ = 2π/2 u (where ∈u ) of a hypothetical quantum state 
α β= + ϕ−q e0 1i  leaving unchanged the probability of measuring the orthonormal basis states of the quan-

tum system. Moreover, the BB includes the application of controlled NOT or cNOT gates which are necessary to 
develop entanglement between the coordinate registers and the one-qubit register allowing for a number of par-
allel computation paths. The cNOT gate is defined by the operator in Eq. (4).
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Right after the measurement, the system |ψ〉 remains in a superposition as in Eq. (5) and entangled, but only 
for the states that either had f(x) = 0 or f(x) = 1.
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The next sub-circuit is the QFT (see the circuit in Supplementary Material). It is the well-known linear trans-
formation that affects the amplitudes and phases of the base states of a qubit-system. Τhe first set of the input qubit 
states |q1〉..|qm〉, where m < u, represents the qubits of the regY input register and the rest |qm+1〉..|qu〉 the qubits of 
the regX input register. Typically, the number of gates that are required to build QFT circuit grows only as a quad-
ratic function of the number of the input qubits. From bottom up, QFT circuit has 1 + 2 + … + u = u(u + 1)/2 
elementary Hadamard and controlled rotation gates. Such an implementation has an exponential speed up over 
the classical fast Fourier transform. Moreover, the approximate version of QFT known as AQFT can improve 
further the performance but this study is out of our scope.

Proposed SA protocol.  The protocol of our method is described in Fig. 2. In the same way to the dot matrix 
comparison, the user has to input the query SQ and the reference SR sequences and investigate the plane for diagonal 
line patterns. Reference’s length LR may be a relatively small number when a local alignment is conducted or a large 
one when a global alignment or database searching takes place. If the size of SR is large enough, a fragmentation 
process splits it into smaller segments for a more efficient management. These segments are also known as window 
spaces. Then the routineQPR quantum routine runs Ω times per window to find and secure the largest line pattern 
in the region under comparison and then routineLaue classical routine locates the position of this pattern within this 
window space. routineLaue also estimates the length of the line pattern LD and the deviation angle -π/2 ≤ ϑ ≤ π/2 
from a vertical one. A record with all the relevant information about the detected line is saved and the procedure 
continues till all the windows are exhausted. Given a line pattern starting at x0 and y0 on the panel should keep the 
following information: record (id, LD, ϑ, [x0, x0 + LD], [y0, y0 + LD]). Finally, a list of records is formed for each seg-
ment and algorithms like S.W., N.W., FOGSAA, or modified versions of them undertake for the optimal alignment.

Dot matrix analysis provides a great way to compare every position in the matrix. Its usefulness is seen in 
alignment of proteins, nucleic acid sequences, finding amino acid repeats within a protein (comparing it by itself), 
database searching or sequence assembly.

The formed diagonals in the dot matrix plane, illustrate the degree of similarity. All the occurring diagonal 
lines that are formed right after BB’s application may not be of the same importance since most of them may 
emerge from the small alphabet of the sequences which causes a lot of noise (e.g. nucleic acids in DNA has a value 
of α = 4). Diagonals may not be perfectly shaped up to the degree that the density of dots ρ within a line-width 
(e.g. LD/2) deviates by an acceptable quantity Δρ from the mean ρ. A threshold value (or cutoff value) for the 
minimum acceptable length L0 of detected diagonals should be defined in the beginning of the protocol in order 
to trim redundant or insignificant matches. But as it is the case in most situations, more than one diagonal line 
will occur in a typical window space with a small alphabet. Multiple occurring lines in a confined region may be 
a confusing problem for our probabilistic QPR algorithm in two directions:

	(a)	 When line patterns of nearby lengths exist in the same window, it will be difficult to distinguish them in 
their superposition by QFT, as they form coherently amplitudes of the same measuring probability. The 
longer the length of a diagonal line in contrast to the other diagonals, the easier the way to detect it. How-
ever, this case is usually limited in microsatellite repeats or patterns.

	(b)	 When two, or more, line patterns of accepted lengths, >L0, exist in the same window, then the lengthiest of 
them will always shade the others rendering difficult their detection.
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One way to combat the first problem is to adjust properly the size LW of the window. L0 should always be a few 
orders of magnitude smaller than LW. Reducing LW the probability to allow more than one acceptable diagonal 
in it shrinks. Another way to consider is to include classical heuristic methods, but increasing the computational 
load.

An option to treat the second problematic area is to invent a way to destroy the amplitudes of the first detected 
diagonal within a single window space. It can be possible by adding some extra phase gates in the BB to direct 
properly the quantum Fourier transformation. Another easier and cost-effective option would be to remove the 
region of the previously detected diagonal in SR, but this solution would omit to take into consideration smaller 
and acceptable diagonals that occur within the range of the previously detected diagonal. However, for small LW 
this option may be an effective solution. A third option would be to include again classical methods.

L0 and LW are two critical parameters which have to be carefully chosen with the aid of statistics. The goal of 
analysis usually determines the window size LW and the threshold length L0 of diagonal. The size of the average 
exon or the average protein structural element, of gene promoter or enzyme active site, are typical factors that 
affect window’s size. The level of noise in a dot matrix for a small α may cause the occurrence of irrelevant diago-
nals but since the significant diagonals have a good similarity and aggregate many dots then the detection effec-
tiveness is independent of noise. Thus, a densely dot matrix with a high ρ will demand a higher threshold length 
at the risk to encompass irrelevant diagonals. A small window size would increase dramatically the number of the 
windows and therefore the application times of routineQPR. An interesting improvement would be to examine 
first the diagonal windows for a large-scale alignment.

The size of the diagonal will affect the number of measurements that we have to apply. The larger the length, the 
higher the probability to be measured, as small patterns need more measurements6 to secure the result. If the size 
of a line pattern is a small portion β of the array size LQLR, the probability to locate a line pattern is given by Eq. (6).

β ρ
ρ
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Figure 2.  Pairwise alignment protocol’s flow-chart based on the heuristic method of quantum pattern 
recognition. Routine routineQPR is repeated Ω times for each window space w and routineLaue is supplied with 
Ω measurement values ki. A window is exhausted when the detected line has length LD less than a threshold L0.

https://doi.org/10.1038/s41598-019-43697-3


5Scientific Reports |          (2019) 9:7226  | https://doi.org/10.1038/s41598-019-43697-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

The repetition number Ω of routineQPR has an upper limit O 





β

1

min
 in respect to the size of the accepted 

line-pattern.

Results
The aim of this work is to examine whether the QPR method can be used efficiently as an alternative to the con-
ventional sequence alignment methods. The performance of our QPR protocol is tested in terms of computational 
resources and run time. In order to evaluate its contribution to the alignment procedure, a simple program was 
implemented to simulate the behavior of the novel QPR algorithm (see Methods section). Though the adopted 
algorithm isn’t far from reality, quantum computing technology isn’t yet mature enough to carry out efficiently 
the subroutines QFT or BB for multiple qubits (>20). Quantum entanglement fragility and decoherence render 
unstable quantum computation. The performance of our method is tested and some pairwise alignment exam-
ples are presented to demonstrate the precision of our method as a benchmark test with known aligners. For the 
following results, the supportive data will be found in the Supplementary Material.

Computing resources.  The circuit in Fig. 1 provides a clear and compact summary of the quantum comput-
ing resources that are needed for this method. The two memory registers regX and regY and a set of single-qubit 
quantum gates including: Hadamard, cNot and phase-Shift operations, are the fundamental components for the 
implementation of the proposed routineQPR routine.

In order to conduct a theoretical analysis with numerical treatments, an optimistic specification of the rou-
tineQPR ’s hardware is assumed which is based on two realistic implementations on different technology plat-
forms. The first one is the superconducting transmon IBM-QE device with limited qubit connectivity, and the 
other is a fully connected trapped-ion system16. Both are limited to 5-qubits, but we do the assumption that we 
can reach the size of 20 in each register as it is enough to index sequences of more than one million base pairs 
(bp). According to their specifications the execution of an X, Hadamard and cNOT gate takes 130 ns, 130 ns, 
and 650 ns for the superconductor and approximately 20000 ns, 20000 ns, and 250000 ns for the ion-trap system, 
assuming the aforementioned memory size. For a more thorough estimation, the encoded versions of the circuit 
are compared with the unencoded. The well-studied distance-3 [[5,1,3]] and [[7,1,3]] error correcting codes are 
included in the estimation chart in Fig. 3.

An increment in the qubits of the registers, has a sublinear augmentation on gate operations. Quantum recov-
ery protocols usually add an expensive computing overhead. Error correction takes place after one or two logical 
gates. Generally, gate operations of the encoding and recovery system occupy more than 90% of the overall sys-
tem. In this circuit the approximated version of QFT is considered with a degree of 2.

From the aspect of memory allocation, our proposed method needs only a few qubits. Quantum registers can 
host sequences of size that increases exponentially in the number of qubits. Only a little classical memory will be 
needed to keep records of the matching points.

Run time estimation.  Given the hardware specification and the QPR algorithm, the expected run time 
of the routineQPR routine is estimated by dividing the algorithm mainly into three computing steps: the initial 
superposition by Hadamards, the BB application and the QFT subroutine. The run time escalation for 6, 10, 15 
and 20 totally indexing qubits is described in Table 1. Hadamard and phase-Shift gates are supposed that act con-
currently and parallel. Noise recovery delay is not included.

As parameter Ω secures pattern recognition and detection, its behavior for more memory qubits is studied. 
This parameter is critical for the performance of our method, as it may be time consuming for many repetitions 
of routineQPR(Ω). In the following chart time consumption is calculated for 6, 10, 15 and 20 qubit memory in 
the range 5 ≤ Ω ≤ 20. The results in Fig. 4 demonstrate that the size of the register affects Ω significantly, thus a 
good management of this parameter will save much time. However, run times still remain at relatively low levels.

SNP calling accuracy.  Some model species of the bacteria Escherichia sp. are used in this section to compare 
the SNP-calling performance of our simulation with that in a recent research17 by four well-established alignment 
tools CUSHAW (v.1.0), SOAP2 (v.2.2.1), Bowtie (v.0.12.7) and BWA (v.0.7.0). In particular, a pair of alignment is 

Figure 3.  Gate operations per routineQPR execution. regX and regY ’s qubits are considered as one unified 
memory space.
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used between the E. coli K12 MG1655 (accession number SRR001665 in NCBI SRA) and the E. coli 536 (accession 
number NC_008253 in GenBank) using the paired-end alignment for each aligner. According to this work, 20.8 
million 200-bp-insert-size paired-end reads of the SRR001665 are aligned onto the reference genome NC_008253. 
The first three columns in Table 1 provide the precision and recall results for CUSHAW, SOAP2 and BWA.

Due to the large size of the sequences our classical simulator took many hours to approximate the alignment 
quality levels of the classical aligners. Real reads of medium size 200 bp were extracted from the query sequence 
SRR001665 in order to treat mapping as it would be in a single read sequencing way and not as in paired-end. A 
sample of ½ million reads covers almost more than ¼ of the initial sample which is a secure amount to approxi-
mate and consider our comparison. Then, the reduced reference genome is divided into segments of size 1000 bp 
and the window size is defined at read’s length. Each read is tested over the reference genome and when an accept-
able line occurs, the threshold L0 criterion is fulfilled and the window is recorded as “positive” in order to keep 
track of the alignment. The threshold value L0 has an elasticity of 15–20% mismatches in each window. Each time 
that a positive window occurs, it is recorded as a positive hit by the simulator. Due to some shifted diagonals the 
width of the examination of the neighboring windows was increased in order to cover more thoroughly prob-
lematic regions with highly distorted diagonals. The output results are finally compared with the peer reviewed 
alignments as they are reported in the relative study17.

The SNP calling is evaluated by using the precision and recall measures. Precision is defined as TP/(TP + FP) 
and recall as TP/(TP + FN). TP stands for true positive and FP stands for false positive, representing a match and 
mismatch, respectively, with a SNP (Single Nucleotide Polymorphism). FN is a false negative and represents a 
“correct” SNP that was not identified.

The final comparison results between the four popular aligners and our own method is presented in Table 2. 
The QPR method seems to be advantageous as the precision and recall measures surpass the other methods 
having a relatively small standard deviation. By a short research, the average time of a single mapping of a read 
for the four aligners was estimated, in order to conduct the runtime comparison. Moreover, the runtimes for 
the single-end (SE) and the paired-end (PE) alignment methods are included as derived by the aforementioned 
research17 to demonstrate the superiority of our method. The parameter Ω has a sufficient number of times to 
detect more than one diagonal lines in a single window.

Computational complexity.  To investigate in a uniform way all the established known short read align-
ment methods, five stages were considered to cover every stage of these strategies. In the first stage all the prelim-
inary operations take place regarding the reference system. In the second and the third stage the generation and 
the mapping process are examined, respectively. The fourth and the fifth stages deal with the mapping validity of 
the candidate matching list. Twelve popular aligners plus our own method and its classical counterpart are ana-
lyzed to demonstrate the pros and cons of each strategy in Table 3.

In order to allow for a vivid comparison between our method and the various alignment tools, Table 3 
summarizes all the ingredient algorithms of modern aligners with their time and space complexities. This 
comparative elaboration demonstrates the intrinsic computational power of each aligner. Apart from the old 
dot-matrix method18, most of the other aligners are some prominent variations19,20 of the seed-and-extend strat-
egy: (1) the k-mer exact match seed (BLAST21 and GNUMap22), (2) the k-mer inexactly match seed (SOAP23,24, 
Bowtie25,26, BWA27), (3) the k-mer spaced seed (RMAP28, Maq29), (4) the maximum extend match30 (MEM) seed 
(BWA-MEM20, CUSHAW231) and (5) the adaptive seed (LAST32, AMAS33). For the q-gram filter strategy, the 
SHRiMP34 and Hobbes35 are examples with improved sensitivity.

Time in μs

Total register’s size (LQ + LR) in Qubits 6 10 15 20

Superconducting Transmon Qubits 2,29 3,81 5,71 7,61

Trapped Ions 1410 2490 3840 5190

Table 1.  Runt time estimation per routineQPR execution.

Figure 4.  Time consumption of parameter Ω.
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The fundamental tools that manage the sequences in all these aligners are: the hash map, the prefix/suffix 
trie36, the Burrows-Wheeler Transform with FM-index37,38, the FMD-index39, the bidirectional BWT40 or the 
Directed Acyclic Word Graph41. Further information about them can be found in the Supplementary Material.

The comparison table shows that the quantum approach outperforms the other classical strategies in terms of 
computational complexity as at every stage the quantum setting has lower complexity than its classical counter-
parts. The usage of hash tables or suffix trees impose the preparation of indexing structure which may take time 
and space. Moreover, their manipulation may not be affordable enough in certain cases. Hash tables turn out to 
be more efficient than search trees or any other lookup table structure, but hash collisions are practically unavoid-
able when hashing a random subset of a large set of possible keys. A data structure based on Burrows-Wheeler 
Transform can search stored items in constant time which is the best possible complexity, but in reality, the 
complexity may range between Θ (1) and O(LSeed) where LSeed the length of the query seed. The QPR approach is 
evolved in a dynamic way binding only a few memory qubits. The quantum index structure can host exponen-
tially larger data segments of genome sequences in the increase of the number of qubits.

As the goal of Table 3 is to describe the computing complexities, it is not clear what is the real consumption of 
resources. The computational overhead to conduct seed generation is unnecessary in the QPR approach since the 
QFT can detect the line-patterns in a logarithmic time. The repetitive seed generation stages, the various calcu-
lations for seed or mapping scoring and filtering and the final alignment processes based on D.P. imply a poorer 
performance, even if stage 2 provides an advantage with the constant time complexity by the searching methods. 
However, the S.W. or N.W. or alternative of dynamic programming should be incorporated in our method in 
order to achieve precision similar to the other classical aligners.

For weak similarities or particular patterns, the QPR approach may fail to detect or interpret correctly positive 
windows and further study may improve the situation. Obviously, reducing window’s size or increasing Ω surely 
will increase sensitivity at a cost of time reaching a level that will limit the need for dynamic programming. Long 
reads are the future tendency in NGS techniques and longer inexact or spaced seeds can guarantee an accurate 
matching detection. In this regime, the quantum algorithm may have a great advantage as it supports the detec-
tion of arbitrary long imperfect line-patterns.

Discussion
A sophisticated method is presented which combines dot-matrix plotting and quantum pattern recognition to 
improve sequence alignment in biology research and all the relevant fields. The results of our experiments lead 
to the conclusion that there is a great advantage with a method which should be explored further in the future. 
The implementation of such a method is not far from the reality, since it does not demand a coherent quantum 
system of many qubits.

The overall time complexity of our method is O(3log2LRLQ). The first term concerns the application of the 
Hadamard gates, the second the application of the BB and the third the QFT. The final aligning step is common 
for all the strategies, but it may be limited in dot-matrix approaches. Current aligners seem that they cannot run 
faster than O(LRLQ) in the worst case. Moreover, the quantum registers can save much space due to the exponen-
tial indexing coverage of the sequences.

Since, the QPR approach isn’t directly an alignment algorithm, the combination with classical tools may seem 
unavoidable but better treatments can be employed to make perfect alignments. Using scoring methods will also 
improve the alignment result. More benchmarking tests are needed under specific circumstances to illustrate the 
power of this method. Database searching and sequence assembly may be benefited. Another area to be consider 
with the QPR method is the multiple sequence alignment.

Methods
RoutineQPR.  The primary task of this method is to detect, identify and localize certain linear patterns in 
an unstructured data set as it is argued by R. Schützhold in his seminal paper6. The considered linear pattern in 
this study is the line pattern. The first part of this method uses quantum computation while the second part uses 
classical computation.

A full unstructured data set has to be loaded into a lattice plane which can be considered as a rectangu-
lar n × m array. This array is assumed to consist of unit cells (e.g. controlled refractors or any non-linear Kerr 
cells) which are, either completely absorptive, or completely reflective. The reflective cells are also assumed to be 

CUSHAW SOAP2 Bowtie BWA
QPR Method (by 
simulation)

Precision 90,00% 90,84% 93,47% 91,82% 94,24% (±1.48)

Recall 97,51% 92,85% 84,75% 97,22% 97,83% (±0.85)

Average time per read mapping (in ms)

SE 1,154 2,044 1,343 3,721
0,00642

PE 2,898 2,310 3,013 3,929

Approximated runtime (in s)

SE 1026 2617 1085 4764
28,84

PE 3711 2958 3858 5031

Table 2.  Benchmarking alignment test between classical aligners and QPR method (Ω = 6) querying E. coli K12 
MG1655(SRR001665) on E. coli 536. The SD measure is included in QPR.
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uniformly distributed in the rectangular array with a density ρ < 1. The position of the reflective points on the 
plane may be located by shining appropriately focused light beams on the Kerr media and doing calculations 
in close analogy to diffraction experiments studying crystal structures via Laue diagrams. Symmetrical pattern 
transformations are assumed to be resilient for an ideal number of times into different directions.

In another way, the array data can be treated by a quantum black box (BB) of the form in Eq. (7). The BB 
transformation is based on the principal of quantum parallelism and acts as a binomial classifier and selector 
for the array data. The input x and y quantum states, being in a superposition, can encode simultaneously all the 
coordinates of the reflective cells in the array. The initial x and y quantum states are superpositions that represent 
all the possible coordinates as n- and m- qubit strings laying in quantum registers. The zero-state register consists 
of a single qubit which has to come into entanglement with the other two registers. A single measurement of the 
entangled qubit will randomly determine which of the groups of the binomial classification will survive, which 
means that then the x and y states will exclusively become superpositions, either of the reflective, or the absorp-
tive, cells.



















→



















BB
x
y

x
y

f x y
:

0 ( , ) (7)

Since the unstructured data set is loaded into the array structure, the method is ready to begin. The whole 
method can be translated into five algorithmic phases:

PSA Tool

Year

Strategy Stage 1
Time & Space 
Complexity Stage 2

Time & Space 
Complexity Stage 3

Time & Space 
Complexity Stage 4

Time & Space 
Complexity Stage 5

Time & Space 
Complexity

Title Name
General 
method

Construction of the Indexing 
Structure Seed Generation/Organization Seed Searching (or seeding) Mapping & Extension D.P. Alignment

GNUMap 2009
Seed & 
Extend k-
mer exact

Hash SR
T: O (LR + (LR log 
LR)) S: O (LR)

PWM + quality 
filter T: Ο (LPWMLR) Hash table Avg: Θ (1) 

Worst: O (LS)
Quality Filter T: Ο (Nm) Probabilistic 

NW scoring
T: Ο (L) S: 
Ο (L)

SOAP2 2009
Seed & 
Extend k-
mer inexact

Suffix trie 
BWT-FM SR

T: Ο (LR + (LR log 
LR)) S: O (LR) Read split — Suffix trie Avg: Θ (1) 

Worst: O (LS)
— — S.W. scoring T: Ο (L) S: 

Ο (L)

Bowtie 2009
Seed & 
Extend k-
mer inexact

Suffix trie 
Bidirectional 
BWT-FM SR

T: 
Ο(LR + (LRlogLR)) 
S: O(LR)

Read split — Suffix trie Avg: Θ (1) 
Worst: O(LS)

Base-calling 
quality score

Avg: Θ (1) 
Worst: O(LS) 
Space:Ο (2 LS)

S.W. scoring T: Ο (L) S: 
Ο (L)

BWA 2009
Seed & 
Extend k-
mer inexact

Prefix trie SQ T: Ο(LR) S: O(LR) Prefix DAWG Ss T: Ο (LS) S: O (LS) Prefix trie Avg:Θ(1) 
Worst: O(LS)

Overlapping 
criterion O(Nm) S.W. scoring T: Ο (L) S: 

Ο (L)

RMAP 2008
Seed & 
Extend k-
mer spaced

— —
Hash seed table 
Base-calling 
filtration

T: O (r) + O (log 
LS) S: 

+O a rk( )
LS
k

Hash table O(LG) Base-calling 
quality score

Avg: Θ (1) 
Worst: O(LS) 
Space:Ο (2 LS)

S.W. scoring T: Ο (L) S: 
Ο (L)

Maq 2008
Seed & 
Extend k-
mer spaced

Hash SR
T: O (LQ + (LQ log 
LQ)) S: O (LQ)

Seed list exact & 
inexact T: Ο (LR) S: O (LR) Hash table Avg: Θ(1) 

Worst: O(LS)
Base-calling 
quality score

Avg: Θ (1) 
Worst: O(LS) 
Space:Ο (2 LS)

S.W. scoring T: Ο (L) S: 
Ο (L)

BWA-MEM 2013
Seed & 
Extend 
MEMs

Bidirectional 
FMD-index 
SQ

T: Ο (LQ + (LQ log 
LQ)) S: O (LQ)

Two rounds of 
SMEMs

T: Ο 
(LQ + LR + k + 1) S: 
Ο (LS)

FMD-index Worst: O(LS)
Ranking 
cutoff ~O(Nm) S.W. affine 

gap penalty
T: Ο (L) S: 
Ο (L)

CUSHAW2 2014
Seed & 
Extend 
MEMs

FM-ind. 
suffix trie for 
SG or SQ

T: Ο(LQ + (LQ log 
LQ)) S: O(LQ) Finding MEMs T:Ο (LQ + LR) S: 

Ο (LS)
Suffix tree FM-
index Ο (LS + LG) — — S.W. scoring T: Ο (L) S: 

Ο (L)

LAST 2011
Seed & 
Extend 
Adaptive

Suffix tree SR T: Θ (LR) S: Θ (LR)
Spaced suffix 
array of adaptive 
seeds

T:Ο (LS) S: Ο (LS) Suffix tree Ο (log LS) — — S.W. scoring T: Ο (L) S: 
Ο (L)

AMAS 2015
Seed & 
Extend 
Adaptive

Suffix tree SR T: Θ (LR) S: Θ (LR)
Spaced suffix 
array of adaptive 
seeds

T:Ο (LS) S: Ο (LS)
Suffix tree 
Nm < Threshold Ο(log LS)

Already 95% 
candidates 
out

~O(Nm) S.W. scoring T: Ο (L) S: 
Ο (L)

SHRiMP 2011 Spaced 
q-grams

Hash table 
SR

T: O(LR + (LR 
logLR)) S: O(LR)

q-gram index 
construction

T: O(LQ + LS LR a-q) 
S: O(LQ + 4q) Hash table Avg: Θ(1) 

Worst: O(LS)
— — Vectorized 

S.W. scoring
T: Ο (L) S: 
Ο (L)

Hobbes 2012 q-grams Hash table 
SR

T: O(LR + (LR log 
LR)) S: O(LR)

q-gram index 
construction

T: O(LQ + LS LR a-q) 
S: O(LQ + 4q) Hash table Avg: Θ(1) 

Worst: O(LS)
Apply 
filtering ~O(Nm) S.W. or N.W. 

scoring
T: Ο (L) S: 
Ο (L)

— — Proposed
Diffraction 
pattern 
(BB + Meas/
ment)

T: O (log2L) S: Ο 
(log2 (LR + LQ)) — — QFT O(log2L) — — D.P. scoring 

or not
T: Ο (L) S: 
Ο (L)

Classical 
Analogue — Dot-matrix

Table 
construction 
for SR and SQ

T: O (LR + LQ) S: O 
((α + 4) LR + 2LS)

— — FFT +log L( )q
2

1 — — D.P. scoring 
or not

Table 3.  Comparison of Sequence Alignment Strategies in terms of Computational Complexity. Notes:SQ and 
LQ are the query read sequence and its length. SS and LS are the seed sequence and its length. SR and LR is the 
reference genome sequence and its length. q is the length of a substring (q-gam) of a target sequence. L = LSLQ, 
LPWM is the length of a PWM sequence. Nm is the matching times, r is the number of the seed strings in a seed-
table, k is the allowed mismatches in the search, a is the number of all the different elements of the sequence 
(a = 4 for DNA seq. and a = 20 for protein seq.). *The outcome of the quantum measurements should be 
extracted immediately.
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Input data preparation.  The two coordinate registers are initialized into |0〉 state and then the Hadamard trans-
formation is applied. This step is described in Eq. (8). N and M parameters represent the rows and the columns of 
the rectangular array, respectively.

Black-Box run.  The BB transformation is applied and the third one-qubit registered is measured. The current 
state of the registers is described by Eq. (8). If the outcome of the measurement is 1, the resulting superposition 
concerns only the reflective cells. Otherwise, the resulting superposition concerns only the absorptive cells (the 
complementary set) and step 2 is repeated.

∑ ∑
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After a successful measurement, Eq. (8) will obtain the form of Eq. (9). The NM product in Eq. (9) is reduced 
to ρNM or ρS, considering that S = NM. Coordinate registers x and y can be considered as a single one under the 
symbol z, |z〉 = |x〉 ⊗ |y〉. The complex number z (z = x + Ny) can be viewed as an s-digit binary number which 
indicates a point in the array in the form of a string made by the coordinates n + m = s. The current superposition 
is given by the quantum state |Ψ〉 with 0 ≤ 



z  ≤ S − 1.

∑
ρ

Ψ =
ρ

=
S

z1
(9)

S

1

QFT application.  It is time to apply the QFT circuit network to the |z〉 superposition state. The final result is 
described in Eq. (10).

∑∑ ρ
πΨ =









ρ

=

−

=

QFT
S

iz k
S

k1 exp 2
(10)k

S S

0

1

1

At this stage, some useful information about the pattern can be extracted by measuring |k〉. Some values of 
k may be more prominent as their amplitudes may be increased by the QFT. Line patterns demonstrate a stable 
repetition of reflective cells developing peaks of |z〉 factor. These values of k are known as wave-numbers and can 
lead to the detection of the pattern (a.k.a. feature selection). When there isn’t a prominent pattern then the meas-
urement of the quantum state k yield just noise.

Pattern localization.  This is the only classical part of this method since it makes use of classical computation. 
By using the equations of Laue diagrams used in diffraction experiments it is possible to find the location of the 
detected patterns and extract further information about their length and their direction. This step demands a 
second execution of the algorithm.

Fidelity verification.  A few more repetitions of the algorithm may be needed to ensure the detection of our 
findings.

RoutineLaue.  In a continuation of the QPR algorithm, the key parameters LD and ϑ can be inferred from the 
measurements in routineQPR, in order to locate the center points z of a particular diagonal which is described by

= + + ϑz z NN[ ( tan )] (11)0 integer

where N is an integer. The Ω measurements [k1, …, kΩ] of routineQPR running for a single window are stored and 
used in this routine. Some peaks are generated in each row of the pattern
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k S
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M
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N cos
(12)D D integer

while the summation of the peaks of all rows interferes constructively only if k is fine-tuned according to

Ο
χ

=



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ϑ
− ϑ

±
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










k N
N

N cos tan 1

(13)integer

The second term in Eqs (12) and (13) denotes the width of the peak. The associated Laue function fLaue(ξ,κ) =  
sin2(πξκ)/sin2(πκ), with k = κcos ϑ S/LD and ξ = O(N β ) for the case of Eq. (12) and κ = k(N + tanϑ)/S and 
ξ = O(M β )) for the case of Eq. (13) can lead to the calculation of the position and the width of the peaks.

Prevalent peaks in the measurements of k occur for values which satisfy both conditions in Eqs (12) and (13), 
concurrently. So, the wave-numbers of the potential peaks are given by
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However, Eq. (14) cannot give large peaks standalone. The first few of them may be suppressed, but some 
potential peaks from Eq. (14) may match conditions (12) and (13). One more time, the same process has to be 
repeated for the transposed array (NM→)MN. The weave-numbers of the peaks are now

′ ≈




 ϑ ± ϑ





k S

L
N
L

N sin cos
(15)D D integer

since transposing changes the array orientation per π/2.
So far, the candidate values LD and ϑ can be approximated. Using the candidate values for LD/cos ϑ from Eq. (14)  

and LD/sin ϑ from Eq. (15) a mathematical system is created for solution. Therefore, comparing the condition Eqs 
(12) and (13) and the sets of the suppressed peaks will provide accurately the LD and ϑ values.

For the size of the pattern, the frequency of measuring the peaks at k and k΄ and their width is enough to find 
fraction β. So, with the aid of L, ϑ and β, the pattern can be localized efficiently by splitting up symmetrically the 
window into smaller orthogonal windows and running routineQPR again in these smaller windows. A richer 
analysis of this method can be found in the seminal paper6.

Classical simulation of routineQPR.  A simple program is implemented by using the bioinformatics tool-
box application of Mathworks in the Matlab suite.

The readily available function of seqdotplot allows the creation of a large dot matrix and its manipulation. 
seqdotplot can load large sequences, take control of the size of the window on the reference genome and set the 
number of mismatches in it. The functions nwalign and swalign are good simulations of the well-known dynamic 
alignment algorithms N.W. and S.W., respectively. Whatever is the aim, the main program splits the dot matrix 
into smaller windows and windows that are directly connected with the main diagonal of the plot are examined. 
All our results are conducted with this setting ignoring windows of second priority. The majority of the diagonals, 
a fraction ~50%, in a sub-matrix, or window, are scanned for “1” (dot) values and the summation is kept for each 
one. When the sum is higher than a threshold, this window is recorded as positive. Finally, a matrix keeps the pos-
itive windows to index the regions of similarity. The threshold for the summation is analogous to the size of the 
window. Due to the limited performance and memory allocation of our program, reasonable sizes of sequences 
were tested.

Data Availability
All data generated or analyzed during this study are included in this published article (and its Supplementary 
Information files).
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