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LG biplot: a graphical method for 
mega-environment investigation 
using existing crop variety trial data
Weikai Yan

Due to the presence of genotype by environment interaction (GE), no crop cultivar performed the 
best in all regions. Therefore, the growing regions of a crop must be divided into sub-regions or 
mega-environments, and specifically adapted cultivars must be bred and deployed in each mega-
environment. Meaningful mega-environment delineation must be based on repeatable GE patterns, 
which can be extracted from multi-year, multi-location crop variety trials. In regional crop variety 
trials, usually the same set of genotypes are tested across locations within a year, but different sets 
of genotypes are tested in different years, leading to highly unbalanced multi-year data. Such data 
are abundant for all crops and regions; but there has been no way to fully utilize them for mega-
environment delineation. This paper presents a new method that allows utilization of existing variety 
trial data to identify repeatable GE patterns, to delineate mega-environments, and to understand the 
scope of unrepeatable GE at a location and within a mega-environment.

Plant breeding has played a key role in increasing agricultural productivity and feeding the world. One key aspect 
of plant breeding is to select and deploy specifically adapted crop cultivars to a target region. Due to the presence 
of genotype by environment interaction (GE), no crop cultivar performs the best in all environments. To deal with 
GE, the growing regions of a crop must be divided into subregions, i.e., mega-environments1. Although there are 
many ways to delineate a target region or regions into mega-environments, meaningful mega-environment delin-
eation must be based on repeatable GE patterns, which can be extracted only from multi-year, multi-location crop 
variety trials2,3. Unfortunately, although multi-location variety trials are conducted every year in every region 
for all major crops, data from such trials have rarely been utilized to extract repeatable GE patterns, because 
different sets of genotypes are tested in different years and multi-year data are highly unbalanced. Some attempts 
have been made to utilize such data; the common strategy has been to analyze multi-location variety trials yearly 
and to summarize the patterns across years4. The main technique has been GGE (genotypic main effect plus 
GE) biplot analysis5–8, which was developed based on the biplot theory of Gabriel9. Summarizing GE patterns 
across years proves to be very tedious and difficult. Recently, a GGE-GGL biplot was developed, which allows 
multi-year, multi-location crop variety trial data to be displayed in a single GGE biplot and thereby allows clear 
separation of repeatable GE from unrepeatable GE2. The GGE-GGL biplot method requires a sizable number 
of common genotypes to be present across years so that missing values can be imputed with confidence; this 
requirement is not always met in routinely conducted crop variety trials, however. The objective of this paper is 
to present a location-grouping (LG) biplot method for mega-environment delineation that does not require com-
mon genotypes across years so that data from routinely conducted variety trials can be utilized to understand the 
mega-environments and test locations for any crop and region.

Results
The GGE biplots to show yearly GE patterns.  The yearly GGE biplots summarizing the grain yield data 
from the 2006 to 2010 Quebec Provincial Oat Registration and Recommendation trials are presented in Fig. 1. 
Although a GGE biplot can be visualized in many ways to address different questions10, the focus here is to visu-
alize the similarity/dissimilarity among test locations in ranking genotypes. The genotypes tested each year were 
considered as random samples of the genotype population so their names were not spelled out for clarity. The 
GGE biplot were based on location-standardized data (“Scaling = 1”, “Centering = 2”) and the singular values 
were partitioned entirely to the location vectors (“SVP = 2”). These settings (shown on the upper left corner of 
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the biplots) allow the following interpretation: the cosine of the angle between two locations in the biplot approx-
imates the Pearson correlation between them across tested genotypes (Table 1). The closeness of the approxi-
mation is related to the goodness of fit of the biplot, which is also shown on the upper left corner of each biplot 
(Fig. 1). An acute angle means positive correlation, an obtuse angle means negative correlation, and a right angle 
means lack of correlation between two locations across tested genotypes for the trait of interest (here grain yield). 
Both Fig. 1 and Table 1 can be used to understand the yearly relations among test locations. While the numerical 
values in Table 1 are more accurate, Fig. 1 allows a quick grasp of the main yearly patterns. From example, Fig. 1 
shows that there were some negative correlations among locations (obtuse angles between locations) in each of 
the five years, indicating strong GE. The problem with both Table 1 and Fig. 1, however, is that it is difficult to 
extract the common patterns across years; that is, it is difficult to separate repeatable GE from unrepeatable GE, 
which is essential for meaningful mega-environment delineation.

The LG biplot to show repeatable and non-repeatable GE.  The LG biplot (Fig. 2) is a graphical pres-
entation of the yearly correlations among locations in Table 1. It may be viewed as a chart that stacks the location 
markers from each of the five GGE biplots (Fig. 1), with the location-year markers aligned according to their 
interrelations. The yearly patterns shown in Fig. 1 were largely retained in Fig. 2. An added function of the LG 
biplot is that it allows visualization of the similarity (repeatable GE) and variability (unrepeatable GE) of a loca-
tion in correlation with other locations across years, a function similar to the GGE-GGL biplot2.

A more functional form of the LG biplot is presented in Fig. 3. It is the same biplot as in Fig. 2 but shows the 
mean placement of each location and its distribution in different years. The placement of a location was deter-
mined by the mean coordinates of all trials conducted at the location, as was done in the GGE-GGL biplot2. For 
example, the placement of “OTT” was determined by the placements of the three trials conducted at Ottawa in 
2008, 2009, and 2010, indicated by OTT_08, OTT_09, and OTT_10, respectively (Fig. 3). The following informa-
tion can be visualized from Fig. 3:

First, the 11 locations involved in the 2006 to 2010 trials fell into two distinct groups (mega-environments); 
the GE between the two mega-environments were, therefore, repeatable GE. The first group (the southern 
mega-environment) included five locations: three Quebec Zone-1 locations (NDHY1, STRO1, and STS1), 
a Quebec Zone-3 location (LAPO3), and the Ottawa Ontario location (OTT). The other group (the north-
ern mega-environment) included six Zone-2 or Zone-3 locations (PINT2, PRIN2, STAU2, CAU3, HEB3, and 
NORM3). This is fully consistent with the conclusion based on GGE-GGL biplot analysis2. The grouping of 
LAPO3 with the Zone-1 locations demonstrates the superiority and essentiality of mega-environment delineation 
based on repeatable GE patterns.

Figure 1.  The GGE (genotypic main effect plus genotype-by-environment interaction) biplot for yield for 
each of the five years from 2006 to 2010. The biplots were based on location standardized data (Scaling = 1, 
Centering = 2) and the singular values were partitioned entirely to the location vectors to focus on the relations 
among test locations (SVP = 2). The genotypes are shown as “+” for clarity. See Table 1 for the full location 
names.
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Second, the correlations between trials (location-year combinations) from different mega-environments were 
mostly negative, ranged from highly negative (wide obtuse angles) to highly positive (small acute angles); as a 
result, the two mega-environments were slightly negatively correlated. This indicates that different cultivars must 
be selected and recommended specifically to each mega-environment. Alternatively, a “super” cultivar must be 
developed that is best for both mega-environments.

Third, large yearly variation existed in the placement of each location in the biplot (see the OTT location as 
an example). As a result, two locations in the same mega-environment may not be closely correlated every year 
even though they rank genotypes similarly across years. The sum of the yearly variations for individual locations 
within a mega-environment represents the unrepeatable GE. Its presence demands multi-year multi-location tests 
to identify superior and stable cultivars for the mega-environment. Its magnitude determines how many years 
and locations are needed for reliable genotype evaluation3.

The LG biplot based on the grain yield data from the 2014 to 2018 Quebec oat trials (Fig. 4) supports the con-
clusions from the 2006 to 2010 data (Fig. 3). Despite dramatic breeding progresses and possible climate changes 

Year Locations§ CAUS3 HEBE3 LAPO3 NDHY1 NORM3 OTT PINT2 PRIN2 STAU2 STRO1 STS1

2006 HEBE3 . 1 −0.330 . 0.870 . . 0.359 0.670 0.310 −0.034

2006 LAPO3 . −0.330 1 . −0.499 . . −0.068 −0.008 0.363 0.435

2006 NORM3 . 0.870 −0.499 . 1 . . 0.281 0.584 0.157 −0.200

2006 PRIN2 . 0.359 −0.068 . 0.281 . . 1 0.236 0.205 0.223

2006 STAU2 . 0.670 −0.008 . 0.584 . . 0.236 1 0.526 0.151

2006 STRO1 . 0.310 0.363 . 0.157 . . 0.205 0.526 1 0.235

2006 STS1 . −0.034 0.435 . −0.2 . . 0.223 0.151 0.235 1

2007 HEBE3 . 1 0.302 . 0.829 . 0.519 . 0.677 −0.084 −0.008

2007 LAPO3 . 0.302 1 . 0.431 . 0.132 . 0.054 0.339 0.452

2007 NORM3 . 0.829 0.431 . 1 . 0.479 . 0.701 −0.078 0.038

2007 PINT2 . 0.519 0.132 . 0.479 . 1 . 0.597 0.300 0.001

2007 STAU2 . 0.677 0.054 . 0.701 . 0.597 . 1 −0.156 −0.184

2007 STRO1 . −0.084 0.339 . −0.078 . 0.300 . −0.156 1 0.705

2007 STS1 . −0.008 0.452 . 0.038 . 0.001 . −0.184 0.705 1

2008 HEBE3 . 1 . . 0.419 −0.093 0.429 0.348 0.476 0.517 0.001

2008 NORM3 . 0.419 . . 1 −0.002 0.425 0.432 0.466 −0.081 −0.336

2008 OTT . −0.093 . . −0.002 1 −0.298 −0.397 −0.284 0.027 0.183

2008 PINT2 . 0.429 . . 0.425 −0.298 1 0.62 0.402 0.388 −0.200

2008 PRIN2 . 0.348 . . 0.432 −0.397 0.62 1 0.543 0.186 −0.260

2008 STAU2 . 0.476 . . 0.466 −0.284 0.402 0.543 1 0.206 −0.242

2008 STRO1 . 0.517 . . −0.081 0.027 0.388 0.186 0.206 1 0.476

2008 STS1 . 0.001 . . −0.336 0.183 −0.200 −0.260 −0.242 0.476 1

2009 CAUS3 1 . −0.438 −0.387 0.486 −0.283 0.712 0.299 . -0.251 .

2009 LAPO3 −0.438 . 1 0.321 −0.225 0.583 −0.411 −0.024 . 0.591 .

2009 NDHY1 −0.387 . 0.321 1 −0.267 0.573 −0.216 0.044 . 0.231 .

2009 NORM3 0.486 . −−0.225 −0.267 1 −0.218 0.445 0.094 . −0.070 .

2009 OTT −0.283 . 0.583 0.573 −0.218 1 −0.184 0.153 . 0.589 .

2009 PINT2 0.712 . −0.411 −0.216 0.445 −0.184 1 0.148 . −0.250 .

2009 PRIN2 0.299 . −0.024 0.044 0.094 0.153 0.148 1 . 0.190 .

2009 STRO1 −0.251 . 0.591 0.231 −0.07 0.589 −0.250 0.190 . 1 .

2010 CAUS3 1 0.521 −0.277 0.178 0.474 0.017 . 0.127 0.397 0.008 .

2010 HEBE3 0.521 1 −0.053 0.387 0.63 0.231 . 0.234 0.492 0.140 .

2010 LAPO3 −0.277 −0.053 1 −0.029 −0.021 −0.276 . −0.025 −0.303 −0.008 .

2010 NDHY1 0.178 0.387 −0.029 1 0.316 0.050 . 0.080 0.296 0.498 .

2010 NORM3 0.474 0.63 −0.021 0.316 1 . . 0.409 0.588 0.200 .

2010 OTT 0.017 0.231 −0.276 0.050 . 1 . 0.093 0.206 0.062 .

2010 PRIN2 0.127 0.234 −0.025 0.080 0.409 0.093 . 1 0.196 0.085 .

2010 STAU2 0.397 0.492 −0.303 0.296 0.588 0.206 . 0.196 1 0.383 .

2010 STRO1 0.008 0.140 −0.008 0.498 0.200 0.062 . 0.085 0.383 1 .

Table 1.  Pearson correlations between test locations across tested genotypes for grain yield in each of the 
years from the 2006 to 2010 Quebec provincial oat registration and recommendation trials. §The full names 
of the locations and their zones are: CAUS3: Causapscal (Zone-3), HEBE3: Hebertville (Zone-3), LAPO3: La 
Pocatière (Zone3), NORM3: Normandin (Zone-3), OTT: Ottawa (Ontario), PINT2: Pintendre (Zone-2), PRIN2: 
Princeville (Zone-2), STAU2: St-Augustin (Zone-2), STRO1: St- Rosalie (Zone-1), and STS1: St-Simon (Zone-1).
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occurred between the two periods, the two location groups observed in Fig. 3 remained obvious in Fig. 4. The first 
group (the southern mega-environment) consisted of NDHY1, STHU1, LAPO3, and OTT, and the second group 
(the northern mega-environment) consisted of three Zone-3 locations (CAUS3, HEBE3, and NORM3) and three 
Zone-2 locations (STAU2, PRIN2, and STFR2). A difference is that the two mega-environments tended to be 
positively correlated in Fig. 4, as opposed to the negative correlation in Fig. 3. This was because the introduction 
of some more widely adopted cultivars such as Nicolas and Akina in recent years (see more in Discussion). Note 
that the Zone-3 location LAPO3 again fell with the southern locations (NDHY1, STHU1, and OTT), rather than 
with the other Zone-3 locations.

Discussion
Implication of mega-environment delineation.  The purpose of mega-environment delineation is to 
utilize repeatable GE in plant breeding and crop production. This is achieved by breeding and deploying specifi-
cally adapted crop cultivars according to mega-environments. The GGE biplots presented in Fig. 5, which approx-
imates the grain yield data of 15 oat cultivars tested throughout 2014 to 2018, illustrates this point. When viewed 
across all trials conducted during 2014 to 2018 (i.e., the whole region), the highest yielding cultivars was Nicolas, 
closely followed by Akina (Fig. 5a). The arrow on the single-arrowed line (the average environment axis or AEA) 
points to higher mean yield across trials, and the arrows on the double-arrowed line point to higher instability 
across trials10. Figure 5a shows that Nicolas yielded very well in trials above the AEA such as LAPO3_14 but not 
so well in trials below the AEA such as NORM3_18. When the yield data were summarized by mega-environ-
ment, Nicolas showed outstanding mean yield and stability across all trials in the southern mega-environment, 
clearly better than any other cultivars (Fig. 5b). Therefore, Nicolas can be recommended without hesitation to 
this mega-environment. In the northern mega-environment, while Akina and Nicolas were still the highest yield-
ers on average, they were not the highest yielders in about half of the trials. Instead, Nice, Canmore, and/or 
Richmond were the highest yielders in these trials(Fig. 5c). Thus, Nice, Canmore, and Richmond showed con-
trasting responses to the environments within this mega-environment, in comparison with Akina and Nicolas 
(Fig. 5c). Therefore, to stabilize the oat yield in this subregion within and across years, Nicolas, Akina, Nice, 
Canmore, and Richmond should all be recommended to buffer the large and unpredictable GE. Note that Nice 
and Canmore yielded only about average across all trials (Fig. 5a) and yielded among the poorest in the southern 
mega-environment (Fig. 5b). Considering that the northern mega-environment is a key oat production area in 
Quebec, this understanding has important implications on oat production in Quebec.
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Figure 2.  The LG (location-grouping) biplot displaying the correlations between locations in each of the five 
years (2006 to 2010) (Table 1). No scaling or centering was applied (“Scaling = 0”, “Centering = 0”) before 
subjecting the correlation table to singular value decomposition so that the biplot approximates the correlation 
values. The singular values were partitioned entirely to the location-year vectors (“SVP = 2”). The rows in 
Table 1 (trials) are presented in red and as location-year combinations. For example, OTT_10 means the trial at 
Ottawa in 2010. The columns in Table 1 (the locations) are presented in blue. See Table 1 for full location names.

https://doi.org/10.1038/s41598-019-43683-9


5Scientific Reports |          (2019) 9:7130  | https://doi.org/10.1038/s41598-019-43683-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

An alternative LG biplot.  The model setting of no-scaling and no-centering (“Scaling = 0” and 
“Centering = 0”) in the LG biplots (Figs 2–4) allows visualization of the correlation coefficients between locations 
or trials (such as Table 1). When the LG biplot does not adequately display the correlation table, or when sepa-
rating the locations, rather than visualizing the correlations between locations, is the focus, a LG biplot based on 
grand-mean centered correlation values (“Scaling = 0” and “Centering = 1”), referred as the “LG1 biplot”, may be 
used as a supplement. This LG1 biplot may be able to reveal the dissimilarities among locations that are masked 
by inclusion of the grand mean in the LG biplot based on un-centered correlation values. Presented in Fig. 6 is the 
LG1 biplot based on the 2014 to 2018 dataset. Instead of showing two groups of mega-environments in the LG 
biplot (Fig. 4), it shows two subgroups of locations within the northern mega-environment (on the left side of the 
biplot): CAUS3 and PRIN2 versus the other locations. It must be noted that the LG1 biplot cannot be interpreted 
as approximating the correlations between locations or trials in ranking genotypes and should only be used only 
as a supplement to the LG biplot.

Some pitfalls in LG biplot analysis.  In the correlation table used to generate a LG biplot (e.g. Table 1), the 
correlation of a trial with itself was assigned to “1”. While this is logical and standard, it may create an artifact to 
suggest that each location is a mega-environment by itself when only a few (e.g. three) locations are included in 
the analysis. In fact, when there are only two or three locations, the relations among them can be easily under-
stood from examining the yearly GGE biplots (e.g. Fig. 1) or the correlation table (e.g. Table 1), and there is no 
need to resort to a LG biplot.

Another issue that needs attention is that in LG biplot analysis genotypes are treated as random samples of a 
genotype population. When this assumption is violated, i.e., when only a few genotypes are tested each year or 
when tested genotypes are dramatically different between years, location grouping may be blurred due to unusu-
ally large within-location variability.

Conclusions
Crop variety trials are probably the most well-funded agricultural research. Regardless of economic develop-
mental levels and financial situations, crop variety trials are conducted every year in every region for every main 
crop, and abundant data have been accumulated for all crops and regions. Such data can be utilized in selecting 
genotypes and recommending cultivars as short-term goals and in understanding the target region and the test 
locations as long-term goals, which in turn facilitates achieving the short-term goals. The long-term goals have 
been hindered due to lack of methods in utilizing the abundant but highly unbalanced multi-year data. The 
LG-biplot methodology solves this problem. It allows utilization of existing variety trial data to identify repeatable 
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Figure 3.  The mega-environment view of the LG biplot in Fig. 2. The placement of a location is determined 
by the mean coordinates of all trials conducted at the locations. For example, the placement of “OTT” was 
determined by the placements of the three trials conducted at Ottawa in 2008, 2009, and 2010, i.e., OTT_08, 
OTT_09, and OTT_10. See Table 1 for full location names. The makers for the columns in Table 1 are presented 
as “+” for clarity.
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GE patterns, to delineate mega-environments, and to understand the scope of unrepeatable GE at a location and 
within a mega-environment. Such information is crucial for improving plant breeding efficiency, crop cultivar 
deployment, and crop productivity. Use of LG biplot analysis will save tremendous time and resources in planning 
and conducting new experiments.

Methods
The sample data.  Grain yield data from the 2006 to 2010 Quebec oat trials were used in this study. This 
is the same dataset described and used in2 to conduct mega-environment analysis using a GGE-GGL biplot 
approach. Briefly, yield data were available for 26, 29, 34, 35, and 35 oat genotypes tested at 7, 7, 8, 8, and 9 
locations across Quebec plus Ottawa Ontario in 2006 to 2010, respectively. The test locations were chosen to 
represent the three ecological zones of Quebec, ranging from Zone-1 in the south to zone 3 in the north. Fifteen 
genotypes were common in all five years; more genotypes were common in adjacent years. The locations used to 
represent each zone varied across years (Table 1). To present this multi-year, multi-location data in a single GGE 
biplot, a missing value imputation method had to be employed10. Based on the GGE-GGL biplot, two distinct 
oat mega-environments were identified. One mega-environment (the southern mega-environment) consisted of 
all Zone-1 locations plus Ottawa and La Pocatière, the latter being a Zone-3 location, geographically; the other 
mega-environment (the northern mega-environment) consisted of all Zone-2 and Zone-3 locations except La 
Pocatière. GGE-GGL biplot analysis was possible because of the presence of a relatively large number of common 
cultivars between years, which allowed missing values to be imputed with some confidence. The use of this data-
set in the current study was to show that the same mega-environment delineation can be achieved using the LG 
biplot approach, which does not require the presence of common genotypes across years.

The yield data from the 2014 to 2018 Quebec oat trials consisted of 49 trials involving 10 locations and 116 
genotypes; the number of genotypes tested each year was 50, 49, 45, 45, and 44, respectively. This dataset was used 
to validate the results from LG biplot analysis of the 2006 to 2010 dataset and to demonstrate the importance of 
mega-environment delineation on cultivar selection and recommendation.
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Figure 4.  The LG (location-grouping) biplot to show two groups of locations based on the yield data from 
the 2014-2018 Quebec oat trials. This biplot was generated and can be interpreted the same way was the one 
in Fig. 3. The full names of the locations involved in the 2014 to 2018 trials are: Causapscal (Zone-3), HEBE3: 
Hebertville (Zone-3), LAPO3: (La Pocatière (Zone-3), NDHY1: N-D-de-St-Hyacinthe (Zone-1), NORM3: 
Normandin (Zone-3), OTT: Ottawa (Ontario), PRIN2: Princeville (Zone-2), STAU2: St-Augustin (Zone-2), 
STET2: St-Etienne (Zone-2), and STHU1: St-Hugues (Zone-1).
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Data standardization.  GGE biplot analysis was conducted yearly for the yield data from the 2006 to 2010 
Quebec oat trials (Fig. 1); it is used here to relate yearly GGE biplot analysis to cross-year LG biplot analysis. The 
genotype-by-environment data of grain yield were standardized before subjecting to singular value decomposi-
tion (SVD). The standardization was conducted by:

=
−

P
T T

s
,

(1)
ij

ij j

j

where Pij is the standardized yield of genotype i in environment j, Tijis the original yield of genotype i in environ-
ment j in the genotype-by-environment table, Tj is the mean yield across genotypes in environment j, and sij is the 
standard deviation in environment j. This data standardization is denoted as “Scaling = 1” and “Centering = 2” in 
the GGE biplots (Figs 1 and 5).

GGE biplot analysis.  A GGE biplot (Figs 1 and 5) approximates the genotypic main effect and GE of a 
genotype-by-environment two-way table11. It is based on the first two principal components (PC) resulting from 
subjecting the standardized genotype-by-environment table (Pij) to SVD. This process decomposes the table into 
genotype eigenvalues, environment eigenvalues, and singular values:

λ ζ λ τ λ ζ λ τ ε= + +α α α α− −P d d d d( )( / ) ( )( / ) , (2)ij i j i j ij1 1 1
1

1 2 2 2
1

2

Figure 5.  GGE biplots to show the mean yield and stability of 15 oat cultivars from 2014 to 2018 across (a) all 
locations, (b) southern mega-environment only (represented by NDHY1, OTT, LAPO3, and STHU), and (c) 
northern mega-environment only (represented by HEBE3, NORM3, CAUS3, STAU2, PRIN2, and STET2). The 
biplot was based on environment-standardized yield data (“Scaling = 1, Centering = 2”). See Fig. 4 for the full 
location names.
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Figure 6.  The LG1 biplot based on the same correlation table on which the LG biplot in Fig. 4 was generated. 
It differs from the LG biplot in Fig. 4 only in that the correlation table was centered by the grand-mean before 
subjecting to singular value decomposition, which is indicated by “Centering = 1”.
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where ζi1 and ζi2 are the eigenvalues for PC1 and PC2, respectively, for genotype i; τ1j and τ2j are the eigenvalues 
for PC1 and PC2, respectively, for environment j, and εij is the residual from fitting PC1 and PC2 for genotype i in 
environment j; λ1 and λ2 are the singular values for PC1 and PC2, respectively. α is the singular value partitioning 
(SVP) factor. When α = 1 (i.e., SVP = 1), the biplot is said to be genotype-focused, and is suitable for comparing 
genotypes (Fig. 5). When α = 0 (i.e., SVP = 2), the biplot is said to be environment-focused, and is suitable for 
visualizing correlations among environments (Fig. 1). The scalar d is chosen such that the length of the longest 
vector among genotypes equals to that among environments; this is important for generating a functional biplot10. 
The GGE biplot was constructed by plotting λ ταd( )1 i1  against λ ταd( )2 i2  for genotypes and plotting τλ −α( /d)1

1
ij  against 

τλ −α d( / )2
1

2j  for environments in the same plot.

LG biplot analysis.  LG biplot analysis includes two steps. First, the yearly Pearson correlations among test 
locations across tested genotypes were calculated to form a location by trial table of correlations like Table 1. 
Second, this table was subjected to SVD and displayed in a LG biplot. The process of generating a LG biplot is the 
same as generating a GGE biplot (equation 2) except to define Pij as the Pearson correlation coefficient between 
location i and location-year combination j (Table 1) and replace “genotypes” with “locations” and “environments” 
with “trials” or “location-year combinations”.

The LG biplot was so named because both the rows and the columns of the correlation table (Table 1), and 
their makers in the biplot (Figs 2–4), are locations, and the purpose was to visualize the similarity/dissimilarity 
among locations in ranking genotypes. No scaling or centering was performed before subjecting the correlation 
table to SVD (denoted as “Scaling = 0” and “Centering = 0”). The LG biplot, therefore, approximates the correla-
tion values in Table 1. Prior to SVD, any missing values in Table 1 were estimated using a method described in11. 
Note that no information is required about the tested genotypes in LG biplot analysis; they are treated as random 
samples in the population of genotypes.

Data Availability
All necessary data are included in the manuscript.
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