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Decomposing motion that changes 
over time into task-relevant and 
task-irrelevant components in a 
data-driven manner: application to 
motor adaptation in whole-body 
movements
Daisuke Furuki & Ken takiyama

Motor variability is inevitable in human body movements and has been addressed from various 
perspectives in motor neuroscience and biomechanics: it may originate from variability in neural 
activities, or it may reflect a large number of degrees of freedom inherent in our body movements. 
How to evaluate motor variability is thus a fundamental question. Previous methods have quantified 
(at least) two striking features of motor variability: smaller variability in the task-relevant dimension 
than in the task-irrelevant dimension and a low-dimensional structure often referred to as synergy 
or principal components. However, the previous methods cannot be used to quantify these features 
simultaneously and are applicable only under certain limited conditions (e.g., one method does not 
consider how the motion changes over time, and another does not consider how each motion is relevant 
to performance). Here, we propose a flexible and straightforward machine learning technique for 
quantifying task-relevant variability, task-irrelevant variability, and the relevance of each principal 
component to task performance while considering how the motion changes over time and its relevance 
to task performance in a data-driven manner. Our method reveals the following novel property: in 
motor adaptation, the modulation of these different aspects of motor variability differs depending on 
the perturbation schedule.

In our daily lives, we repeatedly perform various desired movements, such as grasping a cup, throwing a ball, 
and playing the piano. To achieve the desired movements, the human motor system needs to resolve at least two 
difficulties inherent in our body motion1. One difficulty is movement variability. Due to the variability inherent in 
various stages, such as the acquisition of sensory information2, the neural activity that occurs during motor plan-
ning3, and the muscle activities that occur during motor execution4, even sophisticated athletes and musicians 
cannot precisely repeat the same exact movements. However, our motor systems somehow tame these variabil-
ities to achieve the desired movements5. The second difficulty is the large number of degrees of freedom (DoFs) 
inherent in the human motor system1,6. The numbers of joints, muscles, and neurons in this system exceed those 
necessary to achieve the desired movements, resulting in an infinite number of possible joint configurations, 
muscle activities, and neural activities that can correspond to a desired movement7–10. Our motor systems some-
how resolve these difficulties (i.e., variability and the large number of DoFs) to generate the desired movements.

Although it remains unclear how this taming of movement variability is achieved, one possible answer lies 
in the decomposition of motor variability into task-relevant and task-irrelevant variabilities. We compensate 
for the portion of motor variability that is relevant to achieving our desired movements (i.e., task-relevant var-
iability)11–15, while we do not significantly compensate for the portion that is irrelevant to achieving the desired 
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movements (i.e., task-irrelevant variability). The compensation of task-relevant variability can be observed in 
movement kinematics11–14, muscle activities16,17, and neural activities15. This striking feature of our motor varia-
bility enables the achievement of the desired movements despite the presence of movement variability.

Techniques for evaluating task-relevant and task-irrelevant variabilities have been developed in several stud-
ies. In the uncontrolled manifold (UCM) approach, task-relevant and task-irrelevant variabilities are evaluated 
mainly in terms of joint angles and angular velocities. This method focuses on the kinematic parameters relevant 
to task achievement, such as the hip joint position in stand-and-sit motions11 or the hand position in arm-reaching 
movements18. The Jacobian matrix, which contains the derivatives of those kinematic parameters concerning 
joint angles or angular velocities, enables the definition of the null space around the joint angles or angular veloc-
ities averaged across trials. The variability throughout this null space can be defined as the task-irrelevant varia-
bility. Most previous studies have revealed that the task-relevant variability of joint angles and angular velocities 
is less than the task-irrelevant variability. Notably, the UCM approach focuses on forward kinematics, mapping 
joint angles and angular velocities to joint positions and velocities in external coordinates. In contrast, the toler-
ance, noise, and covariation (TNC) analysis approach13 and the goal-equivalent manifold (GEM) analysis 
approach14 focus on task functions that define the relationships between kinematic parameters and task perfor-
mance. For example, a thrown dart or ball can be modeled as a parabola. Let the release position and velocity on 
the vertical axis be denoted by p and v, respectively; then, the maximum height of the released dart or ball can be 
expressed as = +h p v

g2

2
, where g is the gravitational acceleration. When the task is to control h, the relation 

among h, p, and v is the task function. For example, with a small value of d (i.e., d 02 ), the corresponding slight 
changes in the release position, +p dv

g
, and the release velocity, −v d, together cause no change in h. In other 

words, the changes in p and v caused by d cancel each other out, resulting in the same height h; thus, the variabil-
ity represented by these slight changes can be regarded as the task-irrelevant variability. In the TNC and GEM 
methods, the task-relevant and task-irrelevant variabilities are evaluated based on such task functions.

These techniques have certain advantages and disadvantages (e.g., several disadvantages of the UCM method 
were noted by Müller & Dagmar13). The UCM method enables the evaluation of motion that changes over time, 
but it does not consider task functions. Consequently, this framework is not always suitable in situations in 
which the kinematic parameters are nonlinearly relevant to the task achievements, as in the case of the quadratic 
function of v in the parabola mentioned above. Because forward kinematics involves nonlinear functions of the 
joint angles and angular velocities, the UCM method requires local linear approximations around representative 
joint angles or angular velocities based on the Jacobian matrix. Due to these linear approximations, the UCM 
model assumes the kinematic variability that is averaged across all trials. These approximations result in difficulty 
in simultaneously considering the changes in motor variability as the average kinematics change, such as the 
changes that occur before, during, and after motor learning (although it is possible to discuss those situations 
separately18). The GEM approach also considers local linear approximations of the nonlinear task function; thus, 
it also considers the variability in the task parameters averaged across all trials. Although the GEM method can 
consider task functions, it has difficulty considering how motion changes over time in certain cases. For example, 
to consider how the motion changes over time in the example mentioned above using the GEM framework, it 
would be necessary to define how the position and velocity of the dart or ball 100 milliseconds before release are 
related to the maximum height. By contrast, the TNC approach enables the simultaneous consideration of the 
motor variability before, during, and after motor learning because this framework captures the whole variability 
in a nonparametric manner without local linear approximations; however, the TNC method is not always suit-
able for considering motion that changes over time for reasons similar to those for the GEM method, namely, it 
requires an explicit definition of the task function. Overall, each method has its own advantages and disadvan-
tages; thus, no single existing framework can be used to simultaneously evaluate task-relevant and task-irrelevant 
variabilities when the average kinematics or task parameters are changing while considering both how the motion 
changes over time and the task function.

Motor variability also has another striking feature: it is embedded in a low-dimensional space that is referred 
to as synergy6,19–22. It has been suggested that to overcome the large number of available DoFs, the human motor 
system limits control of those DoFs to only those in this low-dimensional space. The concept of synergy has 
been (mainly) discussed in reference to kinematic data20,22–24 and electromyographic (EMG) data19,21. For both 
kinematic and EMG data, a low-dimensional space that can capture a high proportion of the motor variability 
has been found. Several methods have been developed for extracting this synergy, such as principal component 
analysis (PCA)20,22, nonnegative matrix factorization21,25 and the spatial-temporal decomposition of EMG data19.

Motor variability thus exhibits at least two characteristics: compensation of the task-relevant variability and 
a low-dimensional structure. However, most techniques for investigating motor variability address only one 
of these aspects. It is difficult to detect the low-dimensional structure of motor variability using methods for 
evaluating task-relevant and task-irrelevant variabilities. Similarly, it is difficult to evaluate task-relevant and 
task-irrelevant variabilities using techniques for extracting the low-dimensional structures of motor variabil-
ity. Thus, the 1st principal component, the dimension that can explain the most significant portion of the var-
iability among all dimensions, is not always either the most or least relevant to task performance. Although 
the UCM approach has been used for synergy extraction8, its primary advantage lies not in the extraction of 
the low-dimensional structure but rather in the evaluation of the task-relevant and task-irrelevant variabilities. 
Although a few studies have focused on linear discrimination analysis (LDA) for investigating the task-relevant 
low-dimensional space26,27, LDA enables only discrimination, e.g., distinguishing between the success or failure 
of a movement28. In contrast, the TNC and GEM methods allow motor performance to be characterized in terms 
of a continuous performance value. In summary, few methods enable the simultaneous quantification of the two 
most striking features of movement variability.
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Here, we propose a flexible and straightforward machine learning framework for evaluating movement vari-
ability that combines the advantages of the various previous techniques: our framework can not only be used to 
evaluate task-relevant and task-irrelevant variabilities even when the average kinematics or task parameters are 
changing (e.g., before, during, and after motor learning) while considering how motion changes over time and 
the task function but also can reveal how each synergy is relevant to task performance by means of an extension 
of PCA. The current study relied on ridge regression29, a linear regression technique that is robust in the presence 
of measurement noise, has a definite relation to PCA, and can be used to evaluate how the motion of each part of 
the body at each moment in time is relevant to task performance in a data-driven manner30. Our technique thus 
enables the identification of task functions in a data-driven manner without requiring any explicit function, such 
as a parabola, or forward kinematics. First, we formalize the decomposition of motion data into task-relevant and 
task-irrelevant components by extending the ridge regression procedure. Second, we construct a novel experi-
mental paradigm to investigate the relation of time-varying motion to task performance based on goal-directed 
and whole-body movements. We further discuss motor adaptation in the current experimental setting. Third, we 
validate the decomposition of motion data into task-relevant and task-irrelevant components based on our exper-
imental data. Fourth, we clarify the relation between ridge regression and PCA, a popular method of extracting 
the low-dimensional space describing motor variability. In particular, we analytically reveal how each principal 
component is related to performance in the context of ridge regression. We also validate the analytical calcu-
lations based on our experimental data. Finally, we apply our method to motion data from whole-body and 
goal-directed movements before and after motor adaptation. Because our method enables us to discuss the mod-
ulation of movement variability before and after motor adaptation, we discuss the dependence of this modulation 
on the perturbation schedule.

Results
Our program code can be downloaded from our website.

Linear regression. The current study relied on linear regression to determine the relationship between 
motion data ∈ ×X RT D (in the form of a temporal sequence of joint angles and angular velocities) and perfor-
mance data ∈ ×d RT 1 based on the expression =h Xw, where T and D denote the number of trials and the num-
ber of variables in the motion data, respectively; ∈ ×h RT 1 is the predicted performance; and ∈ ×w RD 1 is the best 
set of linear coefficients for predicting the performance30. Xt, representing the tth row of X or the motion data 
from the tth trial, consists of vectorized motion data, e.g., the data obtained by measuring the joint angles of the 
knee ( ∈ ×q Rk t

F
,

1 ) and hip ( ∈ ×q Rh t
F

,
1 ) for F time frames in the tth trial: = ∈ ×X q q( , ) Rt k t h t

F
, ,

1 2 .

Ridge regression. We relied on a ridge regression procedure, which is robust against observation noise and 
is applicable to data that exhibit multicollinearity. The ridge regression enabled us to determine the best 
one-dimensional linear space ∈ ×w RD 1 for predicting the output data d from the input data X by minimizing the 
following cost function:

λ
= − − + .d Xw d Xw w wE 1

2
( ) ( )

2 (1)
T T

Here, the first term on the right-hand side represents the fitting error, and the second term represents the 
regularization of w, where λ is the regularization parameter. In the current study, λ was chosen to minimize the 
prediction error based on 10-fold cross-validation, allowing us to avoid overfitting28. Overfitting, which can arise 
in the absence of any regularization, will lead to a model that is more complicated than the true model.

Minimization of the cost function with respect to w leads to the optimal value of w:

λ= + −⁎w XX I X d( ) , (2)T T1

where I is the identity matrix. When XXT exhibits multicollinearity, it is difficult to calculate the inverse of XXT 
because of the rank deficiency. Adding the identity matrix scaled by the regularization parameter λ enables 
the calculation of the inverse of XXT + λI and allows the output data to be predicted with a certain accuracy. 
Furthermore, the regularization parameter λ allows the appropriate w to be found even in the presence of obser-
vation noise because minimizing the cost function for ridge regression (equation (1)) is analytically equivalent to 
finding the appropriate w when nonzero observation noise exists (see the Materials and Methods section for the 
detailed mathematical calculations). The ridge regression procedure thus allows the relation between the motion 
data and performance data to be found while overcoming the multicollinearity inherent in the motion data in a 
manner that is robust against observation noise.

Decomposition into task-relevant and task-irrelevant components. Once the best linear coeffi-
cients w have been estimated based on the measured performance data d and motion data X, the estimated 
coefficients w enable not only performance prediction but also the decomposition of the motion data into a 
task-relevant component Xrel and a task-irrelevant component Xirr. Although in this study, we relied on ridge 
regression to estimate w, the following decomposition of the input data into task-relevant and task-irrelevant 
components can be applied in combination with any linear regression technique.

For performance prediction, the task-relevant component Xrel should include all information inherent in the 
motion data X. This requirement on the task-relevant component can be expressed as =X w Xwrel , which is sat-
isfied when Xrel minimizes the cost function
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− −Xw X w Xw X w1
2

( ) ( ) (3)
T

rel rel

under the constraint ≠X Xrel to avoid the self-evident answer. The Xrel that minimizes this cost function can be 
written as

= =
| |

†X Xww ww Xww
w

( ) ,
(4)

T T
T

rel 2

where (wwT)† is the pseudoinverse of wwT and | | =w w wT . The equality =
| |

†w ww( ) w
w

T T T

2
 holds when ∈ ×w RD 1. 

It is straightforward to confirm that =X w Xwrel , which indicates that Xrel in equation (4) includes all the infor-
mation relevant to performance prediction that is inherent in the motion data X.

To investigate the properties of equation (4), especially the properties of the multiplication by 
| |

ww
w

T

2
 on the 

right-hand side, we consider a vector and the decomposition of that vector as = +k w wk kT T
1 2 ort, where wort is a 

vector orthogonal to w (i.e., =w w 0T
ort ). The multiplication by 

| |

ww
w

T

2
 on the right-hand side yields =

| |
k wkww

w
T

1
T

2
. 

Because wk T
1  is invariant and wk2 ort disappears after the multiplication, the multiplication by 

| |

ww
w

T

2
 on the 

right-hand side represents the projection of the vector k onto w. By applying this interpretation to each row of the 
matrix, this interpretation can be extended to the entire matrix. Equation (4) thus indicates that extracting the 
task-relevant components as part of the linear regression process is equivalent to projecting the data onto the 
weight vectors.

Under the decomposition = +X X Xrel irr, Xirr can be written as

= − =





−
| |






X X X X I ww
w

,
(5)

T

irr rel 2

where ∈ ×I RD D is the identity matrix. Under the appropriate normalization (i.e., with the mean and standard 
deviation of each component of X and d set to 0 and 1, respectively), = =X w Xw hrel  and =X w 0irr , indicating 
that Xrel and Xirr denote the task-relevant and task-irrelevant components, respectively, under the framework of 
linear regression. An important feature of this framework is that it does not require any explicit function (e.g., 
forward kinematics, as in the UCM approach, or a task function, as in the GEM and TNC approaches); it requires 
only the data X and d.

Figures 1A and B present typical examples of the decomposition process when X includes only 2 elements and 
the task is constrained by setting = −h X X1 2 (i.e., =w 11  and = −w 12 ) to specific values (e.g., y = 2, 0, and −2 
in the simulated tasks 1, 2, and 3, respectively). The simulated input data X were randomly sampled from a 
two-dimensional Gaussian distribution. Because the constrained task was one-dimensional and the input data 
were two-dimensional, an infinite pattern of X values resulted in identical h values. In this case, 

= −
−( )X X 1 1

1 1rel
1
2

 = − − −X X X X( , ( ))1
2 1 2 1 2  and = −X X Xirr rel. The simulated data points on the dotted 

line in Fig. 1B correspond to Xrel; they can be clearly separated into three clusters corresponding to the simulated 
tasks 1, 2, and 3. In contrast, the data points plotted on the solid line, corresponding to Xirr, cannot be separated 
by task.

Goal-directed whole-body movements and motor adaptation. The current study focused on 
goal-directed and whole-body movements in which subjects manage to achieve the desired movements by con-
trolling a large number of DoFs. We focused on a simplified type of whole-body movement: a vertical jump 
while crossing the arms in front of the trunk (Fig. 2A). This goal-directed whole-body movement enabled us 
to focus on lower limb and trunk motions to assess task-relevant variability, task-irrelevant variability, and the 
low-dimensional space in which a high proportion of the motor variability is embedded. We developed a machine 
learning technique to simultaneously evaluate these features of variability while considering how the motion 
changes over time and the relevance of each motion to the jump height.

Subjects stood in a fixed position and were instructed to look at a computer monitor located in front of them 
and perform a submaximum vertical jump with a given target height (40, 45, 50, 55, or 60% of the maximum 
jump height of the subject; see Fig. 2B). Three beeps were sounded, and the subjects were asked to perform the 
jump at the time of the third beep. The interval between beeps was one second. At the beginning of each trial (i.e., 
one second before the first beep), the target height was indicated by a black bar displayed on a computer monitor. 
At the end of the tth trial, the actual jump height kt (the y position of the marker attached to the subject’s back) 
was displayed as a blue cursor on the monitor, where = …t T1, ,  and T was the number of trials to be analyzed. 
By manipulating the displayed jump height (we refer to this manipulation as a perturbation pt), it was possible to 
induce sensory prediction error between the predicted and actual jump heights. This perturbation paradigm is 
similar to a protocol for motor gain adaptation that has been reported mainly for saccade and arm-reaching 
movements31,32. We expected the subjects to modify their motion to minimize the sensory prediction error.

First, we determined whether the subjects could perform goal-directed whole-body movements in our exper-
imental setting. In the 50 baseline trials of experiment 1 (Fig. 2C), the target height was changed pseudorandomly 
in each trial. The target height was found to exert a significant main effect on the jump height (Fig. 2D, one-way 

https://doi.org/10.1038/s41598-019-43558-z


5Scientific RepoRts |          (2019) 9:7246  | https://doi.org/10.1038/s41598-019-43558-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

repeated measure ANOVA, p = 6.114 × 10−24), indicating that the subjects could perform goal-directed vertical 
jumps dependent on the target height.

Second, we determined whether the subjects showed motor adaptation in our experimental setting. In the 96 
learning trials of experiment 1 (Fig. 2C), the subjects experienced a perturbation once in every set of five trials; 
the perturbation was pseudorandomly set to = .p 0 05t  or = − .p 0 05t  in one trial of every five and was set to 

=p 0t  in the other trials (Fig. 3A and B). We observed a modification in jump height after each perturbation 
(Fig. 3C, paired t-test, = .p 0 0026 for motor adaptation when = .p 0 05t  and = .p 0 0014 for motor adaptation 
when = − .p 0 05t ). No statistically significant modification of the jump height was observed either two trials after 
the perturbation (paired t-test, = .p 0 0528 for motor adaptation when = .p 0 05t  and = .p 0 2875 for motor adap-
tation when = − .p 0 05t ) or three trials after the perturbation (paired t-test, = .p 0 7407 for motor adaptation 
when = .p 0 05t  and = .p 0 4528 for motor adaptation when = − .p 0 05t ). Additionally, we investigated whether 
fatigue influenced the adaptation by comparing the magnitudes of the modifications in the earlier learning trials 
to those in the later trials and found no significant difference (paired t-test, = .p 0 4382). Motor adaptation could 
thus be observed in the goal-directed vertical jumping task without a significant fatigue effect.

Validation of ridge regression and decomposition into task-relevant and task-irrelevant com-
ponents. The current study focused on the evaluation of motor variability (especially task-relevant variabil-
ity, task-irrelevant variability, and the relevance of a low-dimensional structure to task performance) through 
an extension of ridge regression. Before performing the variability evaluation, we needed to validate the ridge 
regression procedure in the current experimental setting. Notably, we have already validated the efficiency of 
ridge regression for predicting performance not only in jumping movements but also in throwing movements30.

Ridge regression requires careful selection of the input data, which is indispensable for assessing the linear 
relation between the input and output data. The prediction power is a sophisticated measure for selecting input 
data while avoiding overfitting28. The current study focused on the prediction error between the actual and pre-
dicted jump heights using 10-fold cross-validation. We compared three types of candidate input data. The first 
candidate data type consisted of joint angles {qi} and angular velocities 

q{ }i : = X q q({ }, { })i i , where 
=q q q q q{ } ( , , , )i 1 2 3 4  and 

qi denotes the derivative of qi with respect to time (the definition of each qi is given in 
Fig. 2A). The second candidate data type consisted of the functions qi and 

qi, which describe the position and 
velocity, respectively, of the marker on the subject’s back on the y-axis and are relevant to the jump height: 

= X q q q({ sin }, { cos })i i i . The third candidate data types consisted of functions describing the jump height based 
on a parabolic approximation: =  X q q q q q({ sin }, { cos cos })i i j i j , where =a a a a a a a a a a{ } ( , , , ,i j 1

2
1 2 1 3 1 4 2

2, 
a a a a a a a a, , , , , )2 3 2 4 3

2
3 4 4

2 . By comparing these three candidates, we found that the first candidate (i.e., 

Figure 1. The concept of our method. (A) An example of decomposing input data X into the task-relevant 
component Xrel and the task-irrelevant component Xirr. In this case, we assumed that in task 1, −X X1 2 was 
required to be 2 (green line); in task 2, −X X1 2 was required to be 0 (red line); and in task 3, −X X1 2 was 
required to be −2 (blue line). Green, red, and blue dots represent the typical input data for tasks 1, 2, and 3, 
respectively. In the ridge regression process, these tasks can be achieved with =w 11  and = −w 12  (i.e., 

= + = −h w X w X X X1 1 2 2 1 2 should be determined differently for each task). We randomly sampled the data 
shown as green dots from a two-dimensional Gaussian distribution whose mean and covariance matrix were 
−( 1, 1) and . .

. .( )0 75 0 7
0 7 0 75

, respectively. With the same covariance matrix, we randomly sampled the data shown 
as red and blue dots from two-dimensional Gaussian distributions whose means were (0, 0) and (1, −1), 
respectively. (B) The input data were decomposed into a task-relevant component = | |X Xww w/T

rel
2 (dotted 

black line) and a task-irrelevant component = −X X Xirr rel (solid black line). The data corresponding to Xrel 
can be separated into different clusters depending on the task, whereas the Xirr data show no such separation, 
thus demonstrating that this decomposition enables the investigation of both the task-relevant and task-
irrelevant components.
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= X q q({ }, { })i i ) resulted in the lowest prediction error (Fig. 4A). More specifically, the first candidate yielded the 
lowest prediction error when data corresponding to the last four time frames before release were considered. A 
prediction error of 1 indicates that the method cannot predict the output data at all. In contrast, a prediction error 
of 0 indicates that the method can predict the output data with 100% accuracy. As shown in Fig. 4A, the first can-
didate data type with four time frames of data resulted in a prediction error of 0.174, indicating that ridge regres-
sion enabled prediction of the jump height with an accuracy of 82.6 ± 2.28% (mean ± standard error of the mean 
(SEM), N = 13) in the current setting. Thus, in the following, we refer to the first candidate data type with four 
time frames of data as the motion data. For our experimental setting with a goal-directed vertical jump task, X 
included 32 dimensions for each trial (4 dim × 4 time frames for {qi} and 4 dim × 4 time frames for 

q{ }i ). Because 
the parabolic approximation of the jump height based on the y-axis position p and velocity v of the marker on the 
subject’s back at the release time (i.e., = +h p v

g2

2
) enabled prediction of the jump height with an accuracy of 

76 ± 2.96% (mean ± SEM., N = 13), as seen from the purple line in Fig. 4A, it is clear that the ridge regression 
approach enables jump height prediction with higher accuracy compared with this approximation. The ridge 
regression approach shows higher prediction power due to its robustness against observation noise and its con-
sideration of how the motion changes over time rather than only representative motion data from a single time 
frame (i.e., the position and velocity of the hip joint only at the time of release). Ridge regression thus enables the 
investigation of the linear relation between the time-varying motion and the jump height with appropriate 
precision.

Variability in task-relevant and task-irrelevant space. We calculated the task-relevant and 
task-irrelevant variabilities in goal-directed vertical jumps based on both ridge regression and the decomposition 
of the input data into task-relevant and task-irrelevant dimensions. In the current study, the variability (vari-
ance) of each element of Xrel and Xirr in focused trials was calculated. Representative values of the variability, the 
task-relevant variability Varrel and the task-irrelevant variability Varirr were calculated by averaging the variability 
across all dimensions.

Figure 2. Summary of our experimental settings. (A) Three beeps were sounded at intervals of one second. 
Participants were instructed to perform a vertical jump at the time of the third beep. We measured and analyzed 
the joint angles at the toe, ankle, and knee in the sagittal plane. The jump height was measured based on the 
y-axis position of a marker attached to each participant’s back. (B) Task instructions and feedback information 
in each trial. A computer monitor was located in front of the participants (1.5 meters ahead, 1.7 meters above 
the floor). One second before the first beep, the target height (indicated by a black bar and text [e.g., 50% 
max]), baseline height (indicated by a black bar), and initial position (indicated by a blue cursor located at the 
baseline height) were visualized. When the target height was 60%, the black bar and text were displayed at the 
position of the higher black dotted bar. When the target height was 40%, the black bar and text were displayed 
at the position of the lower black dotted bar. These black dotted bars were provided solely during the task 
explanation; they were not visible during the experiments. In the practice trials, the blue cursor was visualized 
during the trials to continuously indicate the y-axis position of the marker attached to the subject’s back. These 
trials enabled the participants to become accustomed to the experimental setting. In the baseline and learning 
trials, the blue cursor was visualized at the beginning and end of each trial. At the beginning of each trial, the 
blue cursor was visualized at the baseline height. At the end of each trial, the cursor was visualized based on the 
actual jump height. When the jump height was close to the target height, the participants heard a coin-clattering 
sound. During the experiments, the subjects were provided with the current trial number and the number of 
successful trials (those in which they had heard the coin-clattering sound). (C) The sequence of experiments. 
The participants performed two trials of vertical jumps with maximum effort. The corresponding jump heights 
were used to determine the target heights. The participants underwent 20 practice trials, 50 baseline trials, and 
some number of learning trials, the number of which depended on the sspecific experiment. (D) Average jump 
height of each participant in the baseline trials of experiment 1. The jump height depended on the target height 
(one-way repeated measure ANOVA, p = 6.114 × 10−24), indicating that the participants were able to perform 
the desired goal-directed movement.
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We found that the task-relevant variability was smaller than the task-irrelevant variability for all participants 
(N = 13, red dots in Fig. 4B). The results of previous methods, such as the UCM method (blue crosses) and 
the GEM method (green crosses), indicated similar task-relevant and task-irrelevant variabilities; however, our 
method enabled the extraction of a lower task-relevant variability and a higher task-irrelevant variability. Because 
the normalization procedures of our method and previous methods differ, slight differences were observed in the 
calculated variabilities. Our method enables both the task-relevant and task-irrelevant variabilities to be quanti-
fied by considering how the motion changes over time and its relevance to the task of interest. Our method does 
not require any explicit task function, such as the parabolic approximation of jump height; instead, it determines 
the relevance of the motion to the task in a data-driven manner. Furthermore, our method is robust against obser-
vation noise due to the properties of ridge regression.

Relevance of each principal component to task performance. Movement variability exhibits not 
only less task-relevant variability than task-irrelevant variability but also a low-dimensional structure (i.e., a large 
proportion of the movement variability is embedded in a limited number of dimensions). In the current study, we 
compared our method against PCA, which is a conventional method for extracting low-dimensional structures. 
Because the low-dimensional structure is considered to represent certain features of motor control, it can be 
expected to be correlated with task performance. We decomposed the motion data X into principal components 
(PCs, i.e., eigenvectors) and calculated the correlation between each PC and the jump height. The PCs compose 
a set of orthonormal bases inherently contained in X. The PCs that are identified earlier in the decomposition 
process (e.g., the 1st PC) explain a larger proportion of the variance inherent in X than do the PCs that are iden-
tified later (e.g., the 1st PC explains a larger proportion of the variance inherent in X than does the 2nd PC, the 
2nd PC explains a larger proportion of the variance than does the 3rd PC, etc.). In our setting, no clear relation 
was found between the number of PCs identified during the decomposition process and the correlation between 
the decomposed motion data and performance data (Fig. 4C). When averaged across all participants, the 1st PC 
explained approximately 30% of the movement variability (blue line in Fig. 4D). Corresponding to the explained 
movement variability, the 1st PC also showed the highest correlation with jump height (red line in Fig. 4D) when 
averaged across all participants. For the particular subject represented in Fig. 4E, however, the 2nd rather than 
the 1st PC showed the highest correlation with the jump height (see the red line in this figure). This subject was 
not a special case; Fig. 4F shows the numbers of subjects for which each of the first three PCs showed the highest 
correlation with the jump height. For 6 out of 13 subjects, the 1st PC showed the highest correlation with perfor-
mance; however, for 3 subjects, the 2nd PC showed the highest correlation, and for 4 subjects, the 3rd PC showed 
the highest correlation. These results demonstrate that the amount of movement variability explained by a PC did 
not directly correspond to its relevance to task performance for individual subjects.

Ridge regression (the red line in Fig. 4C) enabled jump height prediction with higher accuracy compared with 
PCA because in ridge regression, each PC is weighted based on both the explained movement variability and the 
task relevance, as follows. In PCA (or, equivalently, in singular value decomposition (SVD)), the time-varying 
motion in the tth trial is decomposed using a set of orthonormal basis functions …v v v( , , , )N1 2  as follows: 

λ= ∑ =X u vt i
N

i i t i1 , , where N is the number of PCs, λi is the ith eigenvalue corresponding to the ith PC (vi), ui,t 
indicates the proportion of the motion data from the trial explained by the ith PC, and λi is proportional to the 
variance explained by the ith PC. Because PCs identified earlier explain a larger proportion of the variance than 
do PCs identified later, λ λ λ≥ ≥ ≥ ≥ 0N1 2 . The correlation between the trial-to-trial variance contribution 
of the ith PC and the trial-to-trial variance in task performance was thus calculated based on ui,t. Notably, ui,t 
reflects the contribution of the ith PC in explaining motion data rather than the relevance of the ith PC to task 
performance. Thus, the 1st PC is not necessarily the PC that is most relevant to performance in a framework 

Figure 3. Diagram and results of experiment 1. (A) Target height in baseline and learning trials. The cyan and 
magenta circles indicate trials with perturbations. (B) Perturbation sequence. The cyan circles indicate the trials 
with = .p 0 05t , and the magenta circles indicate those with = − .p 0 05t . The perturbations were 
pseudorandomly imposed only once in every set of five trials. (C) Adaptation effect. The vertical line indicates 
the difference between the jump height in the next trial after a perturbation and that in the trial in which the 
perturbation was imposed. The magenta dots indicate the average difference for each subject corresponding to 
the perturbation = − .p 0 05t , and the cyan dots indicate the average difference for each subject corresponding 
to the perturbation = .p 0 05t .
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based on PCA or SVD. In contrast, ridge regression enables the prediction of task performance as follows: 
λ= ∑ =h f u d u( )Corr( , )t i

N
i i t t i t1 , , , where f(λi) is a sigmoidal function of λi and u dCorr( , )i t t,  is the correlation 

between the contribution of the ith PC in the tth trial (ui,t) and the observed jump height (dt); see the Materials 
and Methods section for the detailed mathematical calculations. Ridge regression thus enables the prediction of 
performance by weighting each PC based on both the explained movement variability and the task relevance 
through f(λi) and u dCorr( , )i t t, , respectively. In other words, our method enables the consideration of the 
low-dimensional structure of movement variability by weighting each PC in a manner suitable for predicting task 
performance.

Influence of motor adaptation on variability in the task-relevant and task-irrelevant dimen-
sions. One advantage of our method is its linearity, which enables the simultaneous comparison of the 
task-relevant and task-irrelevant variabilities under conditions in which the mean kinematics or task parameters 
are changing (e.g., before, during, and after motor learning). It was previously unclear how task-relevant and 
task-irrelevant variabilities are modulated by motor adaptation. The modulation of these variabilities has been 

Figure 4. Validation of our method and comparison to previous methods. (A) Predictive power of ridge 
regression using three kinds of input data. The time bin length used for the ridge regression procedure and 
the squared prediction error are presented on the horizontal and vertical axes, respectively. A prediction error 
of 1 corresponds to a case in which ridge regression is unable to yield a prediction, and a prediction error of 0 
corresponds to a case in which ridge regression is able to predict the output data perfectly. The results indicate 
that ridge regression was capable of predicting the output data with an accuracy of 82.6 ± 2.28% (mean ± SEM, 
N = 13). (B) Evaluation of task-relevant and task-irrelevant variabilities. The red dots indicate the variabilities 
evaluated using our method for each subject (N = 13). The blue and green crosses indicate the variabilities 
evaluated using the UCM and GEM methods, respectively. Our method uses a normalization method different 
from that of the UCM and GEM approaches. (C) Correlation between the predicted and actual jump heights. 
The red line and shaded area represent the mean and SEM, respectively, of the correlation for ridge regression 
(N = 13). The blue line and shaded area represent the mean and SEM, respectively, of the correlation for PCA 
(N = 13). The explained variance or the corresponding number of PCs and the correlation are presented on the 
horizontal and vertical axes, respectively. (D) The explained variance and the correlation between the predicted 
and actual jump heights for each PC. The red line and shaded area represent the mean and SEM, respectively, of 
the correlation (N = 13). The blue line and shaded area represent the mean and SEM, respectively, of the amount 
of variance explained (N = 13). (E) The explained variance and the correlation between the predicted and actual 
jump heights for each PC for a typical subject. The red and blue lines represent the correlation and the explained 
variance, respectively. (F) The number of subjects for which each of the first three PCs was the most relevant for 
predicting the jump height.
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investigated for arm-reaching movements and for motor adaptation in response to a constant perturbation5,33. 
Although some differences exist between adaptation to a constant perturbation and adaptation to a gradually 
imposed perturbation (e.g., retention rate or awareness34), the means by which those variabilities are modu-
lated in the two types of adaptation have not been investigated. Furthermore, it was previously unclear whether 
such modulation of variability could be observed in whole-body movements. Our method, with its lack of linear 
approximations, can enable the investigation of how the task-relevant and task-irrelevant variabilities are mod-
ulated before and after motor adaptation in whole-body movements. We thus applied our method to investigate 
motor adaptation in response to both constant and gradually imposed perturbations.

In experiment 2 (two days for each subject), the subjects experienced gradually increasing or decreasing per-
turbations. Each subject underwent ten learning trials without any perturbation. Then, a perturbation of 0.05 or 
−0.05 was gradually imposed over ten trials (Fig. 5A and B). This gradually imposed perturbation required grad-
ual rather than abrupt compensation (i.e., the subjects were required to modify their motions slightly in each 
trial). In a total of 30 trials, the target height was set to 50% of the subject’s maximum jump height. Subjects who 
experienced a >p 0t  on the first day experienced a <p 0t  on the 2nd day and vice versa. The order of the pertur-
bations was counterbalanced across subjects. It was found that the subjects were able to adapt to the gradually 
increasing or decreasing perturbations (Fig. 5C).

In experiment 3, the subjects experienced constant perturbations. Each subject underwent five learning trials 
without any perturbation. Then, the perturbation was set to 0.05 or −0.05 for 15 trials, to 0 for the subsequent ten 
trials for washout and to −0.05 or 0.05 for the final 15 trials (Fig. 5D and E). In contrast to experiment 2, in which 
the perturbation was gradually imposed, the subjects were required to abruptly modify their motions in experi-
ment 3. Subjects who experienced a = .p 0 05t  in the 6th–20th trials experienced a = − .p 0 05t  in the 31st–45th 
trials and vice versa. The order of the perturbations was counterbalanced across subjects. In a total of 45 trials, the 
target height was set to 50% of the subject’s maximum jump height. In both experiments 2 and 3, the subjects 
adapted to the perturbations (Fig. 5F).

Figure 5. Diagrams and results of experiments 2 and 3. (A,D) Target height in baseline and learning trials. The 
blue and red circles indicate trials with perturbations. (B,E) Perturbation sequence. The subjects participated in 
experiment 2 over two days and experienced two different perturbations (either >p 0 or <p 0). The order of 
the perturbations was counterbalanced across subjects. In experiment 3, the subjects experienced both positive 
and negative perturbations within the same day. Although panel (E) shows only the case in which a negative 
perturbation followed a positive one, the order of the perturbations was counterbalanced across subjects. (C,F) 
Learning curves. The thin solid lines represent the learning curves of each subject. The bold solid lines represent 
the learning curves averaged across all subjects. Orange bars indicate the trials before and after adaptation for 
calculating task-relevant and task-irrelevant variabilities.
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We calculated the task-relevant and task-irrelevant variabilities before and after adaptation in experiments 
2 and 3 (Fig. 6A and B). For the task-relevant variability, there was no significant difference before and after 
adaptation to gradually increasing or decreasing perturbations (blue dots in Fig. 6A, N = 13, Wilcoxon signed 
rank test, p = 0.1909). In contrast, when adapting to a constant perturbation, there was a significant difference 
in the task-relevant variability before and after adaptation (red dots in Fig. 6A, N = 13, Wilcoxon signed rank 
test, p = 0.0034). For the task-irrelevant variability, no significant difference before and after adaptation was 
observed for either a gradually increasing or decreasing perturbation (blue dots in Fig. 6B, N = 13, Wilcoxon 
signed rank test, p = 0.1677) or a constant perturbation (red dots in Fig. 6B, N = 13, Wilcoxon signed rank test, 
p = 0.3396). These results can be interpreted based on a simulated two-dimensional case similar to that shown 
in Fig. 1 (Fig. 6C and D). When adapting to perturbations, the subjects needed to modify their outputs (i.e., 
jump heights) by determining appropriate inputs (i.e., motion data). When adapting to gradually increasing or 
decreasing perturbations, there was no modulation in either the task-relevant or the task-irrelevant variability 
(Fig. 6C). In contrast, when adapting to a constant perturbation, the task-relevant variability increased, but the 
task-irrelevant variability was not modulated (Fig. 6D). Notably, Fig. 6C and D do not show real data; they are 

Figure 6. Application of our method to the results of experiments 2 and 3. (A) Task-relevant variabilities of 
each subject (N = 13) before and after adaptation to perturbation in experiments 2 and 3. The blue and red dots 
represent the variabilities of each subject in experiments 2 and 3, respectively. The blue and red lines show the 
modulation of the variability due to adaptation. The blue and red bars indicate the variabilities averaged across 
all subjects. There was a significant difference between the preadaptation and postadaptation variabilities in 
experiment 3 (Wilcoxon signed rank test, p = 0.0034). (B) Task-irrelevant variabilities of each subject (N = 13) 
before and after adaptation in experiments 2 and 3. (C,D) Interpretation of our results based on a simple 
example. We assume that in the task before adaptation, −X X1 2 was required to be 2, and in the task after 
adaptation, −X X1 2 was required to be −2. Panel (C) presents an interpretation of our results for experiment 2. 
In experiment 2, there was no modulation in either the task-relevant or task-irrelevant variabilities. Panel (D) 
suggests an explanation of our findings from experiment 3. In that experiment, the task-relevant variabilities 
increased after adaptation, whereas the task-irrelevant variabilities remained unchanged.

https://doi.org/10.1038/s41598-019-43558-z


1 1Scientific RepoRts |          (2019) 9:7246  | https://doi.org/10.1038/s41598-019-43558-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

simulated examples used to interpret our results. In summary, the modulation of the task-relevant variability 
depends on the perturbation schedule.

Discussion
We have proposed a flexible and straightforward machine learning technique for decomposing motion 
that changes over time into task-relevant and task-irrelevant components, quantifying task-relevant and 
task-irrelevant variabilities, and determining the relevance of each PC to task performance in a noise-robust man-
ner while considering how motion changes over time and its relevance to task performance (Fig. 4). Our method 
can identify the relevance of time-varying motion to performance (i.e., the task function) in a data-driven manner 
without requiring any explicit task function, such as the parabolic approximation of jump height. Furthermore, 
our method does not require any linear approximation, and thus, it enables simultaneous consideration of the 
variabilities when the kinematics or task parameters are changing across trials (e.g., before, during, and after 
adaptation). By applying our method to motion data collected before and after motor adaptation, we found that 
the perturbation schedule affects the modulation of movement variability in motor adaptation (Fig. 6A and B). 
These advantages enable our method to be flexibly applied to a wide range of goal-directed movements.

Our method can be regarded as a generalized version of the UCM and GEM methods. When we define 
= −X q qi i i (where qi and qi denote the ith joint angle and the joint angle averaged across all trials, respectively 

[ = …i 1, , 4 in our setting]) and = −+  X q qi i i4  (where 
qi and 

qi denote the angular velocity of the ith joint and 
the joint angular velocity averaged across all trials, respectively) and the corresponding weight matrix w is the 
Jacobian matrix of forward kinematics with = qp p( ) (the back position) and =


q qv v( , ) (the back velocity) 

around the average joint angles and angular velocities across all trials (q  and q), our framework corresponds to 
t h e  U C M  f r a m e w o r k .  W h e n  w e  d e f i n e  =w 11 ,  =w v

g2 ,  = −X p p1 ,  = −X v v2 ,  a n d 
= = − + −Xwh p p v v( )v

g
, our framework corresponds to the GEM framework for cases in which the task 

function can be defined as a parabolic function, where g denotes the gravitational acceleration. Because the UCM 
and GEM methods can be regarded as special cases of our method, our method can be regarded as a generalized 
version of those methods.

Another advantage of our method is the ability to select appropriate input data based on the corresponding 
predictive power (Fig. 4A). Furthermore, there is a possibility that the predictive power could also enable the 
selection of proper coordinates in which to define the task performance. A previous study has demonstrated 
that the UCM and TNC frameworks are sensitive and insensitive, respectively, to how the coordinate system is 
selected (e.g., using either a relative or absolute angle)35. Our framework is likely sensitive to how the coordi-
nates are chosen; however, in contrast to the UCM framework, our method enables the selection of appropriate 
coordinates for investigating the relationship between motion and performance data based on predictive power. 
Although we considered one-dimensional (i.e., jump height) performance in the current study, investigating 
two-dimensional performance requires the definition of an appropriate coordinate system30,36. The predictive 
power plays a vital role in selecting the proper coordinates not only in the motion space but also in the perfor-
mance space30. Selecting the length of the time frames is another crucial problem (Fig. 4A). In this study, the 
motion data from four time frames (approximately 33 ms) were selected because that length resulted in the best 
predictive power. Notably, our method can be applied independently of the length of the time frames. In our 
case, four time frames were chosen to maximize the predictive power. Those four-frame motion data represent 
dependent variables; however, ridge regression can be used to analyze dependent variables to interpret their 
dependence on certain target variables29. For prediction, the ridge regression approach relies on the appropriate 
weighting of PC vectors, which are orthogonal to each other, thus resolving the multicollinearity introduced 
by considering dependent variables. Notably, choosing a proper coordinate system is an important but difficult 
problem. Thus, our method is useful within the framework of regression methods.

For a regression analysis, it is necessary to pool data that can be regarded as representing the same condition 
(i.e., stationarity is essential). When analyzing the data from experiments 2 and 3, we analyzed motion data col-
lected before, during, and after adaptation, which would seem, at a glance, to exhibit nonstationarity. To address 
this nonstationarity, we estimated appropriate linear coefficients w based on both training and learning trials. 
In the training trials, the subjects performed vertical jumps aiming for either 40%, 45%, 50%, 55%, or 60% of 
their maximum jump heights. In the learning trials, the subjects performed vertical jumps aiming for 50% of 
their maximum heights before adaptation, for heights from 50% to 45% of the maximum during adaptation to 
a positive applied perturbation, and for 45% of their maximum heights after adaptation (the same applies for a 
negative applied perturbation except that the value of 45% should be replaced with 55%). Thus, the motions to be 
performed in the training trials included the sequences before and after adaptation (aiming for either 45% or 55% 
of the maximum jump height). During adaptation, the subjects needed to perform jumps toward intermediate 
targets, such as 51% or 48% of the maximum height. Although motion data corresponding to those intermediate 
targets were not included in the training trials, the regression framework worked well for interpolation. Because 
the weight values w were estimated based on motion data from jumps aiming for 40%, 45%, 50%, 55%, and 60% 
of the maximum height, it was possible to use interpolation to predict the motions for 51% or 48% of the maxi-
mum jump height. In summary, when applying a regression framework to investigate adaptation, it is necessary 
to include motion data for the targets both before and after motor adaptation when estimating the weight values.

Although we compared our method to the UCM and GEM methods (Fig. 4B), we should also compare it to 
the TNC method13,37, the other main method used to quantify motor variability from a different perspective. The 
TNC method enables the extraction of three types of information from motion data: the T-cost, which quanti-
fies how the mean motion data deviate from the optimal motion; the N-cost, which quantifies how the motor 
variability deviates from the optimal variability; and the C-cost, which quantifies how the covariance among the 
motion data deviates from the optimal covariance. Although the TNC method does not consider task-relevant 
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and task-irrelevant variabilities, it can be used to quantify other interesting features (i.e., the T-, N-, C-costs) 
embedded in motion data and the variations of those costs during the learning process. Due to its computational 
cost, we could not apply the conventional version of the TCN method to our data. The TCN method requires a 
grid search for the calculation of the T-cost. Because the number of grids was 200 and the number of variables of 
interest was eight in our case (four joint angles and angular velocities), this method would require 2008 calcula-
tions. Due to this overly burdensome computational cost for calculating not only the T-cost but also the C-cost, 
we were unable to apply the TNC method to our case. However, when the number of variables of interest is two, 
the TNC method can be promising and can work well13,37. Notably, a potential future topic of research might be to 
apply optimization techniques to calculate the T- and C-costs. This approach could overcome the computational 
burden of the conventional TNC framework, thus making it suitable for various cases.

One potential extension of our method is to obtain a state-space model for motor adaptation during 
whole-body movements. A state-space model of motor adaptation was previously proposed, mainly for 
arm-reaching movements38–46. In the current study, the modification of the jump height in the tth trial, − −h ht t 1, 
was significantly correlated with the error, et−1, caused by perturbation and motor noise (in experiment 1, the 
correlation between − −h ht t 1 and et−1 averaged across all participants was 0.5118, with < .p 0 01 for all partici-
pants). A state-space model of the jump height can thus be written as η= +− −h h et t t1 1, where η (>0) is the 
learning rate. The jump height ht is predicted well by = X w X wht t rel,t , enabling us to approximate the 
state-space model as η= +− −X w X w etrel,t rel,t 1 1. This model indicates that the jump height is modified by mod-
ifying the motion in the dimension along w. Because this is a possible future extension of our approach, we will 
need to further investigate the frameworks mentioned above in addition to performing state-space modeling of 
the modulation of task-relevant and task-irrelevant variabilities, as mentioned in a previous study38.

An advantage of our method is its linearity (i.e., =h Xw), in contrast to the nonlinearity inherent in body 
dynamics. A likely explanation for why linear regression works well can be found through analogy with the motor 
primitive framework, which is a framework that has been successfully used for motor adaptation in goal-directed 
arm-reaching movements39–47. In this framework, a nonlinear motor command u is modeled as a linear weighted 
sum of nonlinear neural activities A, where = ∑u WAi i i and the Wi are modified to minimize the movement 
error between the actual hand position and the desired movement position. When the Ai are nonlinear functions 
of the desired movement and are appropriately high-dimensional, nonlinear motor commands can be generated 
by means of appropriate linear combinations of these nonlinear neural activities, as theoretically demonstrated in 
the framework of a basis function network48. The motion data X can be nonlinearly related to movement perfor-
mance because the human body exhibits nonlinear dynamics. Additionally, the motion data are appropriately 
high-dimensional (32 dimensions for a 1-dimensional task). Thus, an appropriate linear sum Xw can be used to 
predict the actual movement performance, resulting in an appropriately estimated w that represents the relevance 
of the motion elements to the performance.

In this study, we relied on simple linear regression (i.e., ridge regression); however, it is possible to use a more 
complicated machine learning technique, such as a mixture model28,49–51, a sparse regression technique52, or a 
nonlinear regression technique53. We have shown that a nonlinear regression technique such as Gaussian process 
regression is not effective for predicting performance based on motion data30, likely because of the limited num-
ber of data points. Although sparse regression, nonlinear regression, or a mixture model can generally achieve 
better predictive performance when the number of data points is sufficiently high, it is difficult to find the specific 
relations between the PCs and the estimated parameters via such methods. Ridge regression enables the deter-
mination of not only the task-relevant and task-irrelevant variabilities but also the relevance of each PC to the 
performance. Because some previous studies have also discussed the relevance of each PC to performance54,55, 
a promising research topic might be to evaluate the functional roles of such low-dimensional structures from a 
different viewpoint.

To our knowledge, only a few studies have investigated how variability is modulated throughout motor adap-
tation5,33. A previous study confirmed that the variability was modulated after motor adaptation in response to 
a constant force field33; however, to our knowledge, whether the perturbation schedule affected the modulation 
was not clarified. The current study suggests that the perturbation schedule does affect the modulation of varia-
bility (Fig. 6A and B). Because variability can facilitate exploration33 (cf. not only exploration but other various 
factors56), the current study also suggests that constant perturbations motivate exploration in the task-relevant 
space, whereas gradually applied perturbations do not affect exploration. Within the framework of reinforce-
ment learning, exploration is expected to increase after the detection of novel phenomena or environmental 
changes in order to maximize the expected future reward (i.e., exploration bonus)57. Under a gradually applied 
perturbation, however, it is difficult to notice the existence of the perturbation34,58; thus, no need for a change in 
exploration behavior is perceived. In contrast, under an abruptly applied perturbation, it is easier to notice the 
existence of the perturbation34,58, resulting in a change in exploration behavior to maximize the future reward. 
Additionally, recent studies have suggested that variability plays an essential role in sports performance59, injury 
prevention60, and the development of children with developmental coordination disorders61. The current findings 
provide some hints regarding how these functions might be assisted through the encouragement of exploration 
via false feedback.

Materials and Methods
Participants. Thirteen healthy volunteers (aged 18–22 years, two females) participated in all of our experi-
ments, which were approved by the ethics committee of the Tokyo University of Agriculture and Technology and 
were performed in accordance with guidelines and regulations. All the participants were informed of the experi-
mental procedures in accordance with the Declaration of Helsinki, and all participants provided written informed 
consent before the start of the experiments.
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On the first day, the participants underwent ten practice trials and 160 baseline trials with pseudorandomly 
changing targets (40%, 45%, 50%, 55%, or 60% of the maximum jump height) to familiarize them with the exper-
imental setting. On the second, third, fourth, and fifth days (not consecutive), they participated in experiments 1, 
2, and 3. Experiment 2 lasted for two days.

Data acquisition and processing. The jumping motions were recorded at 120 Hz using six cameras 
(Optitrack Flex 13, NaturalPoint Inc., Corvallis, Oregon). Markers were attached to each participant’s back 
(TV10), right hip joint (femur greater trochanter), right knee (femur lateral epicondyle and femur medial epicon-
dyle), right heel (fibula apex of the lateral malleolus and tibia apex of the medial malleolus), and right toe (head 
of the 2nd metatarsus). The marker position data were filtered with a 12th-order, 10 Hz zero-phase Butterworth 
filter using MATLAB 2016a. The joint angles between the right toe and heel (q1), right heel and shank (q2), right 
shank and thigh (q3), and right thigh and trunk (q4) were calculated in the sagittal plane (Fig. 2A). Because the 
current study focused on a vertical jump with the arms crossed in front of the trunk, it was possible to focus only 
on lower limb and trunk motions. Throughout the current study, we focused on a four-link model of the lower 
limbs in the sagittal plane.

The time of release was detected based on the moment at which the vertical toe position exceeded 10% of the 
maximum height in each trial. The predictive power was calculated using various time-bin lengths including the 
time of release (Fig. 4A). When the time bin length was four, the fourth time frame corresponded to the time of 
release, the third time frame corresponded to one time frame before the time of release, and the other time frames 
were ordered accordingly.

Experimental setup. At the beginning of each trial, the subjects were instructed to stand in a fixed position. 
In each trial, the subjects listened to three beeps separated by one-second intervals; the first beep indicated the 
start of the trial, and the subjects were required to jump at the time of the third beep.

We measured the position of the marker attached to each subjects back using MATLAB at 30 Hz, which was 
the highest sampling frequency available using the MATLAB Optitrack software plugin, while displaying the 
measured position on a monitor with the same refresh rate as the measuring frequency. A monitor in front of the 
subject (1.5 meters ahead, 1.7 meters above the floor) displayed a blue cursor that indicated the height of the 
marker attached to the subjects back and a black bar that indicated the target height (Fig. 2B). The cursor and bar 
were displayed one second before the first beep sounded. The blue marker moved only along the vertical axis 
because the current study focused on the vertical height of the jumping motion. The marker position at time s on 
the y-axis (Fig. 2A), ks, was displayed on the monitor after being normalized for each subject as follows: 

= −
−

ˆ
ks

k k
k k

s 0

max 0
, where k̂s is the marker position without normalization, k0 is the initial marker position as evaluated 

in an upright standing position in each trial, and kmax is the jump height corresponding to the maximum effort of 
the subject (Fig. 2C). No cursor feedback was supplied for the two trials in which the subjects were required to 
jump with the maximum effort. One second before the first beep, a blue circle at =k 0s  was displayed on the black 
baseline on the monitor. Additionally, the target height d was indicated by a black line. Before the baseline trials, 
the subjects underwent ten practice trials. In those trials, the marker position in each time frame was displayed 
on the monitor, and d was pseudorandomly chosen from among 0.40, 0.45, 0.50, 0.55, and 0.60 (each value was 
randomly chosen only once in every set of five trials). This method enabled each subject to become acquainted 
with the experimental setting by confirming the motion trajectory of the marker attached to his or her back. In 
the baseline trials, the marker position was displayed only at the start and end of each trial. One second before the 
first beep, the cursor was displayed at the baseline position, and a black line corresponding to d was displayed 
based on a pseudorandom choice of 0.40, 0.45, 0.50, 0.55, or 0.60. At the end of each trial, the cursor was dis-
played at the maximum value of ks reached in that trial (i.e., max ks), indicating the jump height (Fig. 2B). When 
the subjects achieved a jumping motion that was close to the target height (| − | < .d kmax 0 02s ), they heard a 
coin-clattering sound to indicate that the jumping motion was successful. After the baseline trials, the subjects 
underwent 96 learning trials in experiment 1, 30 trials in experiment 2 (in which the same set of practice and 
main trials was imposed for two days), and 45 trials in experiment 3.

We utilized a perturbation paradigm to investigate how the subjects modified their jumping motions when 
experiencing sensory prediction errors. For trials with a perturbation p, the position of the cursor was displayed 
at max +k ps . The subjects needed to modify their jumping motions to achieve a lower (when >p 0) or higher 
(when <p 0) jump height. When the displayed jump height was close to the target height 
(| − + | < .d k p(max ) 0 02s ), the subjects heard the coin-clattering sound, indicating that the jumping motion 
was successful.

Task-relevant and task-irrelevant variabilities. Under the condition = +X X Xrel irr (see the Results 
section for details), the variance of the ith component of X, denoted by Xi, can be calculated as follows:

∑

∑

=

= +

= + +

=

=

X
T

X

T
X X

X X X X

Var( ) 1

1 ( )

Var( ) Var( ) 2Cov( , ), (6)

i
t

T

i t

t

T

i t i t

i i i i

1
,
2

1
,
rel

,
irr 2

rel irr rel irr
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where Xi,t is Xi in the tth trial, Xi t,
rel is the ith component of Xrel in the tth trial, Xi t,

irr is the ith component of Xirr in 
the tth trial, and X XCov( , )i i

rel irr  is the covariance between Xi
rel and Xi

irr. Notably, in the current experimental 
setting, the values of X XCov( , )i i

rel irr  in the analyzed trials were close to 0. We thus considered only XVar( )i
rel  and 

XVar( )i
irr .

Properties of ridge regression. Ridge regression showed high prediction power in the presence of meas-
urement noise in d. In a traditional regression analysis framework, in the presence of noise ξ with a mean of 0, 
the standard deviation is σ0, the covariance is 0, and the weight values w should be determined by minimizing

ξ ξ= + − + − .d Xw d XwE 1
2

( ) ( ) (7)
T

regress

To enhance the fit quality and predictive power in the presence of noise, it is necessary to calculate w to max-
imize the power averaged across all possible noise patterns. The cost function averaged across all possible noise 
patterns can be written as

σ
〈 〉 = − − +d Xw d Xw w wE 1

2
( ) ( )

2
, (8)

T o T
regress

2

which is equivalent to the cost function considered in the ridge regression procedure (equation (1)) when σ λ=o
2  

(where λ is the regularization parameter for ridge regression). The equivalence between equations (1) and (8) 
indicates that ridge regression enables the selection of the best w to predict d in the presence of measurement 
noise while avoiding overfitting. This equivalence also suggests that the regularization parameter λ corresponds 
to the variance of the observation noise, σo

2.
Ridge regression enables the appropriate estimation of w based on the normalized d and X (i.e., the mean and 

standard deviation of d and X should be normalized to be 0 and 1, respectively): ∑ == d 0
T t

T
t

1
1 , ∑ == y 1

T t
T

t
1

1
2 , 

∑ == X 0
T t

T
i t

1
1 , , and ∑ == X 1

T t
T

i t
1

1 ,
2  ( = …d D1, , ). All the results in the current study were obtained based on 

such normalized data. Without normalization, wi will be estimated to be large when Xi,t shows small fluctuations 
and vice versa, despite regularization with the parameter λ being imposed equally on all wi values; therefore, 
normalization, especially in X, is indispensable for estimating appropriate w values. Notably, the normalization 
did not affect the interpretation of the data in this study because it was possible to restore the original, unnormal-
ized data by adding the original mean = ∑ =m Xi T t i t

1
1 ,

original and multiplying by the original standard deviation 
σ = ∑ −= X m( )i T t i t d

1
1 ,

original 2 2 . To satisfy ∑ = ∑ ∼
= =w X w Xi

D
i i t i

D
i i t1 , 1 ,

original, ∼w should be divided by σi =∼
σ( )wi
wi

i
, and 

∑ ∼
= w mi

D
i i1  should then be subtracted, where w corresponds to the unnormalized data. In summary, while normal-

ization was indispensable for appropriately estimating w, it did not affect the results at all.

parabolic representation of the jump height, three candidate input data types, and the UCM 
and GEM methods. The vertical position of the marker attached to the subject’s back was used to determine 
the jump height in the current study. We expected that the jump height could be well predicted based on the posi-
tion p and velocity b of the back marker at the time of release as follows:

= +h p v
g2

,
(9)

2

where .g m9 8 /s2. In the joint angle representation, p and v are written as follows:

∑=
=

p l qsin
(10)i

i i
1

4

and

∑=
=

v l q qcos ,
(11)i

i i i
1

4

where li is the length of the ith limb segment (i.e., l1 is the length between the right toe and heel, l2 is the length 
between the right heel and knee, l3 is the length between the right knee and hip, and l4 is the length between 
the hip and back). When using the UCM method (blue crosses in Fig. 4B), we calculated the task-relevant and 
task-irrelevant variabilities based on equations (10) and (11).

Using equations (10) and (11), the predicted jump height h can be written as

∑ ∑∑= + .
= = =

 h l q
g

l l q q q qsin 1
2

cos cos
(12)i

i i
i j

i j i j i j
1

4

1

4

1

4

The first type of candidate input data for ridge regression consisted of the joint angles and angular velocities 
(blue line in Fig. 4A). The second candidate data type consisted of functions for the forward kinematics of the 
position and velocity of the hip joint (equations (10) and (11), red line in Fig. 4A). The third candidate data type 
consisted of the functions given in equation (12) (orange line in Fig. 4A). When using the GEM method (green 
crosses in Fig. 4B), we calculated the task-relevant and task-irrelevant variabilities based on equation (12).
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Relation between ridge regression and PCA. The relation between the ridge regression and PCA pro-
cedures can be analytically determined by decomposing X via SVD: =X UDVT, where ∈ ×U RT T is an orthogo-
nal matrix, ∈ ×D RT D includes the square root of the ith eigenvalue of XTX as each element (i, i) and =D 0i j,  
when ≠i j, and ∈ ×V RD D is an orthogonal matrix. Using SVD and equation (2), the predicted output ht can be 
written as follows:

∑λ
λ

λ λ
= = + =

+
−

=

⁎X w UD D D I D U d Xv dh u( ) Corr( , ) ,
(13)

t t
T T T

i

T D
i

i
i i t

1

1

min( , ) 2

2 ,

where min(T, D) determines the rank of X, λ i
2 is an eigenvalue of XTX, Corr(·, ·) denotes the correlation between 

two vectors, vi is the eigenvector of XTX corresponding to λ i
2, and ui,t is the (i, t) component of U. On the other 

hand, PCA enables the decomposition of Xt using

∑ λ= .
=

X vu
(14)t

i

T D

i i t i
1

min( , )

,

This equation indicates that the motion data can be decomposed into eigenvectors (PCs) with weights of λ ui i t, . 
As seen by comparing equations (13) and (14), ridge regression enables the prediction of the output data by 
means of weighting based on the ith eigenvector with weight λ

λ λ+
ui t,

i

i

2

2
 (notably, λ

λ λ+
i

i

2

2
 is a monotonic function 

with respect to λi). An important difference between PCA and ridge regression is whether the task relevance of 
the ith eigenvector, Xv dCorr( , )i , is considered. Whereas PCA relies only on the eigenvalues, ridge regression 
considers both (the nonlinearly transformed) eigenvalues and the task relevance. Ridge regression can thus be 
considered an extended version of PCA that determines the relevance of each PC to the task.

For PCA, we find the relation between the explained variance and prediction power as follows: For an 
explained variance of z%, we determine the number of PCs based on = >

λ

λ

∑

∑
=

=
n minz n

z
100

i
n

i

i
T D

i

1
2

1
min( , ) 2

 (i.e., the mini-
mum number of PCs that collectively explain at least z% of the variance). Once nz has been determined, the 
motion data can be reconstructed as λ= ∑

∼
=X vut i

n
i i t i1 ,z . We then multiply ∼Xt by ∑ = vi

n
i
T

1
z  from the right-hand side, 

resulting in λ= ∑ = ∑
∼

= =
 X vd ut t i

n
i
T

i
n

i i t1 1 ,z z . Finally, we calculate the correlation between the observed jump height 
dt and dt, as shown in Fig. 4D–F.

Data Availability
The datasets analyzed in the current study are available from the corresponding author upon reasonable request.
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