
1Scientific Reports |          (2019) 9:7279  | https://doi.org/10.1038/s41598-019-43544-5

www.nature.com/scientificreports

Assessment of forest restoration 
with multitemporal remote sensing 
imagery
Cheng-Chien Liu   1,2, Yi-Hsin Chen2, Mei-Heng Margaret Wu3, Chiang Wei4 & Ming-Hsun Ko2

Climate variability and man-made impacts have severely damaged forests around the world in recent 
years, which calls for an urgent need of restoration aiming toward long-term sustainability for the 
forest environment. This paper proposes a new three-level decision tree (TLDT) approach to map 
forest, shadowy, bare and low-vegetated lands sequentially by integrating three spectral indices. TLDT 
requires neither image normalization nor atmospheric correction, and improves on the other methods 
by introducing more levels of decision tree classification with inputs from the same multispectral 
imagery. This approach is validated by comparing the results obtained from aerial orthophotos (25 cm) 
that were acquired at approximately the same time in which the Formosa-2 images (8 m) were being 
taken. The overall accuracy is as high as 96.8% after excluding the deviations near the boundary of each 
class caused by the different resolutions. With TLDT, the effectiveness of forest restoration at 30 sites 
are assessed using all available multispectral Formosat-2 images acquired between 2005 and 2016. 
The distinction between natural regeneration and regrowth enhanced by restoration efforts were also 
made by using the existing dataset and TLDT developed in this research. This work supports the use of 
multitemporal remote sensing imagery as a reliable source of data for assessing the effectiveness of 
forest restoration on a regular basis. This work also serves as the basis for studying the global trend of 
forest restoration in the future.

In recent years, recurring natural disasters such as wildfire and landslides have severely damaged forest eco-
systems, resulting in a loss of habitat for numerous species, significant soil erosion and changes in land cover1. 
This condition is aggravated by the current climate variability and man-made impacts including timber harvest 
and fire succession that are detrimental to the forest environment on an even more massive scale2. The current 
scale of deforestation all around the world calls for an urgent need to restore biodiversity and the ecological 
structure and functioning, aiming toward long-term sustainability for the forest environment3. Although many 
countries’ governments and various environmental management sectors have launched initiatives on restoring 
forest ecosystems, they lack a systematic and synoptic view for monitoring the effects of forest restoration3. Thus, 
it had become increasingly important to assess the effectiveness of forest restoration and monitor the posttreat-
ment abiotic and biotic characteristics of the landscape1,3. Without an effective monitoring system, there is nei-
ther sufficient information provided on the impact on the restoration efforts, nor is there any basis for further 
improvements3.

Taiwan is located in the center of the East-Asian island arc formed by the slow collision of the Asian conti-
nental plate and the Philippine plate. The high mountains, broken terrain and frequent earthquakes, together 
with the heavy rainfall during the rainy and typhoon seasons, results in a very high erosion rates in the world4. 
Consequently, more than 90% of the country’s population lives in areas that are at a relatively high risk of 
typhoons, earthquakes and landslides5. For example, Typhoon Morakot brought an extreme precipitation of 
2,777 mm in less than a week in August 20096, and triggered enormous landslides that caused massive destruc-
tions to the landscapes. To stabilize those areas affected by landslides found in the mountainous region, the 
Forestry Bureau of Taiwan (FBT) launched initiatives and utilized various techniques on restoring forest. The 
traditional method for evaluating forest restoration is in situ site surveying twice per year, once in the summer 
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and once in the winter to monitor vegetation recovery. However, for these inaccessible sites with large-scale res-
toration, this method is neither cost- nor labour-effective, in terms of providing a comprehensive and up-to-date 
review of the results of forest restoration.

By contrast, remote sensing imagery is more advantageous in assessing forest restoration due to its ability to 
detect changes in large areas over long periods of time that are difficult to observe from the ground3,7. Although 
the updated optical instrumentation like hyperspectral imagers8 and light detection and ranging (LIDAR) scan-
ners9 provide more information than the multispectral sensor does, it would be too costly and impractical to 
employ those updated sensors to detect changes in large areas over long periods of time, in our case, the mountain 
area of Taiwan between 2005 to 2016. Taking these factors into consideration, analyzing the multispectral and 
multitemporal imagery is still the most feasible and practical approach to assess the forest restoration, particu-
larly the Landsat imagery collected by the Landsat program tracing back to 197210,11. To facilitate the production 
of image-ready-to-use quality Landsat time series stacks, Huang et al.12 developed a streamlined approach that 
includes an image selection protocol, updated radiometric calibration and atmospheric correction for calculating 
surface reflectance, as well as precision registration and orthorectification routines for improving geolocation 
accuracy. Together with a highly automated algorithm called vegetation change tracker, Huang et al.13 applied 
their streamlined approach to reconstruct the forest disturbance history based on the spectral-temporal prop-
erties of land cover and forest change processes. Note that such an approach relies on the updated radiometric 
calibration and atmospheric correction for calculating surface reflectance, yet the associated atmospheric prop-
erties at the time of image acquisition are usually unavailable or difficult to obtain for the high-spatial-resolution 
sensors with only four or five spectral bands, such as IKONOS, Quickbird, Formosat-2 and SPOT-6/7. There is no 
consideration of topographic shadows nor relief shadows in this kind of approach either. Giles14 pointed out that 
shadows are inevitably found as main features in an optical imagery of mountainous areas, and they can occupy 
as much as 30% of an entire image acquired in winter in Taiwan15. They would be even more detailed and clear 
in the high-spatial-resolution imagery. Therefore, special care of shadows should be taken when dealing with 
high-spatial-resolution imagery.

The classification and regression trees (CART) approach, on the other hand, requires neither image normali-
zation nor atmospheric correction to determine thresholds for disturbance or regrowth. Helmer et al.9 developed 
an automated procedure threshold age mapping algorithm to isolate the lowland forests by separately mapping 
land cover and old growth forest types with two decision tree classifications. Olsson16 found the deviation in 
reflectance development between different types of forest plantations could be characterized by fitting a linear 
regression model through the bandwise spectral mean values for each stand, starting 5 years after the final felling. 
Li and Fox17 mapped the distribution of rubber tree growth across this mainland Southeast Asia landscape using 
the standard MODIS product. These works demonstrate that CART approach is advantageous in analyzing the 
multispectral and multitemporal imagery. More levels of decision tree classifications enable us to separate more 
types of land cover, but this would require more information by either using data collected from other sensors12 
or introducing other spectral indices derived from the same multispectral imagery.

The process of forest restoration that is revealed from the time series of remote sensing imagery is a gradual 
transition from bare land (BL) to low-vegetated land (LVL), and eventually, forest land (FL) that is similar to the 
trees of background. As time progresses, the area ratios of forest land (AFL), and low-vegetated land (ALVL), grad-
ually expand while the area ratio of bare land (ABL), slowly decreases. Since most of the remote sensing imagery 
are acquired while the sun is not in the nadir direction, shadowy land (SL) is one of the main features that are 
inevitably found in an optical imagery over mountainous areas14, and it should be excluded from the calculation 
of AFL and ABL. Thus, to assess the effectiveness of forest restoration, a sound approach to map FL, SL, BL and LVL 
and an accurate calculation of area ratios AFL, ASL, ABL and AFL from the multitemporal remote sensing imagery 
are required. This paper proposes a three-level decision tree (TLDT) approach to map FL, SL, BL and LVL sequen-
tially and calculate the area ratios AFL, ASL, ABL and AFL from the remote sensing imagery with multispectral 
bands, by integrating three spectral indices: the normalized difference vegetation index (NDVI), shadow index 
(SI), and normalized green red difference indices (NGRDI). This new TLDT approach belongs to the category 
of CART approach and improves on the other methods by introducing more levels of decision tree classifica-
tion with inputs from the same multispectral imagery. Like the other CART approaches, TLDT requires neither 
image normalization nor atmospheric correction. However, we found that the process of radiance normalization 
provides an appropriate way of examining the quality of every image. With this new TLDT approach, the effec-
tiveness of forest restoration at 30 sites are assessed, using all available multispectral Formosat-2 images acquired 
between 2005 and 2016 pre-processed by the Formosat-2 automatic image processing system (F-2 AIPS)18.

The assessments of 15 sites are compared with the results obtained from the high spatial resolution (25 cm) 
aerial orthophotos that were acquired at approximately the same time in which the Formosa-2 images (8 m) 
were being taken. These comparisons are not intended to verify the assessment accuracy but to clarify the rea-
sons for discrepancy, since the spatial resolutions are rather different between the aerial orthophoto (25 cm) and 
Formosat-2 image (8 m). After excluding the deviations near the boundary of each class caused by the different 
resolutions between Formosat-2 imagery and Aerial orthophoto, the overall accuracy is as high as 96.8%. Among 
the 30 study sites, 10 have been restored successfully, 4 are recovering slowly, and 4 have hardly re-vegetated. For 
the rest of the 12 sites, the shaded areas are too large to derive a detailed trend of restoration. But the effectiveness 
can still be assured by comparing the pre-restoration and the most up-to-date Formosat-2 images. The distinction 
between natural regeneration and regrowth enhanced by restoration efforts were also made by using the existing 
dataset and the TLDT approach developed in this research. The result highlights the importance of restoration for 
it accelerates the natural regeneration to at least four times. This work supports the use of multitemporal remote 
sensing imagery as a reliable source of data for assessing the effectiveness of forest restoration on a regular basis. 
This work also serves as the basis for studying the global trend of forest restoration in the future.
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Material
Study sites.  A total of 511 sites of forest restoration in Taiwan have been accomplished so far by FBT. Their 
geographical locations are labeled as blue polygons in Fig. 1(a). Considering the cost and availability, the major 
source of satellite imagery for this work is from Formosat-2, which was operated by National Space Organization 
of Taiwan from 2004 to 2016. Therefore, the timing of restoration in the study site has to be later than 2004 so the 
full process of restoration can be covered by the span of Formosat-2 mission. In addition, the area of restoration 
should be large enough to ensure that the gradual changes can be captured by the 2-m resolution of Formosat-2 
imagery. Taking these conditions into consideration, a total of 30 study sites are selected and grouped into five 
zones, as marked as star symbols and blue boxes in Fig. 1(b). The detailed descriptions of each site including the 
restoration year and engineering method are listed in Table 1. Note that the results of restoration effectiveness 
assessed by this work are also listed in Table 1 for comparison. Together with the overall accuracy of 15 test sites, 
these results will be explained in detail later.

Remote sensing imagery.  Formosat-2 is the first satellite with a high-spatial-resolution (2 m) sensor 
placed in a daily revisit orbit, as well as the second satellite that is owned and operated by the National Space 
Organization (NSPO), Taiwan18,19. The remote sensing instrument (RSI) onboard Formosat-2 acquires 2-m res-
olution panchromatic images and 8-m resolution multispectral images in four multispectral bands (blue, green, 
red and near-infrared) over 24 km swath width in the nadir direction. The spectral bands definition and the spec-
tral radiances at the entrance aperture, including the mean radiance and the saturation radiance can be referred 
to Table 2 of Liu et al.19. RSI has a field of regard of ±45 deg for along-track and cross-track viewing, and our study 
areas are covered by Strip Nos. 3, 4 and 5 of Orbit 1. During twelve years of operations and services from 2005 to 
2016, Formosat-2 has acquired a total of 1,453 strips covered our study areas. All quick-look images (Strip Nos. 
3, 4 and 5 of Orbit 1) are annotated with the dates of acquisition and given in the supplement A. After excluding 
those images with mostly clouds and haze, there are 42, 37, 31, 28 and 26 available images for zone 1 to 5 respec-
tively, as listed in Table 2. Note that four seasons are indeed covered in the entire time series of images for every 
zone. But it is not the case for every zone to have images for every season in every year.

All available Formosat-2 imagery of each zone are pre-processed by F-2 AIPS18. F-2 AIPS is able to digest the 
Gerald format of the raw data, apply the basic radiometric and geometric correction, output the level-1A prod-
uct, conduct the rigorous band-to-band co-registration20, automatic orthorectification21, multitemporal image 
geometrical registration22, multitemporal image radiometric normalization23, spectral summation intensity mod-
ulation pan-sharpening20, and the absolute radiometric calibration19. One true color image of zone 2 taken by 
Formosat-2 on 9 June 2015 is shown in Fig. 2 as an example, of which the regions of site No. 355, 378 and 385 are 
annotated as blue, red and green boxes respectively. The time series of co-registered and radiance-normalized 
imagery are further divided into smaller rectangles so that each study site is fully enclosed by a small rectangle. 
Note that two landslides near site No. 378 are selected and labeled as the natural restoration site (NRS) 1 (white 
box) and 2 (yellow box) in Fig. 2. These landslides were also triggered by Typhoon Morakot but they were not 
selected as restoration sites by FBT. Therefore, the changes found at NRS 1 and 2 are purely the effect of natural 
regeneration, which can help us to gain insight into the difference between natural regeneration and restoration.

The general source of ground truth is usually collected on the ground by conducting a considerable amount 
of in situ survey. Interpreting aerial colored images to obtain the ground truth information offers an alternative 
to this general approach24. For 15 of 30 study sites, the aerial orthophotos with 25 cm resolution and four spec-
tral bands (blue, green, red, and near-infrared) were provided by FBT. Note that the position, attitude values, as 

Figure 1.  (a) Geographical locations of 511 sites (blue polygons) of forest restoration accomplished by FBT. 
(b) 30 study sites are denoted as star symbols and grouped into five zones (blue boxes). 15 of 30 study sites are 
marked as purple star symbols and used as test sites for validation.
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well as digital image of the photograph at the moment of being taken were decoded by using Global Positioning 
System (GPS) and Inertial Measurement Unit (IMU). Together with the Digital Terrain Model (DTM), the center 
projected aerial photographs were rectified pixel by pixel into orthophotos. These orthophotos are resampled to 
2 m resolution and co-registered with their corresponding Formosat-2 imagery, to serve as an alternative source 
of ground truth. These 15 sites are marked as purple star symbols in Fig. 1(b) and used as test sites to validate our 
approach.

Method
For detecting the changes of land cover, and in our case, assessing the effectiveness of forest restoration, the radi-
ometric normalization of multitemporal satellite optical images of the same terrain is often necessary25. Absolute 
radiometric correction requires an atmospheric correction algorithm and the associated atmospheric properties 
at the time of image acquisition, but this information is either unavailable or difficult to obtain26, particularly for 
Formosat-2 imagery that has only four spectral bands with broad bandwidth. Therefore, we attempt to employ 
the CART approach that requires neither image normalization nor atmospheric correction to determine thresh-
olds for disturbance or regrowth. However, we also found that the process of radiance normalization provides an 
appropriate way of examining the quality of every image.

Radiance normalization.  A total of 36 images of site No. 378 (located in Zone 2) acquired by Formosat-2 
between 2005 and 2016 are collected and pre-processed by F-2 AIPS18. The one taken on 9 June 2015 (Fig. 2) is 
selected as the base image of radiance normalization27, based on the technique of searching the pseudo invariant 
features (PIFs)25. Using the image taken on 7 July 2012 as an example, the DN values of four spectral bands col-
lected at all searched PIFs before (cross marks) and after (circle marks) the process of radiance normalization are 
shown in Fig. 3(a). This scatter plot demonstrates that a consistent and robust correlation can be established from 
these PIFs to meet the requirement of radiance normalization for change detection28. By contrast, the image taken 

No.
District 
Office Working station Zone

Area 
(ha)

Restoration 
Year

Restoration 
Engineering method*

Restoration 
Effectiveness**

Overall 
Accuracy

51 Hsinchu Daxi 1 30.19 2006 A, B, C IV N/A

54 Hsinchu Daxi 1 13.17 2007 A, B, C IV N/A

55 Hsinchu Daxi 1 34.41 2008 A, B, C IV N/A

61 Hsinchu Zhudong 1 10.92 2012 B, E I N/A

355 Chiayi Alishan 2 47.53 2000 B, D IV N/A

378 Chiayi Dapu 2 26.28 2010 B I N/A

385 Chiayi Dapu 2 14.04 2011 B I N/A

430 Pingtung Chishan 4 14.76 2010 A I N/A

431 Pingtung Chishan 4 9.34 2010 A IV N/A

445 Pingtung Chaozhou 3 49.30 2011 B III N/A

450 Pingtung Chishan 4 300.77 2011 B III N/A

452 Pingtung Chishan 4 40.02 2011 B I N/A

454 Pingtung Luokuei 4 28.27 2011 A, D IV N/A

459 Pingtung Chishan 4 120.81 2012 B II N/A

462 Pingtung Chaozhou 3 74.70 2012 B III N/A

391 Chiayi Dapu 5 7.13 2011 B IV 78.16%

400 Chiayi Alishan 5 6.51 2011 B IV 75.96%

402 Chiayi Dapu 2 10.59 2011 B I 72.23%

411 Chiayi Dapu 5 13.29 2012 B I 81.11%

415 Chiayi Alishan 5 6.00 2012 B IV 82.48%

424 Chiayi Alishan 5 26.01 2012 B IV 69.46%

435 Pingtung Chishan 4 21.63 2010 B, C, E I 69.14%

440 Pingtung Laonong River 4 11.23 2010 B II 82.31%

442 Pingtung Chishan 4 49.38 2011 B I 87.51%

443 Pingtung Chishan 4 14.94 2011 B I 80.18%

451 Pingtung Chishan 4 25.07 2011 B, C, E IV 74.26%

460 Pingtung Chishan 4 67.77 2012 B II 81.72%

461 Pingtung Laonong River 4 122.05 2012 B III 83.07%

463 Pingtung Chishan 4 33.62 2012 B IV 77.67%

482 Taitung Dawu 3 11.07 2010 B II 79.30%

Table 1.  Descriptions of 30 study sites, of which 15 sites with orthorectified aerial orthophotos are selected 
as test sites and marked as purple star symbols in Fig. 1(b). *A: staking and wattling; B: seeds spreading; C: 
drainage of longitudinal and transverse; D: tree planting; E: Cover grass net. **I: restored well apparently; II: 
restored in a slow pace; III: restored inefectively; IV: no assessment.
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on 15 January 2013 gives an example that fails to give a one-to-one relationship because the image was taken 
with a narrow dynamic range, as shown in Fig. 3(b). Therefore, the process of radiance normalization provides 
an appropriate way to examine the quality of every image. All scatter plots of the other 34 images are given in the 
supplement B, of which a total of 19 images with poor quality are excluded from the time series analysis, as listed 
in Table 3.

Three-level decision tree approach.  Automatic classification of landslides from multispectral imagery 
has been progressing rapidly and a few practical approaches have been proposed in the past few years. There 
are some similarities and differences among these approaches. Both Yang et al.29 and Liu30 classified the bare/
non-vegetated land by using the normalized difference vegetation index (NDVI).

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

20110210:4 20050801:4 20090721:5 20090203:4 20090412:3

20110917:4 20051106:4 20090902:5 20090817:4 20091031:3

20111204:4 20060201:4 20091215:5 20090824:4 20100131:3

20120103:4 20060729:4 20100111:5 20091105:4 20100521:3

20120327:4 20061126:4 20100410:5 20100223:4 20100921:3

20121019:4 20070219:4 20101118:5 20100306:4 20110205:3

20130305:4 20070508:4 20110227:5 20100409:4 20110609:3

20130705:4 20070703:4 20110613:5 20100923:4 20111130:3

20131123:4 20080622:4 20110926:5 20101121:4 20120201:3

20140117:4 20081115:4 20111027:5 20110416:4 20120514:3

20140410:4 20090203:4 20111218:5 20110817:4 20121025:3

20140825:4 20090824:4 20120326:5 20120103:4 20130116:3

20141123:4 20091023:4 20120702:5 20121017:4 20130317:3

20150115:4 20091212:4 20121022:5 20121221:4 20130919:3

20150406:4 20100306:4 20130119:5 20130217:4 20131231:3

20150609:4 20100810:4 20130308:5 20130705:4 20140223:3

20151219:4 20100911:4 20130810:5 20131030:4 20140815:3

20160301:4 20101121:4 20131202:5 20140101:4 20141122:3

20050816:5 20110416:4 20140225:5 20140222:4 20150111:3

20060131:5 20110817:4 20140712:5 20141123:4 20150514:3

20060801:5 20111217:4 20140713:5 20150125:4 20151028:3

20061209:5 20120103:4 20150124:5 20150609:4 20160126:3

20070310:5 20120707:4 20150318:5 20151219:4 20160420:3

20070507:5 20121021:4 20150619:5 20160407:4 20091023:4

20070721:5 20130115:4 20150913:5 20120201:3 20100129:4

20080610:5 20130316:4 20151122:5 20120514:3 20100911:4

20080826:5 20130827:4 20160328:5 20121023:3

20081221:5 20131123:4 20160507:5 20121217:3

20090204:5 20140117:4 20111217:4

20090721:5 20140317:4 20120328:4

20090902:5 20141123:4 20121108:4

20091213:5 20150115:4

20100301:5 20150320:4

20100704:5 20150609:4

20101201:5 20151107:4

20110301:5 20160107:4

20110708:5 20160407:4

20130711:5

20140225:5

20140712:5

20141021:5

20160402:5

Table 2.  List of all available Formosat-2 imagery with detailed dates for Zone 1 to 5, after excluding those 
images with mostly clouds and haze. Convention: yyyymmdd:s. yyyy: year; mm: month; dd: date; s: Strip No.
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≡
−
+

NDVI NIR Red
NIR Red

,
(1)

for its superiority to differentiate vegetation. Ma et al.31 took the same idea but used the inverse normalized dif-
ference vegetation index (NDVI*)

⁎NDVI NIR Red
NIR Red

1
(2)

≡ −
−
+

.

Since the scattering of visible and near-infrared light are different, the partially-shaded topography regions are 
often misinterpreted as landslides for NDVI or NDVI* are distorted in these regions. Therefore, the normalized 
difference soil index (NDSI)29

NDSI Red Green
Red Green

,
(3)

≡
−
+

the normalized green red difference indices (NGRDI)30

NGRDI Green Red
Green Red

,
(4)

≡
−
+

and the inverse normalized difference soil index (NDSI*)31

Figure 2.  The true color images of zone 2 taken by Formosat-2 on 9 June 2015, where the regions of site No. 
355, 378 and 385 are annotated as blue, red and green boxes; the regions of natural restoration sites NRS 1 and 
NRS 2 are annotated as white and yellow boxes, respectively. (Formosat-2 image ©National Space Organization 
of Taiwan).
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⁎ ≡
−
+

NDSI Green Blue
Green Blue

,
(5)

are employed to assist the interpretation. NDSI, NGRDI and NDSI* are essentially the spectral ratios of visible 
bands that have similar levels of scattering either inside or outside the partially-shaded topography regions. They 
are not as sensitive as NDVI or NDVI*, in terms of discriminating vegetation. However, they are ideal in identify-
ing the partially-shaded topography regions from those misinterpreted bare/non-vegetated lands.

Regarding to classifying shadows, Yang et al.29 employed the first principal component (PC1), while Liu30 used 
the intensity of panchromatic band that is proportional to PC132. Ma et al.31 took a further step to calculate the 
shadow index (SI):

≡
− × +

+ +
SI PC1 I S

PC1 I S
( ) (1 ) ,

(6)
nor

nor

where S and I are the saturation and intensity components respectively, after converting the Red-Green-Blue color 
model to the Hue-Saturation-Intensity color model33. PC1nor is the normalized value of PC1 according to

≡











>

≤ .
PC1

PC1
max PC1

1

PC1
min PC1

1

( )
PC 0

( )
PC 0

(7)

nor

Figure 3.  Illustration of how SI enhances the contrast between shadow and non-shadow regions. (a) Standard 
false colour image, (b) hue, (c) intensity, (d) saturation, (e) SI, and (f) PC1. The case of study site No. 378 
(annotated as the red box in Fig. 2) (Formosat-2 image ©National Space Organization of Taiwan).

https://doi.org/10.1038/s41598-019-43544-5


8Scientific Reports |          (2019) 9:7279  | https://doi.org/10.1038/s41598-019-43544-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

To illustrate how Eqs (6) and (7) are designed to enhance the contrast between shadow and non-shadow 
regions, the case of study site No. 385 (annotated as the green box in Fig. 2) is given in Fig. 4 as an example. The 
standard false color composite (Fig. 4a) clearly shows two large shadows on the upper-left and lower-right, as well 
as a considerable amount of shadows scattered throughout the entire area. By utilizing three properties of shad-
ows: lower hue (closer to black, Fig. 4b), larger saturation (more scattering light in blue band, Fig. 4c), and lower 
intensity (blocked of light, Fig. 4d)33, the map of SI is calculated using Eqs (6) and (7) and presented in Fig. 4(e). 
Comparing to the map of PC1 (Fig. 3f), SI indeed enhances the difference between shadow and non-shadow 
regions, which facilitates the determination of threshold to detect shadow.

Considering the characteristic of each spectral index: NDVI is sensitive to vegetation, SI is sensitive to shadow, 
and NGRDI is sensitive to bare land, we adopt the concept of decision tree: building a classification model by 
breaking down a dataset into smaller and smaller subsets, and map FL, SL and BL sequentially from one optical 
image. The rest of the region can be regarded as LVL, under the assumption that there is no other land cover/land 
use in the study area. The flow chart of TLDT approach is shown in Fig. 5.

The case of site No. 378 (annotated as the red box in Fig. 2) is used as an example to illustrate the procedure of 
processing step-by-step, and the results are shown in Figs. 6 and 7, respectively. The histogram of NDVI exhibits a 
typical pattern of Gaussian distribution with single peak (Fig. 6a) since most of the study area is covered by forest 
(Fig. 7a). The threshold TNDVI can be determined by the inflection point without ambiguity to separate the first 
subset: FL (Fig. 7b) from the non-vegetated area. The second subset: SL is another feature that is frequently found 
in an optical imagery of mountainous areas, because the sun is not usually in the nadir direction while the image 
is acquired14. Note that SI is designed to enhance the difference between the shaded and non-shaded areas. The 
threshold TSI can also be determined by the inflection point in the histogram of SI, as long as there is a certain 
ratio of shadow in the non-vegetated area. This is exactly the case of Fig. 6(b), where a considerable part of topo-
graphic shadows can be seen in the study area (Fig. 7c). Under the assumption that there is no other land cover/
land use in the study area, the rest of the region can be regarded as BL and LVL. Because the difference between 
the amount of BL and LVL is not as large as what we have seen for the cases of FL and SL, there is no such a typical 
pattern of Gaussian distribution with single peak in the histogram of NGRDI (Fig. 6c). Instead of selecting the 
inflection point, the Otsu’s method can be employed to determine the threshold TNGRDI

31 and separate BL (Fig. 7d) 
from LVL (Fig. 7e). The Otsu’s method assumes that the image contains two classes and calculates the optimum 
threshold separating the two classes so that their inter-class variance is at the maximum. All boundaries of FL 
(green lines), SL (white lines), BL (yellow lines) and LVL (cyan lines) are overlaid on the true color composite and 
shown in Fig. 7(f) that gives a reasonable result by visual examination. To assess the effectiveness of forest res-
toration, this TLDT approach is applied to the time series of Formosat-2 images acquired at the same site. Then, 
the results are compared with the ones obtained independently from the high spatial resolution (25 cm) aerial 
orthophotos that were acquired approximately the same time in which the Formosat-2 images (8 m) were taken.

Validation.  To validate the results of FL, SL, BL and LVL mapped from the TLDT approach, the aerial ortho-
photo of site No. 378 taken on 3 July 2012 is used as an alternative source of ground truth, shown in Fig. 8(a). 
The same region is cut from the Formosat-2 image taken on 7 July 2012, shown in Fig. 8(b) for comparison. The 
results of classification of FL, SL, BL and LVL are shown in Fig. 9(a,b) and the confusion matrix is given in Table 4. 
The same assumption is made that the region of LVL is regarded as the rest from those of FL, SL and BL. Although 
the overall accuracy is as high as 86.4%, the commission error and omission error for LVL are both low (42.8% 

No. Date

1 20070219

2 20070508

3 20081115

4 20090203

5 20091023

6 20091212

7 20100911

8 20101121

9 20111217

10 20120103

11 20130115

12 20131123

13 20140117

14 20140317

15 20141123

16 20150115

17 20150320

18 20150609

19 20160107

Table 3.  List of 19 images of Zone 2 that are excluded from the time series analysis due to poor quality.
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and 50.6%). After carefully examining Fig. 9(a,b), we confirm that the deviations are mainly found near the 
boundary of each class. Because the spatial resolutions of two images are intrinsically different (aerial orthophoto: 
25 cm; multispectral bands of Formosat-2 image: 8 m), it is expectable that they won’t give the same details near 
the boundary of each class. To exclude the deviations caused by difference resolution, the buffer zone with a size 
of one pixel is taken at the boundary of each class, as shown as the white regions in Fig. 9(c,d). The union of both 
buffer zones is then generated and applied to both images, in order to mask out those suspicious pixels near the 
boundary of each class, as shown as the white regions in Fig. 9(e,f). The confusion matrix is calculated again and 
the result is shown in Table 5. Not only the overall accuracy increases to 96.8%, but the commission error and 
omission error for LVL are both improved to 23.0% and 35.8%. This provides an alternative way to validate the 
TLDT approach.

Quantitative assessment of forest restoration.  For a successful case of forest restoration, we expect 
to see a gradual decrease of BL and a gradual increase of FL. Before performing the time series analysis, the same 
procedure of radiance normalization as described in section 3.2 is applied to the entire time series of Formosat-2 
imagery to ensure that the classification of FL, SL, BL and LVL are comparable on various dates. For site No. 378 
(located in Zone 2), the root mean square errors (RMSD) of each spectral band before (cross marks) and after 
(circle marks) the radiance normalization are shown in Fig. 10, using the one taken on 9 June 2015 as the base 
image of radiance normalization. Results show that RMSD is reduced significantly by the process of radiance 

Figure 4.  Illustration of the effect of radiance normalization for the images taken on (a) 7 July 2012 and (b) 15 
January 2013, based on the image taken on 9 June 2015 (Fig. 2). The DN values of four spectral bands collected 
at all searched PIFs before and after the process of radiance normalization are denoted as cross marks and circle 
marks, respectively.
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normalization. For example, the RMSD of blue band of the image taken on 10 August 2010 is reduced from the 
highest value of 13.6 to less than 1.0. The radiance-normalized images, are employed for classification of FL, SL, 
BL and LVL. Based on the classified FL, SL, BL and LVL, the area ratio AX is defined as

≡
+ + +

A X
FL SL BL LVL

,
(8)X

where X represents the class of FL, SL, BL and LVL. Considering the fact that ASL is different in different images 
acquired in different seasons, we can use the shadow area ratio

≡
+ +

SAR A
A A A

,
(9)

SL

FL BL LVL

to correct the influence of shadow on class X and calculate its corrected area ratio by
⁎A A SAR(1 ), (10)X X≡ × +

and AX
⁎ satisfies

+ + = + + + .A A A A A A A (11)FL BL LVL FL SL BL LVL
⁎ ⁎ ⁎

Tracing the variation of AFL
⁎ , ⁎ABL and ⁎ALVL with time provides a good indicator of restoration. Figure 11 shows 

the time series of AFL, ASL, ABL, ALVL, ⁎AFL, ABL
⁎  and ALVL

⁎  at site No. 378. Though ASL indeed varies with time, it 
occupies about merely 5% of the study area and results in a small value of SAR (Eq. 9). The influence of shadow is 
not that significant, and thus AX (solid lines) are very close to AX

⁎ (dotted lines) using Eq. (10), where X represents 
the class of FL, BL and LVL. Both the time series of AFL

⁎  and ABL
⁎  indicate that the landslide was triggered by 

Typhoon Morakot in early August of 2009 when the largest ABL is found. Ever since the restoration was imple-
mented in early 2010, ⁎ABL (orange dotted line) has been decreased and ⁎AFL (green dotted line) has been increased 
gradually. Meanwhile, ⁎ALVL (blue dotted line) has maintained at an approximately constant level that was slightly 
higher in the early stage and slightly lower in the later stage of restoration. This sheds some light on the process of 
forest restoration: AFL

⁎  is only one-third to a half of ⁎ALVL in the beginning of restoration; AFL
⁎  keeps increasing 

while ⁎ALVL stays at the same level; and eventually, ⁎AFL could reach double or even triple of ALVL
⁎  in the later stage 

of restoration. Figure 11 also reveals the seasonal variations of ⁎AFL, ⁎ABL and ⁎ALVL by annotating four seasons with 
four difference background colors. Generally speaking, the seasonal variations of ⁎AFL are more apparent before 
Typhoon Morakot than in the later stage of restoration. Because the seasonal variations of ⁎AFL is one of the meth-
ods of representing the function of plant metabolism, ⁎AFL can be regarded as another indicator of forest restora-
tion. In any case, the long-term trend of successful forest restoration at site No. 378 is clear, shown by the 
comparison of the annual data of the same season and the regression lines in Fig. 11.

Figure 5.  Flow chart of TLDT approach to map FL, SL, BL and LVL sequentially from one optical image by 
integrating NDVI, SI and NGRDI.
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Results and Discussion
Following the same procedure described in section 3.3, the results of FL, SL, BL and LVL mapped from the TLDT 
approach at the other 14 test sites are compared to the results derived from the aerial orthophotos. The overall 
accuracy for each test site is listed in Table 1. As explained and emphasized in section 3.3, these values do not 
serve as an accuracy report, because the spatial resolutions of source images are intrinsically different. Despite 
those deviations found near the boundary of each class, the overall consistency of classification for all 14 test sites 
demonstrates that the TLDT approach is valid. The same approach is employed to assess the effectiveness of forest 
restoration for all 30 study sites, and the time series of ⁎ABL are grouped, shown in Fig. 12 for comparison. The 
results of effectiveness assessment are also listed in Table 1, which indicate that the forests are restored efficiently 
at ten sites (No. 61, 378, 385, 402, 411, 430, 435, 442, 443 and 452) (Fig. 12a), but restored in a slow pace at four 
sites No. 440, 459, 460 and 482 (Fig. 12b). The other four sites, No. 445, 450, 461 and 462 show that the landslide 
areas have been stabilized or even expanded and there is no significant change of forests. Therefore, the forest 
restoration is ineffective (Fig. 12c). The rest of the 12 sites (No. 51, 54, 55, 355, 391, 400, 415, 424, 431, 451, 454 
and 463) are all located in the shaded sides of mountain areas, where a considerable fraction of Formosat-2 image 
are severely covered by shadows (Fig. 12d). Consequently, no assessment of the effectiveness of forest restoration 
can be drawn from the time series of Formosat-2 images.

The most popular and widely-used engineering method of forest restoration in Taiwan is seeds spreading. In 
this research, a total of 27 sites adopted this method, though a few of them also employed other methods such 
as staking and wattling, drainage of longitudinal and transverse, tree planting, and covering the grass net. After 
excluding those 10 sites with no assessment due to shadows, 9 sites (52.9%) are restored well apparently, 4 sites 
(23.5%) are restored in a slow pace, and 4 sites (23.5%) are ineffective. In other words, the successful rate of forest 
restoration in Taiwan is 76.5%. The reason of unsuccessful restoration is also clarified by denoting the dates of 

Figure 6.  Histogram of (a) NDVI , (b) SI  and (c) NGRDI, calculated from Fig. 2. The thresholds TNDVI, TSI and 
TNGRDI are annotated as red lines in each plot.
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serious earthquake, typhoon, and storm events in Fig. 12(c). The secondary or even tertiary disasters destroyed 
the vulnerable newly-restored land. As a result, all earlier efforts of restoration dissipated and BL was not con-
verted to FL. Such a failure has nothing to do with the engineering method of seeds spreading. Nevertheless, a 
timely response to the secondary disaster can mitigate the damage. This can be achieved by acquiring the after-
math remote sensing imagery, analyzing with the approach proposed in this research, and comparing with the 
time series of observations at the same site. Because almost all study sites adopted the similar method of seeds 
spreading, there is no intention to specify how or whether the restoration technique affected recovery in this 
work. It is better not to include many types of restoration technique at the stage of developing and evaluating a 
new approach. Future works have been planned to employ this new approach to investigate how different resto-
ration techniques affect recovery.

The distinction between natural regeneration and regrowth enhanced by restoration efforts can be made by 
using the existing dataset and method developed in this research. As shown in Fig. 2, the landslides at NRS 1 and 
2 were also triggered by Typhoon Morakot but they were not selected as restoration sites by FBT. Therefore, the 
changes found at NRS 1 and 2 are purely the effect of natural regeneration, which can help us to gain insight into 
the difference between natural regeneration and restoration. The time series of AFL

⁎ , ALVL
⁎  and ⁎ABL at sites No. 378, 

NRS 1 and NRS 2 are plotted in Fig. 13 for comparison, and their corresponding linear regression equations are 
listed in Table 6. Generally speaking, both ⁎AFL and ⁎ABL keep the same values and ⁎ALVL increases slightly at NRS 1 
(triangle marks) throughout time, except for some seasonal variations. A slight trend of natural regeneration is 
shown at NRS 2 (circle marks): ⁎AFL (0.19–0.33), ⁎ALVL (0.17–0.24) and ⁎ABL (0.64–0.42); while a significant amount 
of restoration is attained at No. 378: ⁎AFL (0.05–0.58), ⁎ALVL (0.21–0.21) and ⁎ABL (0.74–0.21). This comparison also 

Figure 7.  Results of classification for the case of site No. 378 (annotated as the red box in Fig. 2). (a) The true 
color composite, (b) FL, (c) SL, (d) BL, (e) LVL and (f) The true color composite overlaid with the boundaries 
of SL (white lines), BL (yellow lines) and LVL (cyan lines) (Formosat-2 image ©National Space Organization of 
Taiwan).
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highlights the importance of restoration for it accelerates the natural regeneration to at least four times, in terms 
of the slopes of the linear regression equation of ⁎AFL listed in Table 6 (2.0 × 10−4 vs. 4.492 × 10−5).

Considering the scale of landslides in Taiwan’s mountain areas, the high spatial resolution satellite imagery 
or aerial orthophotos are preferable sources of data in the management of forest watershed. For example, the 
preparation of a long-term national landslide inventory is based on 2 m resolution Formosat-2 imagery30, while 
the events responding to landslides and debris flow are based on tens of centimeter resolution aerial orthophotos 
acquired from a low-cost unmanned aerial vehicle34. Though these optical imagery with multispectral bands (e.g. 
red, green, blue and near-infrared) have high spatial resolution, they lack the critical spectral bands to retrieve the 
amount of water vapor and aerosol. Consequently, it is very unlikely to conduct a rigorous atmospheric correction 
interference before conducting the time series analysis. This work demonstrates an alternative method, confirm-
ing that the relative calibration based on the technique of radiance normalization enables us to map FL, SL, BL 
and LVL using the TLDT approach and meets the requirement of time series analysis. The process of radiance 
normalization also provides an appropriate way of examining the quality of every image.

Geographical locations of forest restoration sites in Taiwan are all located in mountainous areas, where SL is 
one of the main features that are inevitably found in an optical imagery14. In this research, 12 of 30 sites (40%) 
are severely covered by shadows and no assessment of the effectiveness of forest restoration can be drawn from 
the time series of Formosat-2 images. Some shadows are casted by topographic relief and may not always be 
completely dark. They might be illuminated by scattering light and can be recovered by considering the topo-
graphic relief after rigorous atmospheric correction. Thanks to the success of Sentinel-2 mission35, high-temporal 
(5 days), -spatial (10 m), -spectral (13 bands), and -radiometric (12 bits), data are now available systematically 
and freely to all registered users. European Space Agency also developed and released an official tool, Sen2Cor, 
which is able to perform a rigorous atmospheric correction and produce the Bottom-Of-Atmosphere reflectance 
images36. Together with the usage of 90 m SRTM Digital Elevation Database, Sen2Cor is able to conduct terrain 
correction for rugged terrains. In light of the successful launch/operation of Sentinel-2A/B and the following new 
identical missions continuing to take the data record to the 2030 time frame37, future research is being proposed 
to investigate the feasibility of employing Sentinel-2 multitemporal imagery to assess the restoration of forest 
based on the experience acquired and technique developed in this work.

Conclusion
Climate variability and man-made impacts have severely damaged the forest around the world in recent years, 
which calls for an urgent need of restoration aiming toward long-term sustainability for the forest environment. 
To assess the effectiveness of forest restoration requires a systematic and synoptic view for monitoring the for-
est. However, this cannot be achieved by the traditional method of in situ site surveying, particularly for those 
inaccessible sites with large-scale restoration. Remote sensing imagery by far is more advantageous in assessing 
forest restoration, mainly due to its ability to detect changes in large areas over long periods of time that are 

Figure 8.  True color images of site No. 378 taken by (a) Airplane on 3 July 2012 (©Aerial Survey Office, 
Forestry Bureau of Taiwan), and (b) Formosat-2 on 7 July 2012 (©National Space Organization of Taiwan).
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difficult to observe from the ground. Considering the cost, restoration scale and data availability in Taiwan, the 
multitemporal, multispectral and high-spatial-resolution Formosat-2 imagery acquired between 2005 and 2016 
are employed to assess the effectiveness of forest restoration at 30 sites. However, Formosat-2 imagery cannot 
go through a rigorous atmospheric correction due to the lack of critical spectral bands to retrieve the amount of 
water vapour and aerosol. This paper proposes a new TLDT approach to map FL, SL, BL and LVL sequentially 

Figure 9.  The regions of FL (green), SL (black), BL (yellow) and LVL (cyan) mapped from the images of site No. 
378 taken by (a) Airplane on 3 July 2012 (the same as Fig. 8a, ©Aerial Survey Office, Forestry Bureau of Taiwan), 
and (b) Formosat-2 on 7 July 2012 (the same as Fig. 8b, ©National Space Organization of Taiwan). (c) the same 
as (a) but overlaid with the buffer zone (white regions). (d) the same as (b) but overlaid with the buffer zone 
(white regions). (e) the same as (a) but overlaid with the union of two buffer zones (white regions). (f) the same 
as (b) but overlaid with the union of two buffer zones (white regions).

FL(pixel)† LVL(pixel)† BL(pixel)† Commission error (%)

FL(pixel)‡ 155,191 6,990 1,043 4.9%

LVL(pixel)‡ 8,810 17,367 8,991 50.6%

BL(pixel)‡ 1,189 5,988 37,782 16.0%

Omission error 
(%) 6.1% 42.8% 21.0% Overall accuracy = 86.4%

Table 4.  Confusion matrix of validating the results of FL, BL and LVL mapped from the TLDT approach. †The 
aerial orthophoto of site No. 378 was taken on 3 July 2012, as shown in Fig. 8(a). ‡Formosat-2 image was taken 
on 7 July 2012, as shown in Fig. 8(b).
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FL(pixel)† LVL(pixel)† BL(pixel)† Commission error (%)

FL(pixel)‡ 120,267 971 50 0.8%

LVL(pixel)‡ 1,479 5,872 1,798 35.8%

BL(pixel)‡ 80 786 30,032 2.8%

Omission error 
(%) 1.3% 23.0% 5.8% Overall accuracy = 96.8%

Table 5.  Confusion matrix of validating the results of FL, BL and LVL mapped from the TLDT approach, 
after excluding the deviations near the boundary of each class caused by the different resolutions between 
Formosat-2 imagery and Aerial orthophoto. †The aerial orthophoto of site No. 378 was taken on 3 July 2012, as 
shown in Fig. 8(a). ‡Formosat-2 image was taken on 7 July 2012, as shown in Fig. 8(b).

Figure 10.  Root mean square errors of the time series of Formosat-2 image before (cross marks) and after 
(circle marks) the radiance normalization.

Figure 11.  Time series of AFL, ASL, ABL, ALVL, ⁎AFL, ABL
⁎  and ALVL

⁎  at site No. 378.
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from the remote sensing imagery by integrating three spectral indices: NDVI, SI and NGRDI TLDT requires nei-
ther image normalization nor atmospheric correction, and improves on the other methods by introducing more 
levels of decision tree classification with inputs from the same multispectral imagery. This paper also demon-
strates that the relative calibration based on the technique of radiance normalization meets the requirement of 
time series analysis of Formosat-2 imagery. The process of radiance normalization provides an appropriate way 
to examine the quality of every image. With TLDT, the effectiveness of forest restoration at 30 sites are assessed, 
using all available multispectral Formosat-2 images acquired between 2005 and 2016. The assessments at 15 
test sites are compared with the results obtained independently from the high-spatial-resolution (25 cm) aerial 

Figure 12.  Quantitative assessment of forest restoration at all 30 study sites based on the time series of ABL
⁎ . (a) 

restored well apparently; (b) restored in a slow pace; (c) restored ineffectively; (d) no assessment.
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orthophotos that were acquired approximately the same time in which the Formosat-2 images (8 m) were taken. 
Results show that the overall consistency is between 69.14% and 87.51%, while the kappa values are between 0.46 
and 0.76. These comparisons are not intended to conclude the assessment accuracy but to clarify why and where 
the discrepancy is, since the spatial resolutions are rather different between the aerial orthophoto (25 cm) and 
Formosat-2 image (8 m). Among the 30 study sites, 10 have restored successfully, 4 are recovering slowly, and 4 
have hardly re-vegetated. For the rest of the 12 sites, the shaded areas are too large to derive a detailed trend of 
restoration. But the effectiveness can still be assured by examining the pre-restoration and the most up-to-date 
Formosat-2 images. The distinction between natural regeneration and regrowth enhanced by restoration efforts 
were also made by using the existing dataset and TLDT developed in this research. This work supports the use of 
multitemporal remote sensing imagery as a reliable source of data for assessing the effectiveness of forest resto-
ration on a regular basis. The global trend of forest restoration can be obtained by applying the same approach to 
Landsat dataset, the longest archive of space-based moderate-resolution land remote sensing data. Therefore, this 
work also serves as the basis for studying the global trend of forest restoration in the future.
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