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signature maps for automatic 
identification of prostate cancer 
from colorimetric analysis of H&e- 
and IHC-stained histopathological 
specimens
ethan Leng1, Jonathan C. Henriksen2,3, Anthony e. Rizzardi2, Jin Jin4, Jung Who Nam5, 
Benjamin M. Brassuer2, Andrew D. Johnson2, Nicholas p. Reder3, Joseph s. Koopmeiners4, 
stephen C. schmechel2,3 & Gregory J. Metzger6

prostate cancer (pCa) is a major cause of cancer death among men. the histopathological examination 
of post-surgical prostate specimens and manual annotation of pCa not only allow for detailed 
assessment of disease characteristics and extent, but also supply the ground truth for developing of 
computer-aided diagnosis (CAD) systems for PCa detection before definitive treatment. As manual 
cancer annotation is tedious and subjective, there have been a number of publications describing 
methods for automating the procedure via the analysis of digitized whole-slide images (WsIs). 
However, these studies have focused only on the analysis of WsIs stained with hematoxylin and eosin 
(H&e), even though there is additional information that could be obtained from immunohistochemical 
(IHC) staining. In this work, we propose a framework for automating the annotation of pCa that is 
based on automated colorimetric analysis of both H&e and IHC WsIs stained with a triple-antibody 
cocktail against high-molecular weight cytokeratin (HMWCK), p63, and α-methylacyl CoA racemase 
(AMACR). the analysis outputs were then used to train a regression model to estimate the distribution 
of cancerous epithelium within slides. The approach yielded an AUC of 0.951, sensitivity of 87.1%, 
and specificity of 90.7% as compared to slide-level annotations, and generalized well to cancers of all 
grades.

Prostate cancer (PCa) is the second most common cancer among men in the U.S1. While traditionally the diag-
nosis of PCa relies on the examination of prostate biopsy specimens, there is a wealth of clinically-significant 
information that can be gathered from assessment of prostate specimens obtained from radical prostatectomy 
(RP), which is one of the gold standards for treatment of localized PCa2. Assessment of RP specimens allows for 
the refinement of diagnoses made on biopsy specimens and the assessment of surgical margins and extraprostatic 
extension3,4, which in turn are used to determine the necessity of adjuvant therapies and to predict patient out-
comes via nomograms5–7. PCa identified on RP specimens also serves as the ideal ground truth for the develop-
ment of computer-aided diagnosis (CAD) systems8, which use, for example, information obtained from magnetic 
resonance imaging (MRI) to non-invasively predict the presence and extent of disease. However, accomplish-
ing this requires the detailed examination of hematoxylin and eosin (H&E) stained sections of RP specimens 
by trained pathologists, which involves the manual annotation of PCa, i.e., the detection and delineation of 
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cancerous tissue from benign tissue. This process is not only tedious and time-consuming, but also associated 
with significant inter-reader, experience-dependent variability9,10.

The recent advent of digital pathology and whole-slide imaging systems provides an opportunity to improve 
the pathology annotation process11. Stained sections digitized by whole-slide imaging systems at high resolution 
can be processed and analyzed by a variety of image analysis algorithms to extract and assess features such as stain 
intensity and nuclei density12–14, which relate to the likelihood of disease being present. These features can then 
be used to build a computational model to estimate the spatial distribution of disease on each whole-slide image 
(WSI), in effect automating the annotation process. In particular, deep learning techniques have been applied in 
recent years to digitized histopathologic images for the detection of a variety of cancers, including lung, prostate, 
breast, kidney, bladder, skin, and gastric cancer15–20. One limitation common to these works is that they rely solely 
on the analysis of H&E-stained slides for cancer detection. While H&E staining offers information about tissue 
morphology and architecture, it does not capture the gene expression profiles of the cells, which provides func-
tional information that can inform disease likelihood. Therefore, image analysis of immunohistochemical (IHC) 
slides is a promising approach to extend and improve upon existing work.

Prostate adenocarcinoma, which comprises >90% of all prostate cancers, is histologically defined simply by 
the presence of glands without the outer basal cell layer. However, the accurate annotation of PCa is challenging. 
PCa tends to be locally infiltrative, and distinguishing malignant glands from surrounding benign glands can be 
tedious. The presence of the basal cell layer is often difficult to ascertain on H&E alone, which leads to underdi-
agnosis21. Additionally, there are several pathologic entities that are mimics of PCa. The most prominent of these 
is prostatic intraepithelial neoplasia (PIN). While PIN itself is considered benign, high-grade PIN (HGPIN) is 
suggestive of the presence of invasive carcinoma22. To further complicate matters, HGPIN is difficult to distin-
guish from intraductal carcinoma of the prostate (IDC-P), which is a malignant entity that usually represents 
the invasion of PCa into benign glands23,24. For these reasons, IHC is often used in aiding pathologic diagnosis 
of PCa. In particular, the triple-antibody cocktail specific for high-molecular weight cytokeratin (HMWCK), 
p63, and α-methylacyl CoA racemase (AMACR) is routinely used25. HMWCK and p63 are basal cell markers 
that act as negative cancer markers, i.e., the lack of immunoreactivity is indicative of the absence of the basal cell 
layer21,26,27. On the other hand, AMACR is a positive cancer marker that is usually highly overexpressed in PCa as 
well as HGPIN and IDC-P21,28,29. The combination of these three IHC markers has been shown to be superior for 
demonstrating PCa than any of them individually25,30.

Given that IHC staining for HMWCK + p63 + AMACR has a well-established role in aiding the histological 
diagnosis of PCa, we developed in this work methods for automated annotation of PCa on digitized whole slide 
images of prostatectomy specimens stained with H&E and the triple-antibody cocktail. Features were extracted 
from colorimetric image analysis of both H&E and IHC slides, and a regression model was trained to predict the 
extent and distribution of cancerous epithelium within each slide. The model was then applied to a large number 
of test cases, and the outputs were evaluated against slide-level manual annotation of PCa by pathologists.

Methods
ethics statement. All experiments were approved under IRB protocol 0601M79888 with the University of 
Minnesota Institutional Review Board and carried out in accordance with approved guidelines. The IRB waived 
the need for informed consent for this retrospective analysis of de-identified samples.

patient cohort. A total of 184 prostate specimens were obtained from a cohort of 63 patients who under-
went radical prostatectomy for definitive treatment of biopsy-proven prostate adenocarcinoma at our institution 
between November 2009 and January 2012. A summary of the patient characteristics is detailed in Table 1.

Histopathology processing and staining. The prostate specimens were fixed and paraffin-embedded 
using a previously described protocol and sliced into 4 µm-thick axial sections8,12. From each tissue block, 
two sections were selected from tissue levels no more than 100 µm apart, and were de-paraffinized and rehy-
drated using standard methods. H&E and IHC staining was performed on the two sections, respectively. H&E 
staining was performed in three batches using routine clinical protocols. IHC staining was performed using 
a Ventana BenchMark ULTRA automated immunostainer platform (Ventana Medical Systems, Tucson, AZ). 
Antigen retrieval and blocking were performed as previously described31. Slides were incubated for 32 minutes 
with the triple-antibody cocktail containing primary antibodies to the basal cocktail of HMWCK + p63 (mono-
clonal mouse; clones 34βE12 and 4A4 respectively; prediluted; Ventana, Tucson, AZ) and AMACR (monoclonal 
rabbit; clone 13H4; prediluted; Dako, Glostrup, Denmark). Detection was performed with the Ventana ultraView 
Universal DAB Detection Kit and ultraView Universal Alkaline Phosphatase Red Detection Kit according to 
manufacturer’s instructions. This was followed by rinsing, counterstaining with hematoxylin, dehydrating, and 
coverslipping. In summary, HMWCK + p63 expression in benign basal epithelium was demonstrated as brown 
by 3,3-diaminobenzidine (DAB), AMACR expression in malignant epithelium was demonstrated as red by Fast 
Red chromogen, and stroma was demonstrated as blue by hematoxylin counterstain.

slide digitization and slide-level annotations. Both H&E and IHC slides were digitized at 20x magni-
fication (0.5 µm/pixel) using a whole slide scanner (Aperio ScanScope CS, Leica Biosystems, Buffalo Grove, IL). 
Digitized H&E WSIs were annotated at the slide-level for PCa by pathology trainees (B.M.B., A.D.J., N.P.R.) under 
the supervision of a board-certified pathologist (S.C.S.) using Aperio’s ImageScope software (Leica Biosystems, 
Buffalo Grove, IL) and a pen-tablet screen (Wacom Cintiq 22HD, Saitama, Japan). The slide-level annotations 
were carried out by demarcating the borders of distinct regions of cancer and assigning a Gleason score (GS) 
to each region (Fig. 1c). Using the same tools, negative annotations, defined as regions containing artifacts of 
the histological processing (e.g., tissue folds, debris, irregular staining), were demarcated on the IHC WSIs by 

https://doi.org/10.1038/s41598-019-43486-y


3Scientific RepoRts |          (2019) 9:6992  | https://doi.org/10.1038/s41598-019-43486-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

technologists (A.E.R., J.C.H.). Regions of negative annotations were ultimately excluded from analysis, and typ-
ically comprised no more than 5% of a given slide. Digitized WSIs and annotations were stored and managed as 
previously described32.

SigMap software was used to further process the digitized WSIs12,33. First, it was used to register the IHC WSI 
to the H&E WSI using a rigid transformation (Fig. 1a,b). Next, binary masks of the slide-level cancer annota-
tions and the negative annotations were created to transfer the annotations between H&E WSIs and IHC WSIs 
(Fig. 1c). A virtual grid composed of analysis squares (dimensions 1,000 × 1,000 pixels, area of 0.25 mm2) was 
then generated by SigMap and added to both WSIs (Fig. 1d). Analysis squares whose areas overlapped at least 
75% with the cancer annotation mask were labeled as cancer and assigned the GS of the corresponding anno-
tation (Fig. 1e). Analysis squares whose areas overlapped at least 75% with the negative annotation mask were 
excluded from further analysis.

Colorimetric image analysis algorithms. The following three quantitative image analysis algorithms 
(Aperio Brightfield Image Analysis Toolbox, Leica Biosystems, Buffalo Grove, IL) were configured by a technolo-
gist (J.C.H.), then applied to H&E and IHC WSIs in order to extract features for prediction of cancer.

The Positive Pixel Count (PPC) algorithm was applied to H&E WSIs. Briefly, the PPC algorithm counts 
the number of stained pixels within each analysis square that falls within and out of a specified range of 
hue-saturation-brightness (HSB) color values (positive and negative pixels, respectively). HSB values were sam-
pled from three types of regions that predominantly contained a single histological feature of interest (nuclei, 
cytoplasm, or stroma). Fifteen of each type of region were manually identified on control H&E WSIs and sampled. 
Ranges of HSB values were calculated for each type of region and were manually adjusted to eliminate overlap 
between ranges. A separate PPC algorithm was configured for each type of region and its corresponding range 
of HSB values. The three configured PPC algorithms were then applied prospectively to analysis squares of H&E 
WSIs. The resulting numbers of positive pixels were converted to percentages of the analysis square occupied by 
nuclei, cytoplasm, and stroma (% nuclei, % cytoplasm, and % stroma, respectively), which were in turn used as 
predictive features. The unstained percentage of each analysis square was also calculated as % unstained = 100%−
(% nuclei + % cytoplasm + % stroma), and analysis squares with % unstained >99% were excluded from further 
analysis on the basis that they are taken from regions outside of the tissue boundaries. To account for variations 
in H&E staining intensity across the three batches, a different set of PPC algorithms was configured and applied 
to each batch.

Color Deconvolution (CD) and Co-expression (CE) algorithms were applied to IHC WSIs to measure the 
colorimetric features of the IHC stain. Briefly, the CD algorithm isolates individual staining components of IHC 
WSIs for quantification, while the CE algorithm quantifies how often the staining components occur separately 
and together. These algorithms were first configured on control slides. Three control slides were cut, processed, 
and singly-stained with either DAB chromogen (brown), Fast Red chromogen (red), or hematoxylin counterstain 
(blue), using the same protocols as the triple-stained IHC slides described above. The average red-green-blue 
(RGB) optical density (OD) values of the three components were sampled from the corresponding WSIs of the 
control slides and were measured as Fast Red (R: 0.283, G: 0.949, B: 0.757), DAB (R: 0.461, G: 0.826, B: 1.0), and 
hematoxylin (R: 0.21, G: 0.276, B: 0.176), and intensity thresholds were manually configured for each compo-
nent to define positively-stained pixels. The configured CD and CE algorithms were then applied prospectively 
to analysis squares of IHC WSIs, from which the percentage of each analysis square that was positively staining 
(%Pos) was calculated. As previously described, the OD quantifies the stain intensity, as it is linearly related to the 
amount of staining13,31,32,34.

Parameter

Data

Training set (n = 10) Test set (n = 53)

Mean age (yrs) 61 (range: 55–72) 63 (range: 47–76)

Mean serum prostate specific 
antigen at time of surgery (ng/mL) 11.3 (range: 2.5–19.4) 7.85 (range: 0.40–37.60)

Pathologic stage

T2a 0 9

T2b 0 4

T2c 4 26

T3a 5 10

T3b 1 4

Gleason score

3 + 3 1 13

3 + 4 4 21

4 + 3 4 8

4 + 4 1 5

4 + 5 0 4

5 + 4 0 2

Table 1. Summary of the clinical and pathologic characteristics of the patient cohort.
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Using the configured RGB OD and intensity threshold values, IHC WSIs were then separated into brown, red, 
and blue color channels corresponding to each staining component. The brown and red staining were separately 
quantified by the CD algorithm as previously described32. Specifically, the average OD and %Pos were measured 
by the CD algorithm for both brown and red components, and the products OD × %Pos were calculated and used 
as predictive features. The co-localization of brown and red staining was quantified by the CE algorithm, which 
was then used to calculate the percentage of the analysis square that was positively staining for only red or only 
brown, but not both (%PosCE). %PosCE for red and brown components were used as predictive features.

In summary, seven features were extracted from each analysis square (Table 2). The features derived from 
H&E WSIs were the percentages of nuclei, cytoplasm, and stroma, while the features derived from IHC WSIs were 
the percentages and stain intensities (quantified by the OD) of brown and red staining, which corresponded to the 
characteristics of the basal cell staining (HMWCK + p63) and the AMACR staining, respectively.

training data and analysis square-level annotations. Ten of the 63 patients in our cohort were ran-
domly selected, and one pair of WSIs was created from each for purposes of training the regression model. Forty 
analysis squares were randomly selected from each of the ten pairs of WSIs (400 analysis squares in total) and 
were manually annotated in much greater detail than usual (S.C.S.). The analysis square-level annotations were 
carried out by meticulously delineating the benign and cancerous epithelium, gland lumens, stroma, and regions 
of clear glass within the 1,000 × 1,000 pixel-area of each analysis square. The fractional areas of each of the afore-
mentioned components were then summated for each annotated analysis square (Fig. 2b). The percentage of 
cancerous epithelium within each analysis square-level annotation was taken to be the ground truth. Details on 
the slides can be found in Table 3.

Regression model training and evaluation. Elastic net regression models were trained on these data 
using 10-fold cross validation35, with each fold containing the 40 analysis squares from a single pair of WSIs. The 
elastic net is a generalized linear regression model with both L1 and L2 regularization, and its corresponding 
objective function to be minimized is

ω αρ ω
α ρ

ω− + +
−

ω m
X ymin 1

2
(1 )

22
2

1 2
2

Figure 1. Use of SigMap software for initial processing of WSIs. This ensures the accurate spatial co-localization 
of H&E and IHC WSIs, and in turn the co-localization of image features extracted from both. (a) Digitized 
WSIs. (b) IHC WSI after rigid registration to the H&E WSI. (c) Regions of manually-annotated cancer outlined 
in black on the H&E WSI (GS 3 + 4 in this example). These regions were copied to the registered IHC WSI by 
SigMap. (d) Grid of analysis squares generated by SigMap overlaid on H&E and IHC WSIs. (e) Analysis squares 
with ≥75% overlap with the slide-level annotation identified by SigMap (in red). These analysis squares were 
subsequently labeled cancer and assigned the GS of the annotation.

Feature Source Algorithm

% Nuclei H&E Positive Pixel Count (nuclear)

% Cytoplasm H&E Positive Pixel Count (cytoplasmic)

% Stroma H&E Positive Pixel Count (stromal)

OD × %Pos (brown) IHC Color Deconvolution (brown)

OD × %Pos (red) IHC Color Deconvolution (red)

%PosCE (brown) IHC Co-expression

%PosCE (red) IHC Co-expression

Table 2. Summary of the extracted features. Features are calculated on an analysis-square level.
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where m is the number of training examples, n is the number of features, X is the m-by-n matrix of training exam-
ples, ω is the n-by-1 vector of feature weights, y is the m-by-1 vector of labels, and α and ρ are parameters that 
determine the strengths of the regularization terms.

Models were trained on four different sets of features: (1) features from H&E WSIs alone (the H&E model), 
(2) features from IHC WSIs alone (the IHC model), (3) features from both H&E and IHC WSIs, but without the 
two %PosCE features (the full–CE model), and (4) all features from both H&E and IHC WSIs (the full model). Given 
the similarity of %Pos from the CD algorithm and %PosCE from the CE algorithm, both the full–CE model and the 
full model were included in order to test if the inclusion of the two %PosCE features would provide any benefit to 
cancer identification accuracy.

For each model, the coefficients of the two regularization terms (α and ρ) were treated as hyperparameters and 
selected by cross-validation to minimize the mean value of the objective function (averaged across the ten folds). 
Trained models were then applied to the analysis squares of the other 174 pairs of slides to produce predicted 
maps of cancerous epithelium. Model outputs were compared to the slide-level annotations on a per-analysis 

Figure 2. Examples of pseudo-color outputs of Aperio image analysis algorithms from which the predictive 
features were calculated. (a) Analysis square from an H&E WSI in the training set (75% overlap with the slide-
level annotated cancer outlined in yellow). (b) Analysis square-level annotation of (a), with benign epithelium 
in green, malignant epithelium in red, gland lumens in white, and stroma in blue. The percentage of malignant 
epithelium is used as the ground truth for training. (c–e) Outputs of the PPC algorithms. Positive pixels are in 
red/orange/yellow, and negative pixels in blue. The percentages of positive pixels is taken to be the percentages 
of the analysis square occupied by nuclei, cytoplasm, or stroma. (f) Analysis square corresponding to (a) taken 
from the corresponding IHC WSI. (g,h) Outputs of the CD algorithms. Positive pixels are in yellow/orange/red, 
and negative pixels in blue. (i) Output of the CE algorithm. Positive pixels for red and brown components are 
in green-cyan and red-purple, respectively. (j) Table of features derived from the outputs of the image analysis 
algorithms.

Type Training (10 total) Test (174 total)

Cancer 84 23,757

3 + 3 13 (1) 2,849 (31)

3 + 4 37 (4) 6,146 (47)

4 + 3 34 (4) 4,452 (22)

4 + 4 0 (0) 2,790 (15)

4 + 5 0 (0) 6,146 (16)

5 + 4 0 (0) 1,374 (4)

Benign 316 189,629

Totals 400 213,386

Table 3. Breakdown of the distribution of the analysis squares of the training and test data by cancer presence 
and Gleason score. An analysis square was labeled cancer if it overlapped at least 75% with the slide-level 
annotation. Excluded analysis squares (i.e., those that overlapped at least 75% with the negative annotation, or 
were found to be >99% unstained on H&E staining) are not tabulated here. Numbers in parentheses indicate 
the number of pairs of WSIs containing cancer with the corresponding Gleason score. Note that some WSIs 
contained no annotated cancer (1 in the training set, 39 in the test set).
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square level using receiver operating characteristic (ROC) curve analysis. Sensitivities and specificities were cal-
culated using the optimum cut-off points for the ROC curves that corresponded to the maxima of the Youden 
indices. The 95% confidence intervals (CIs) were calculated using a bootstrap procedure that resampled both 
WSIs and analysis squares from the training set, and only WSIs from the test set. Two-sided p-values were found 
by inverting the 95% bootstrap CIs.

Results
outputs of colorimetric image analysis algorithms. Figure 2a,f illustrate the detail at the level of an 
analysis square for H&E and IHC WSIs, respectively. Figure 2c–e show sample outputs of the PPC algorithms. 
Figure 2g,h show sample outputs of the CD and CE algorithms, respectively. As the degree of co-localization 
between the brown and red components of the deconvolved IHC slides is generally small (typically <5% of the 
analysis square), the overlap is difficult to visualize in Fig. 2i.

Quantitative evaluation of model performance. Cross-validation performance for the four models 
was evaluated by plotting cumulative scatterplots of predicted % cancer epithelium vs. the actual % cancer epithe-
lium across the 10 cross-validation folds (Fig. 3). The cross-validation root mean square error, median absolute 
error, and maximum absolute error for each model are shown in Table 4.

Performance on the test set for the four models was evaluated by plotting the ROC curves (Fig. 4). The area 
under the ROC curves (AUCs), as well as the sensitivities and specificities calculated at the respective maxima 
of the Youden indices, are shown in Table 5. The AUC for the full model was significantly higher than that of the 
H&E model (p = 0.026), while the specificity for the full model was significantly higher than those of the H&E 
and full–CE models (p < 0.001 for both). The AUC and specificity for the full model were not significantly different 
than those of the IHC model (p = 0.542 and p = 0.108, respectively). The sensitivity of the full model was also 
not significantly different than those of the H&E, IHC, and full–CE models (p = 0.134, p = 0.748, and p = 0.939, 
respectively). The CIs of these summary statistics for the full model were notably narrower than those of the other 
three models, suggesting that the performance of the full model will likely be closer to what is reported here when 
it is applied prospectively.

Figure 3. Cross-validation scatterplots of the predicted vs. actual % cancer epithelium for the four regression 
models trained with different feature sets. Data points in each plot were accumulated across the ten cross-
validation folds.
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Model
Root mean 
square error

Median 
absolute error

Maximum 
absolute error

H&E model 15.4 8.37 52.3

IHC model 9.36 3.55 49.9

Full–CE model 11.9 5.59 49.4

Full model 8.37 3.09 38.8

Table 4. Comparison of the cross-validation performance for the four regression models.

Figure 4. Receiver operating characteristic (ROC) curves for the regression models trained with different 
feature sets. Shaded regions correspond to the 95% bootstrap confidence intervals generated from 1,000 
bootstrap samples. Black circles indicate the maxima of the Youden indices, which were chosen as the cutoff 
points.

Model AUC Sensitivity Specificity

H&E model 0.755 [0.582, 0.867] 0.661 [0.562, 0.898] 0.760 [0.665, 0.803]

IHC model 0.937 [0.692, 0.961] 0.918 [0.661, 0.931] 0.920† [0.780, 0.938]

Full–CE model 0.911 [0.682, 0.943] 0.907 [0.683, 0.924] 0.809 [0.765, 0.864]

Full model 0.951† [0.832, 0.964] 0.871 [0.753, 0.934] 0.907†,* [0.894, 0.959]

Table 5. Comparison of classification performance for the four regression models. Numbers in brackets are the 
95% bootstrap confidence intervals generated from 1,000 bootstrap samples. †Significant at p < 0.05 compared 
to the H&E model. *Significant at p < 0.05 compared to the full–CE model.
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For the full model, the sensitivity of PCa detection was broken down by both Gleason score and Gleason grade 
group (GG)36, the latter of which may better reflect cancer aggressiveness (Table 6). Using the convention that 
GG ≤ 2 (GS 3 + 3 or 3 + 4) is low to intermediate-grade and GG ≥ 3 (GS 4 + 3, 4 + 4, 4 + 5, or 5 + 4) is high-grade, 
the sensitivity of detecting low to intermediate-grade cancers was 0.884, while it was 0.864 for high-grade cancers; 
this difference was found to be not significant (p = 0.107).

Comparison of model-generated annotations to manual slide-level annotations. Figure 5 shows 
representative H&E and IHC slides with slide-level, manually-annotated cancer by pathologists compared with 
maps generated by the full model. Note the high degree of correlation between the annotated cancer, distribution 
of AMACR staining (red on IHC slides), and predicted distribution of malignant epithelium.

Discussion
In this work, we show that a predictive model that uses features derived from colorimetric analysis of both dig-
itized H&E and IHC slides is able to detect and delineate PCa on WSIs with accuracy comparable to patholo-
gists’ slide-level annotations. The performance of the full model was found to be superior to those of the other 
three models, individually (Table 5), though this difference was only significant in comparison to the H&E 
model. Furthermore, despite the relatively small amount of training data that included predominantly low and 
intermediate-grade cancers, the model performed well across a large number of test set slides. Its sensitivity was 
also largely consistent across cancers with different Gleason scores, and was only slightly worse for high-grade 
cancers (0.864 vs. 0.871 for all cancers, Table 6).

In contrast to most published works, the regression model described here uses a compact set of seven features 
that were calculated from the outputs of standard image analysis algorithms applied to H&E WSIs (% nuclei, % 
cytoplasm, % stroma) and IHC WSIs (OD × %Pos and %PosCE, for brown and red). These features were ultimately 
chosen for their simplicity and interpretability. Although %Pos from the CD algorithm and %PosCE from the CE 
algorithm appeared to be redundant, the results demonstrate that excluding the two %PosCE features resulted in 
worse specificity of cancer detection (full−CE model vs. full model, Table 5). This is most likely due the fact that 
some slides contained a larger fraction of non-cellular components (e.g., intraglandular cellular debris, corpora 
amylacea) that stained both brown and red with IHC staining. This would cause %Pos (red) as calculated by the 
CD algorithm to be falsely elevated, but would not affect %PosCE (red) as calculated by the CE algorithm as the 
CE algorithm excludes regions that stained both brown and red. Therefore, inclusion of the two %PosCE features 
increased the specificity of cancer detection for slides containing a significant fraction of such regions, and in turn 
increased the overall specificity of cancer detection.

Another notable aspect of the work is that the full model was trained to predict the percentage of cancerous 
epithelium, which was made possible by the unique ground truth obtained from the meticulous annotation of 
individual analysis squares. For purposes of model training, this ground truth is superior to the slide-level anno-
tations, as those are known to have finite accuracy and precision9,10.

The trained models were evaluated against the slide-level annotations on a per-analysis square level using 
ROC curve analysis. However, despite the high AUC achieved by the full model, it is difficult to assess the true 
performance of the model due again to the limitations of the slide-level annotations. Accurate assessment would 
require analysis square-level annotations of all the slides in the test set, which would be prohibitive. Qualitatively, 
visual comparison of the model-generated maps of cancerous epithelium with the slide-level annotations shows 
generally good concordance (Fig. 5). Sources of disagreements between the two can be divided into four catego-
ries, which are illustrated in Fig. 6:

 1. Cancer missed by the model (Fig. 6a). This was most often due to cancer with poor AMACR staining; while 
AMACR is a sensitive positive marker of PCa, it is well-documented that some variants of PCa do not exhibit 
increased expression of AMACR29,30,37,38. Alternatively, inconsistencies in the staining procedure may have 
caused variabilities in AMACR staining, and these variabilities would be amplified in regions of cancer.

Type

Number of 
Analysis 
Squares

Number 
Correctly 
Labeled Sensitivity

3 + 3 2,849 2,411 0.846 [0.784, 0.957]

3 + 4 6,146 5,539 0.901 [0.721, 0.954]

GG ≤ 2 8,995 7,950 0.884 [0.792, 0.971]

4 + 3 4,452 4,098 0.921 [0.788, 0.956]

4 + 4 2,790 2,246 0.805 [0.732, 0.976]

4 + 5 6,146 5,135 0.836 [0.601, 0.891]

5 + 4 1,374 1,274 0.927 [0.715, 1]

GG ≥ 3 14,762 12,753 0.864 [0.727, 0.934]

Totals 23,757 20,703 0.871 [0.742, 0.929]

Table 6. Sensitivity of the full model broken down by Gleason score and Gleason grade groups. Low to 
intermediate-grade cancers were defined by GG ≤ 2 (GS = 3 + 3 or 3 + 4), and high-grade cancers were defined 
by GG ≥ 3 (GS = 4 + 3, 4 + 4, 4 + 5, or 5 + 4). Numbers in brackets are the 95% bootstrap confidence intervals 
generated from 1,000 bootstrap samples.
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 2. Cancer incorrectly annotated by the pathologist (Fig. 6b). This was most often due to large regions of glass 
(e.g., cystic areas, luminal areas of malignant glands) that are looped in with the slide-level annotations. 
More rarely, benign glands were incorrectly annotated as cancer; usually, these were examples of PIN with 
low AMACR expression.

 3. Cancer incorrectly labeled by the model (Fig. 6c). This was most often due to PIN with high AMACR 
expression.

 4. Cancer missed by the pathologist (Fig. 6d). This was most often due to small, isolated regions of cancer that 
were not annotated. More rarely, HGPIN and/or glands with IDC-P were missed by the pathologist but 
identified as cancer by the model due to high AMACR expression.

In summary, accurately distinguishing the different possible presentations of PCa from PIN is a challenge 
for both pathologists and the full predictive model. Although in theory glands with PIN are characterized by the 
presence of an intact basal cell layer, the basal cell layer may be quite fragmented, which would make it difficult to 
assess by either visual inspection or by quantitative assessment of brown staining intensity.

There are three major limitations of the features. First, since they are calculated from colorimetric analysis of 
stained WSIs, their consistency is highly-dependent on the reproducibility of the staining procedure and digitiza-
tion process. As noted in previous works, the use of different histology protocols and/or different slide scanners 
can cause large variations in the morphological features of WSIs, which in turn degrade the predictive perfor-
mance of trained models20. In our work, the three separate batches of H&E staining presented a major source of 
potential variability in the calculated H&E features, as the stain intensities were visibly different between H&E 
WSIs of different batches. To compensate, a different set of PPC algorithms was configured for each batch, though 
this was not ideal. In order to minimize batch effects in the future, H&E staining will also be performed on an 
automated platform using a standardized protocol, like what was done for the IHC staining. Additionally, algo-
rithms like the PPC algorithm that rely on the analysis of intensity values (e.g., RGB or HSB values) are naturally 
quite prone to variations in stain intensity. Therefore, it would be worth extending the use of color deconvolution 
algorithms for the analysis of H&E WSIs, as proposed in previous works39. To expand this work to larger datasets, 
further methods for normalization of WSIs and/or derived features may also be investigated20,39.

Figure 5. Representative comparisons of slide-level annotations to model-generated prediction maps. Row 1: 
H&E WSIs with slide-level annotations outlined in black. Row 2: IHC WSIs corresponding to the H&E WSIs in 
Row 1. Sigmap software was used to perform registration to the H&E WSIs, and to copy the annotated cancer. 
Row 3: Model-generated maps of the predicted distribution of malignant epithelium overlaid on the H&E WSIs. 
Colorbars correspond to the percentage of malignant epithelium. Row 4: Thresholded versions of prediction 
maps shown in Row 3, with the Youden index (2.61%) chosen as the threshold. Predicted slide-level annotations 
are outlined in blue, with internal benign regions outlined in yellow.
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Another limitation of the features is that they are derived from WSIs of different tissue levels of the tissue block. 
Due to technological constraints, H&E and IHC staining were not performed on the same tissue section, and thus two 
sections were taken from each specimen. Although the sections were spatially adjacent (separated by ≤100 µm), there 
were sometimes noticeable differences between the two when digitized and viewed at the magnification level of indi-
vidual analysis squares (Figs 2a,f, 6b). However, these differences were relatively minor and unlikely to significantly 
affect the calculated features, and can further be minimized in the future by always selecting serial levels of the tissue 
block for staining. Methods for visualizing multiple stains on the same tissue section may also be considered40,41.

Lastly, the features only characterize the composition within each analysis square, and not the arrangement 
(i.e., cellular architecture) of the components. Therefore, the predictive model has difficulties distinguishing 
between analysis squares containing PIN and those containing a mixture of benign and malignant glands. This 
limitation may be addressed in future work by identifying additional IHC markers that are differentially expressed 
in cancer and PIN; for example, IDC-P is characterized by decreased expression of PTEN, which can be used to 
distinguish HGPIN from IDC-P42. An alternative approach could be to develop custom algorithms for object 
detection and segmentation (e.g., for identification of whole prostate glands). A more straightforward approach 
could be to supplement the training data with examples of PIN or PIN-like entities. Augmenting the training 
data may also allow the use of deep learning approaches such as convolutional neural networks15–19 that can learn 
features that account for differences in the glandular architecture within analysis squares.

In summary, the methods introduced in this work can be modularly integrated into digital pathology frame-
works for detection of prostate cancer on whole-slide images of histopathology slides. The unique aspect of this 
work is that it incorporates information from slides with conventional H&E staining as well as those with IHC 
staining, and as demonstrated in this work, the combination of both allows for more accurate identification of 
prostate cancer. Given the number of previously identified and characterized genetic markers in other types of 
cancers, the methods presented here may be extended naturally to other types of cancer as well.

Data Availability
The processed digitized pathology data, the outputs of the colorimetric analysis algorithms and the regression 
model, and the statistical analyses for the current study are available from the corresponding author upon rea-
sonable request.
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