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Monitoring and early warning 
method for a rockfall along 
railways based on vibration signal 
characteristics
Yan Yan1,2,3, Ting Li2, Jie Liu2, Wubin Wang2,3 & Qian su1,2,3

Rockfall disasters occur frequently in mountainous areas of western China, and the rockfall disasters 
along a railway line will seriously affect the safety and normal operation of railways, causing great 
economic and property losses. Existing rockfall monitoring and early warning methods still have 
shortcomings, such as accurate warning of single-point disasters and vulnerability to the natural 
environment. In this study, a rockfall test of a flexible safety protection net along the slope of a 
railway and a rockfall test of the railway track were carried out, and the vibration signals of the falling 
rock hitting the different sites of the protective net and hitting different positions of the rails were 
obtained. Using the signal analysis methods such as Fast Fourier Transformation and Short-Time Fourier 
Transform, the basic characteristics of the rockfall vibration signal and the vibration signal when the 
train passes and the propagation law of the rockfall vibration signal are obtained. Finally, a set of 
monitoring and early warning systems for rockfall disasters along the railway based on the analysis 
of vibration signal characteristics is established. The monitoring and early warning method has the 
advantages of all-weather, high-time, semi-automatic and high efficiency performance.

The mountainous terrain in China’s western regions is undulating and has complex conditions. Rockfall hazards1 
have become one of the most serious problems jeopardizing the safety of railway lines in the western mountain-
ous regions. According to incomplete statistics, there were 238 rockfalls at 214 sites responsible for 910 hours of 
16-minute traffic interruptions in the northern section of the Chengdu-Kunming Railway from 1971 to 1992. 
The occurrence of rockfall hazards along the railway will seriously affect the safety and normal operation of the 
railway and result in great economic and property losses2–5. The monitoring and early warning of rockfall hazards 
along the railway in mountainous areas are therefore necessary.

Commonly used technologies of rockfall monitoring include light detection and ranging (LiDAR), laser scan-
ning, geographical information systems (GISs) and video image recognition. As an information data collection 
method applied to the natural physical object space6,7, LiDAR is widely used in the monitoring, detection and 
evaluation of rockfall and the analysis of rockfall vibration characteristics4,8,9. However, owing to scattering of the 
scanning light, the spatial information captured by the LiDAR sensor is not yet comprehensive enough, and laser 
scanning is more effective10. Laser scanning has also been used for the monitoring of rockfall over large-scale 
areas11. In addition, researchers usually combine LiDAR, laser scanning, and GIS technology to establish a 
three-dimensional numerical model of a rockfall and to analyze the spatiotemporal characteristics of rockfall 
hazards12,13 and make rockfall hazard risk assessments14. In addition, video image recognition methods are often 
applied to the monitoring of rockfall hazards. Such methods can be employed to monitor the status of danger-
ous rocks remotely and greatly reduce the use of human resources15,16. Although these commonly used rockfall 
monitoring methods have been effective to a certain level, they still suffer deficiencies. LiDAR and laser scanning 
methods, for example, are suitable for the assessment of the risk of rockfall in a large area but not for the accurate 
monitoring and early warning of a single rockfall. Video image recognition is susceptible to factors of the natural 
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environment, such as poor performance at night, in heavy fog and under extreme rainfall conditions. A GIS is 
usually used in numerical simulation for the analysis and assessment of the risk of rockfall, but its timeliness is 
poor.

Currently, the development of electronic technology allows the analysis of the rockfall vibration characteristics 
through signal monitoring. More and more research has started to monitor and provide an early warning of rock-
fall hazards according to the characteristics of vibration signals. Signals of the acceleration and velocity of ground 
vibration caused by rockfall can be collected by sensors such as geophones and accelerometers, for example. 
Time-frequency analysis of the vibration signals that are obtained can provide the scale and dynamic process of 
the rockfall, providing data for monitoring and early warnings, and such analysis is feasible and mature17,18. First, 
many studies involving signal monitoring and analysis are focused on the frequency distribution of the ground 
vibration generated by rockfall. The frequency distribution of ground vibration signals triggered by rockfall is 
related to various factors such as the scale of the rockfall and the range monitored by sensors. Field monitoring 
results show that the main frequency of the ground vibration signal generated by rockfall is concentrated within 
10–20 Hz19–21, while the vibration signal frequency is lower for larger rocks22. Second, by analyzing the character-
istics of the rockfall vibration signal, we can obtain the relationship between the physical parameters of the vibra-
tion signal and parameters such as the rockfall distance and scale. The signal duration t30, for example, is roughly 
related to the falling rock energy and rockfall distance23. The volume, scale and signal detection range have a 
linear relationship24. In addition, through time–frequency analysis of the rockfall vibration signal, the inverse of 
the rockfall hazard induction mechanism can also be obtained25,26. In summary, current research on the charac-
teristics and related mechanisms of rockfall based on vibration signals is relatively complete, but there are still 
relatively few studies involving vibration signal analysis of rockfall disasters along a railway. D.S. Collins acquired 
the characteristics of a vibration signal of rockfall along a railway in North America by laying microsensors along 
the railway2 but only conducted a preliminary analysis of the time-domain characteristics of the vibration signal. 
In practical applications, a safety netting system is usually installed in areas of rockfall hazard along a railway. It 
is therefore necessary to further analyze the characteristics of vibration signals of falling rock hitting the protec-
tive net to determine the status of the net. After rockfall breaks through a protective net, it threatens the track 
structure below. Falling rocks hitting the track and a passing train both produce high-energy vibrational signals. 
To avoid a false alarm of a rockfall event due to the vibration signal of the train, it is necessary to distinguish the 
characteristics of the two vibration signals. In addition, based on the vibration signal characteristics, construction 
of the monitoring and early warning methods for rockfall hazards along a railway needs further study.

The present study carried out a rockfall test of a safety netting system and a track rockfall test to obtain the 
vibration signal characteristics of railway infrastructure hit by rockfall and employed the fast Fourier transform 
(FFT) and short-time Fourier transform (STFT) to measure the time–frequency characteristics of the rockfall 
vibration signals of a protective net and train-induced vibration. This paper analyzes and discusses the time–
frequency characteristics of rockfall vibration signals. A monitoring and early warning method is proposed for 
rockfall hazards along railways according to the analysis of vibration signal characteristics, providing guidance 
for the prevention and treatment of rockfall hazards along railways.

Results
Vibration characteristics in the protective net. For the 1000-kJ drop, the protective net broke. The 
experimental system does not allow the heavy object to move with the protective net, and the net thus does not 
have a continuous effect on the large object. In practice, the protective net gradually stops the movement of a 
heavy object after a single impact. After hitting the net, the heavy object is balanced by its own weight, and the 
vibration amplitude is lower than the vibration amplitude when the protective net is not broken, whereas the 
vibration frequency is relatively high. The duration of the large vibration recorded for the 1000-kJ drop was short, 
approximately 0.2 s, and the energy dissipation was extremely fast. The dominant frequencies were concentrated 
in the range of 50–150 Hz. For the 3000- and 5000-kJ drops, the protective net was strengthened experimentally; 
the heavy object fell on the protective net and moved up and down with the protective net until the two reached 
equilibrium. The vibration was greatly affected by the weight. The amplitude of vibration of the protective net was 
therefore relatively large, and the duration of the larger amplitudes of vibration was short. The heavy and protec-
tive nets gradually converge in terms of vibration owing to the effect of the heavy object, and the high-frequency 
vibration is weaker than the low-frequency vibration because heavy objects have a large inhibitory effect on the 
high-frequency vibration of the protective net. For the 3000- and 5000-kJ drops, the vibration time recorded by 
the sensor was relatively long, and the dominant frequency band was concentrated at low frequencies. The best 
frequency band was 0–50 Hz, while the second-best frequency band was 75–100 Hz (Fig. 1).

Horizontal vibration characteristics of the signal. The duration of high amplitudes of the lateral vibration was 
longer than the duration of high amplitudes of the vertical vibration. The horizontal vibration times for the 1000-, 
3000- and 5000-kJ drops were longer than the vertical vibration times. There was a relatively large vibration 
amplitude in the horizontal direction (y) of the protective net experiment with respect to the x-direction, while 
the frequency of the horizontal vibration in the x-direction with respect to vibration in the y-direction was high. 
The characteristic of the frequency spectrum was that the dominant frequencies in the spectrum for horizontal 
direction y were concentrated in a low-frequency band, 0–50 Hz, which is the first dominant frequency band. The 
characteristics of the frequency spectrum and signal in the time domain, the horizontal direction and the treat-
ment direction were similar, but the recording time in the time domain was longer and combined investigation 
for vertical and horizontal directions was more effective (Fig. 2).

Vertical vibration characteristics of the signal. The signal recorded by a 40 G sensor had a relatively short duration 
of strong amplitude and was accompanied by a small amplitude with a long duration, while the signal recorded by 

https://doi.org/10.1038/s41598-019-43146-1


3Scientific RepoRts |          (2019) 9:6606  | https://doi.org/10.1038/s41598-019-43146-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

a 2 G range sensor had a relatively long duration. This is mainly because the 2 G sensor records mainly small vibra-
tions, and the maximum value during the mapping was also 2 G; however, the maximum range recorded by the 40 
G-range sensor was relatively large, the maximum value during the mapping was 40 G, and such low amplitudes 
appeared smaller in the amplitude curve. Furthermore, the sensitivities of the 40 G and 2 G sensors were different, 
and the 2 G sensor had a stronger recognition energy than the 40 G sensor for a weak signal. The signals recorded 
by the sensors at positions A, B and D were similar in the time and frequency domains. The duration of the large 
vibration amplitude was short while the duration of the small vibration amplitude was long. The first dominant 
frequency segment was 0–50 Hz, while the second dominant frequency segment was 75–100 Hz (Fig. 3).

Vibration characteristics of the track rockfall test. Characteristics of the train vibration signal and rockfall  
signal. The train signal is spindle-shaped, with the first and last spindles being unimodal and the middle spindle 

Figure 1. Vibration curve and frequency chart for the experimental sensor at point D on the protective net 
((top) 1000-kJ drop breaking the net, (middle) 3000-kJ drop without breaking the net, and (bottom) 5000-kJ 
drop without breaking the net).

Figure 2. Vibration curve and frequency chart for the two horizontal sensors at point D on the protective net. 
(Directions x and y are horizontal and perpendicular to each other. The upper two figures show results for the 
1000-kJ drop with the net breaking, the middle two figures show results for the 3000-kJ drop without breaking 
the net, and the lower two figures show results for the 5000-kJ drop without breaking the net).
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being bimodal. The FFT is used to transform the vibration signal of the train and rockfall to the frequency domain. 
The train signal has a strong energy at each frequency. The frequency characteristics of the train signal are like the 
frequency characteristics of the white-noise signal. There is no obvious dominant frequency band for a typical 
broadband vibration signal. The time-frequency spectrum obtained by STFT is in the form of a distinct vertical 
strip, and the spectrum also shows the characteristic of energy in the whole frequency band (Fig. 4). When the 
train wheels pass, the vibration amplitude of the rail is not obvious, and the rail vibration is generated mainly when 
the train’s bogie passes. When each bogie of the train approaches a sensor, the vibration amplitude of the rail at the 
sensor gradually increases. When the bogie reaches the sensor test position, the vibration amplitude reaches a max-
imum, the vibration amplitude of the rail gradually decreases away from the sensor test position, and the sensor 
records a vibration curve that has a spindle shape in the time domain. There are two pairs of bogies at the two ends 
of the CRH train, so that there are two pairs of bogies at the link of the car. The pair of bogies correspond to one 
spindle. Because the two pairs of bogies at the link of the car are very close together, the two are heavy. Paste shows 
the characteristics of the bimodal spindle. The signal has energy in all frequency bands, and both the spectrum 
and the time spectrum are reflected. Each vertical bar represents the vibration generated by the bogie of the train 
compartment and has energy throughout the Nyquist frequency range. However, the frequency characteristics of 
each vertical bar are different, indicating that the weight and movement status of each car of the train may differ.

Figure 3. Vibration curves and frequency diagrams recorded by sensors at different positions for the 3000-kJ 
drop. (From top to bottom are data curves for sensors at points A, B, C, D and E, with 50 G range sensors at 
points A, B, and D and 2 G range sensors at points C and E).

Figure 4. Comparison of rockfall (left) and train (right) signals in track tests.
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The rockfall vibration signal has a cone shape in the time domain, and the amplitude decreases rapidly with 
time. The duration of the signal is approximately 1 s shorter. The spectrum of the orbital rockfall vibration signal 
shows a single peak, and the dominant frequency band is obvious, reaching a maximum near 300 Hz; the energy 
in other frequency ranges is very low. The rockfall vibration signal has a sharply tapered distribution on the time–
frequency chart, and the frequency range of the rockfall signal can be clearly obtained from 250 to 350 Hz (Fig. 4). 
The apparent single-peak spectrum shows that the excitation source of the rockfall vibration signal is relatively 
simple. Both the time spectrum and the time domain curve are spindle-shaped, reflecting the fact that the signal 
exhibits a decaying tendency after the frequency and energy hit without a continuous secondary vibration. The 
time-frequency diagram has two features that overlap each other in the shape of a cone, which may be that the 
rock falls on the track. When the falling rock falls again after rebounding in the orbit, since the energy has been 
greatly reduced, the phenomenon that the two cones overlap each other in the time domain is not obvious; and in 
the frequency domain, the frequency of the signal due to the two drops is generated. The range is very similar, so 
the two spectral cones appear to be more clearly overlapping in the time spectrum.

Vibration characteristics in the track rockfall test. Signal characteristics of different hit positions: The length 
of the signal was approximately 1 s, but the duration of each experimental signal was not the same; i.e., the 
time-domain morphologies of the signals were largely similar, both being cone-shaped, but the amplitude was 
different for each signal. The power generated by falling rock hitting the edge of a sleeper near sensors was higher 
than the power generated by falling rock hitting the center of a sleeper. The energy of an impact on the rail buried 
with sensors was greater than the energy of an impact on the center of a sleeper. The energy decreased in the order 
of edge of a sleeper near sensors > center of a sleeper > rail buried with sensors > rail away from sensors. The 
energy quickly attenuated.

The spectral characteristics of the four curves are similar in that the frequency is extremely high, the frequency 
bandwidth of the frequency spectrum is narrow, the main frequency is approximately 300 Hz, and the main 
frequency shifts slightly owing to the different impact positions and impact energies. The reason for the approxi-
mately single-frequency component may be that there is only one strike of a fixed-mass rock, having a frequency 
of vibration mainly approximately 300 Hz, and there is no rockfall from different heights generating signals with 
other main frequencies at the same time.

Signal propagation characteristics analysis: The signals recorded by the sensors in different positions have 
great similarities in both time and frequency domains. All time-domain signals are cone-shaped. The main fre-
quency of the frequency domain is approximately 300 Hz, but the signal energy increases with the propagation 
distance. However, the signal energy rapidly decreases with an increase in the propagation distance (Fig. 5), and 
the energy of the signal decreases rapidly. In the process of signal transmission on the track, the frequency char-
acteristics and curve characteristics of the signal do not change greatly, but the signal energy attenuates quickly, 
mainly because the frequency of the signal is extremely high. During signal propagation, the high-frequency sig-
nal components are in the process of transmission. The high-frequency signal components transmit much more 
rapidly than the lower-frequency components.

Railway rockfall monitoring and early warning system. Design criteria for monitoring system of fall-
ing rock protection net. Combined monitoring with vertical and horizontal sensors having different precision: 
When laying out the sensors, it is not necessary to place sensors at different positions on the protective net or to 
perform experiments on the placement positions. The sensors are placed in a convenient manner. At the same 
time, when the horizontal sensor is placed, the direction of the maximum horizontal vibration needs to be tested 
to find the direction in which the vibration in the horizontal direction is the greatest, and an acceleration sensor 
in the horizontal direction is arranged along this direction and the vertical direction. Vertical vibration must be 
recorded with sensors having two different ranges. Low-range, high-sensitivity sensors are used to record envi-
ronmental noise and to monitor small rocks for slippage. Large-scale sensors are used to monitor the falling of 
large rocks and can be used horizontally.

Judging whether the protective net is punctured according to characteristics of the vibration signal: The above 
analysis reveals a substantial difference between the signal recorded by the sensor and the signal recorded when 
the protective net is broken down. First, the scenario can be distinguished from the duration of vibration in that 
the vibration signal lasts longer than 2 s when the rail is not hit by a falling rock. When the net is punctured, the 
recorded vibration signal has a short duration of approximately 0.2 s. Again, it can be judged from the forms of 
curves in the time and frequency domains that the amplitude of the recorded signal is relatively small when the 
net is punctured, and it is slow when the change in the frequency of the curve is relatively punctured. Finally, the 
main frequency range of the recorded signal can be used for judgment, with a curve having a higher main fre-
quency being more likely to correspond to a break in the net.

Design criteria for track rockfall monitoring subsystem. Rockfall signal recognition method: Time-domain anal-
ysis of the vibration signal is first conducted to differentiate the train signal and the rockfall signal. The train 
signal has a spindle shape, and the number of spindles is related to the number of bogies of the train. The signal 
of the falling rock striking the track is tapered. If the rock falls on the track, there may be two conical end-to-end 
encounters, but the phenomenon is not obvious in most cases. The FFT is applied to the signal to obtain the 
frequency spectrum of the signal. The single-peak frequency spectrum is that of a rockfall vibration signal. The 
main frequency of the peak spectrum is determined by the scale of the rockfall and increases with the energy 
of the falling rock. The primary frequency is likely to increase as the power of the rockfall increases. When the 
frequency spectrum shows irregular white noise, the vibration signal is that of a train. When the STFT is applied 
to the signal, the time spectrum of the train signal appears to have a strip shape. The signal of falling rock has a 
relatively clear feature of two conical end-to-end connections.

https://doi.org/10.1038/s41598-019-43146-1


6Scientific RepoRts |          (2019) 9:6606  | https://doi.org/10.1038/s41598-019-43146-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

How to determine the position of rockfall: The energy of the signal generated when rock falls on the track 
attenuates quickly as the signal travels along the track. The position of the rockfall can therefore be determined 
by the position of impact and the position of a sensor. Meanwhile, the sensor needs to be placed in or near the 
hidden danger zone of the rockfall. Otherwise, owing to the rapid attenuation of the signal energy during signal 
propagation, the sensor cannot record the signal generated by the falling rock striking the track. At the same time, 
the signal features of the sensors on the track can be used to analyze the approximate location of the rockfall. We 
can find the impact point of the falling rock according to the relationship of the energy curve of the vibration 
signal to facilitate quick troubleshooting.

Rockfall monitoring and early warning system. To monitor whether the falling rock penetrates the protective 
net and whether the rock falls on the track after penetrating the protective net, a falling-rock signal monitoring 
system is established. The basis of the system is to place corresponding acceleration sensors on the track and pro-
tective net to detect vibration characteristics.

Using the rockfall signal monitoring system, it is possible to monitor any vibration signal from rock that falls 
on the track after penetrating the protective net. If the rock falls on the protective net, does not break through 
the protective net and remains above the protective net, then there is only the vibration signal of the protective 
net, and the vibration signal on the rail is the background value. If the falling rock breaks through the protective 
net and falls on the track, vibration signals are recorded on the protective net and on the track, and the vibration 
signal of the protective net satisfies the breakdown characteristics. The vibration signal of the rail is a rockfall 
vibration signal or another signal. Therefore, a comprehensive analysis of the characteristics of the protective net 
and track vibration signals can determine the final state of the falling rock on the railway; i.e., the falling rock is 
blocked by the protective net, the falling rock penetrates the protective net, or the falling rock strikes the track 
having passed through the protective net.

Discussion
Characteristics of the vibration signals of static, broken and unbroken protective nets were clarified, and a method 
of distinguishing the state of rockfall was established. Such knowledge of the state of falling rock allows the clear 
determination of whether rockfall is affecting railway operation. Additionally, false alarms triggered by excessive 
ambient noise can be eliminated.

Figure 5. Signal characteristics of rockfall striking the edge of a sleeper near the sensors at different positions 
((left) time-domain characteristics of the signal, (middle) FFT spectrum, (right) signal energy changes recorded 
by sensors at different distances from the impact point).
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Through analysis of vibration signals in time and frequency domains, the train signal and rockfall signal can 
be clearly distinguished. By installing a sensor system on the track, we can quickly determine the impact point of 
the falling rock. The arrangement of multiple sensors avoids the problem of the rockfall impact being far from a 
sensor and the vibration signal attenuating greatly along the track during transmission.

The present study is purely qualitative. It analyzes only the signal characteristics of rockfall in various situ-
ations for a protective net and track and does not discuss differences in vibration signals due to rocks being of 
different scales. The system cannot provide a quantitative estimate of the scale of the rockfall. At the same time, 
the experiments ignored the signal feature analysis next to rock striking the track, making it impossible for the 
system to directly identify the situation where rockfall penetrates the protective net but does not fall on the track 
and instead lies on the open ground next to the track. Only an indirect judgment can be made on whether the 
characteristics of the signal of the rockfall are consistent with rockfall penetrating the net and falling on the track. 
These limitations will be solved gradually in future work.

Methods
The present study consisted of a protective netting rockfall test and railway rockfall test. The purpose of the 
protective netting rockfall test is to study the characteristics of the vibration signal of the protective net in 
the case where falling rocks do not break the net. The purpose of the railway rockfall test is to distinguish the 
train-induced vibration and to analyze in depth the time–frequency characteristics of the vibration signal of the 
rockfall signal hitting the track.

Protective netting rockfall test. The experimental platform used in the protective netting rockfall test is 
the first Chinese rockfall impact test platform (Fig. 6) built by Sichuan Oster Company in 2011. This experiment 
was organized by Tianjin Smart Sensor Technology Co., Ltd. The safety netting is designed in strict accordance 
with “Railway Safety Slopes along the Railway Line” (TB/T 3089–2004)27,28. In the experiment, five monitoring 
points were set to monitor the vibration of the protective net. Four were located on the protective net and one on 
the pull anchor (Fig. 6a,b).

Rockfall experiment on a railway track. Monitoring the signal induced by a passing train. Using an 
acceleration monitoring system for rails, vibration signals from the rails generated during the passing of trains in 
the test section of the Kunming Railway Bureau were recorded.

Track rockfall experiment. The rockfall track test used a fiber grating (FBG) sensor system developed by 
Tsinghua Tongfang Co., Ltd. The system collects a rail vibration signal and generates a light wave signal. The 
vibration condition is obtained by changing the light wavelength. FBG sensors of the system were arranged every 
5 m on the track in the section that was monitored. Each FBG sensor was installed on the lower surface of the rail, 
as shown in Fig. 7. An FBG sensor sampled the vibration signal every 1 ms to provide analytical data for subse-
quent experimental analysis. At the same time, the propagation characteristics of the vibration signal on the track 
could be explored. The experimental scheme is presented in Table 1.

Figure 6. Schematic and site photographs of the rockfall protective net: (a) three-dimensional schematic 
diagram of the rockfall protection net test, (b) overhead schematic sketch of the experiment, and (c) photograph 
of the test site. (Measurement points A and B are the locations of vertical-acceleration sensors with a maximum 
recording of 40 G, points C and E are the locations of vertical-acceleration sensors with a maximum recording 
of 2 G, and point D is the location of two horizontal-acceleration sensors with a maximum recording of 40 G 
placed perpendicular to each other).
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FFT. Because the vibration signal time series represents the change in signal amplitude with time, it is impossi-
ble to intuitively understand the distribution characteristics of the signal on the frequency. The FFT is introduced 
to transform the vibration signal from the time domain to the frequency domain. The intensities and distributions 
of signals in the frequency domain distinguish different sources of vibration.

STFT. Because a single time-domain analysis or frequency-domain analysis cannot obtain the time and fre-
quency information from a specific event at the same time, the vibration analysis of a rockfall needs to analyze not 
only the frequency components of the entire rockfall process but the specific moments of vibration of these fre-
quency components. The STFT is used to perform the joint time-domain transform on the vibration signal, which 
not only retains the time-domain distribution information of the signal but also obtains the frequency-domain 
information of the signal.
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Data Availability
The purpose of writing this letter is to tell everyone that all the research data we use in this manuscript entitled 
“Monitoring and early warning method for a rockfall along railways based on vibration signal characteristics” can 
be made public. All the research data in this article is true and reliable. These data include the vibration signal of 
protective netting rockfall test, the vibration signal of rockfall experiment on a railway track, and the vibration 
signal induced by train. All of these data can be obtained by email from the first author Dr. Yan Yan. Yan Yan’s 
e-mail: yanyanyale@foxmail.com.

Figure 7. Schematic diagram and site photograph of the track rockfall experiment: (a) three-dimensional sketch 
of the rockfall impact track test, (b) top view of the test, (c) photograph of the test site, and (d) diagram of the 
sensor track installation. (The impact position refers to the part of the track struck by the rockfall: 1) the center of 
a sleeper, 2) the rail away from the sensors, 3) the rail buried with the sensors, and 4) the edge of a sleeper near the 
sensors. The impact distance is the distance between the impact point and the first detector A along the rail. FBG 
sensors were installed at measuring points A, B, C, D, E and F, with intervals of 5 m, to record the vibration signal).

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Experiment 6

Hit location Center of sleeper Center of sleeper Edge of the sleeper 
near sensors

Rail buried with 
sensors

Rail away from 
sensors

Rail away from 
sensors

Hit distance (m) 0 5 5 0 0 5

Rockfall quality (kg) 10.4 10.4 10.4 10 10 10

Table 1. Track rockfall experimental scheme.
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