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Untargeted metabolomics reveals 
N, N, N-trimethyl-L-alanyl-L-
proline betaine (tMAp) as a novel 
biomarker of kidney function
thomas J. Velenosi1, Benjamin K. A. thomson2, Nicholas C. tonial1, Adrien A. e. Raopeters1, 
Megan A. Mio1, Gilles A. Lajoie3, Amit X. Garg2,4,5, Andrew A. House2,4 & Bradley L. Urquhart  1,2,4

the diagnosis and prognosis of chronic kidney disease (CKD) currently relies on very few circulating 
small molecules, which can vary by factors unrelated to kidney function. In end-stage renal disease 
(esRD), these same small molecules are used to determine dialysis dose and dialytic clearance. 
therefore, we aimed to identify novel plasma biomarkers to estimate kidney function in CKD and 
dialytic clearance in esRD. Untargeted metabolomics was performed on plasma samples from patients 
with a single kidney, non-dialysis CKD, esRD and healthy controls. For esRD patients, pre- and 
post-dialysis plasma samples were obtained from several dialysis modalities. Metabolomics analysis 
revealed over 400 significantly different features in non-dialysis CKD and ESRD plasma compared to 
controls while less than 35 features were significantly altered in patients with a single kidney. N,N,N-
trimethyl-L-alanyl-L-proline betaine (tMAp, AURoC = 0.815) and pyrocatechol sulfate (AUROC = 0.888) 
outperformed creatinine (AURoC = 0.745) in accurately identifying patients with a single kidney. 
several metabolites accurately predicted esRD; however, when comparing pre-and post-hemodialysis, 
tMAp was the most robust biomarker of dialytic clearance for all modalities (AURoC = 0.993). This 
study describes tMAp as a novel potential biomarker of kidney function and dialytic clearance across 
several hemodialysis modalities.

Chronic kidney disease (CKD) is estimated to affect 11–13% of the global population1. CKD primarily mani-
fests as a secondary complication of diabetes and hypertension2,3. Progressive renal damage is irreversible and 
therefore, patients with CKD must manage the disease along with associated comorbidities. Complications from 
comorbidities are further exacerbated by the accumulation of toxins that follows declining renal function. These 
complications begin when the estimated glomerular filtration rate (eGFR) declines to <60 ml/min per 1.73 m2 in 
stage 3, which represents more than half of all CKD patients4,5. In advanced CKD, progression to end-stage renal 
disease (ESRD) requires renal replacement therapy, which can include various hemodialysis (HD) and peritoneal 
dialysis (PD) modalities or kidney transplantation to sustain life. Patients with late-stage CKD have a 3 to 6-fold 
increased risk of mortality, which further increases to 8-fold after initiation of dialysis compared to age-matched 
subjects with normal or moderately decreased kidney function6. Kidney transplantation significantly decreases 
the risk of mortality and is the only treatment that can effectively reverse toxin accumulation7.

The accumulation of small molecules that are normally cleared by the kidneys is defined as uremia. The 
European Uremic Toxin Work Group has identified over 90 uremic metabolites8. Several of these uremic toxins 
are gut-derived and recent studies have associated gut-derived metabolites with cardiovascular events in ESRD. 
Indeed, indoxyl sulfate, p-cresyl sulfate and phenylacetylglutamine are associated with cardiovascular events 
that contribute to elevated mortality in ESRD9–12. Indoxyl sulfate and p-cresyl sulfate are highly protein bound 
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metabolites that are efficiently cleared by tubular secretion in patients with functioning kidneys13, but undergo 
minimal dialytic clearance8. Conversely, only 20% of phenylacetylglutamine is protein-bound suggesting a higher 
likelihood of clearance by dialysis14.

Despite progress in uremic toxin identification, there is a need for new and reliable biomarkers to allow 
for more accurate estimation of GFR. This is especially important in children and the elderly. Biomarkers that 
enhance eGFR determination will help identify kidney disease patients earlier and help guide patient therapy 
during CKD progression, which has been recently highlighted15. It is well established that the use of current 
biomarkers including creatinine and urea has several limitations; however, the basis for treatments and diagnosis 
of disease rely on the measurement of these metabolites. Alternatively, the use of a metabolic fingerprint, which 
includes several metabolites, may provide a more robust characterization of kidney disease status. Metabolites 
directly reflect genetic, physiological, and environmental changes and can provide a reliable prognostic and diag-
nostic readout for disease progression16. Several metabolites can be identified and measured in various biological 
matrices using high-throughput metabolomics. Therefore, using metabolomics to characterize the plasma meta-
bolic fingerprint in kidney disease can provide insight into the complications and high mortality rates that beset 
patients, and potentially lead to novel treatments.

To date, studies evaluating uremic metabolites have focused on CKD patients or ESRD patients undergoing 
conventional HD17–19. Therefore, there is a lack of evidence on the fate of uremic solutes and their clearance across 
dialysis modalities.

In this study, we aimed to identify early biomarkers of reduced kidney function by evaluating the plasma 
metabolic profiles of patients with a single kidney, which included living kidney donors and kidney transplant 
recipients, as compared to age-matched controls. Our second objective was to examine plasma metabolic pertur-
bations in non-dialysis dependent (NDD) CKD patients and various dialysis modalities. In addition, we evaluated 
pre- and post-dialysis plasma to determine metabolites readily cleared by different dialysis modalities.

Results
patient demographics and clinical factors. Ten subjects were recruited for each of the control, living 
kidney donor, kidney transplant, conventional HD and nocturnal intermittent peritoneal dialysis (NIPD) groups. 
There were 20 CKD patients and 5–6 patients in the short daily home hemodialysis (HHD), frequent nocturnal 
HHD, intermittent conventional HHD and intermittent nocturnal HHD groups (Table 1). The majority of CKD 
patients were in the later stages of CKD (stage 4–5 CKD; eGFR < 30 mL/min per 1.73 m2). All NIPD patients had 
residual renal function with a median residual volume of 712.5 (500–1250) mL/day. For all other dialysis depend-
ent groups, patients were anuric except for one patient from each of the conventional HD, short daily HHD and 
intermittent nocturnal HHD groups.

Metabolic variation between study groups. We assessed the overall plasma metabolite variation 
between study groups by principal component analysis (PCA). Control, living donor and transplant plasma sam-
ples clustered together in both reverse phase liquid chromatography (RPLC) and hydrophilic interaction liq-
uid chromatography (HILIC) analysis (Fig. 1A,B, respectively). All other groups did not form a distinct pattern 
other than separation from control, living donor and transplant groups. A total of 1186 and 1165 features were 
included in RPLC and HILIC analysis, respectively, after filtering for adducts, isotopes and inconsistent features. 
To determine the number of metabolites significantly different compared to control, we compared all groups to 
the control recruitment visit (RV) group by Kruskal-Wallis ANOVA. Significant differences were found in 735 
RPLC and 762 HILIC features respectively (p < 0.05, q < 0.05, Supplemental Fig. 1). When plasma from all groups 
was compared to control RV, dialysis dependent and NDD-CKD patients had a similar number of significantly 
altered metabolites. NIPD, conventional HD and short daily HHD demonstrated minimal changes in the number 
of altered metabolites (<20%) between pre and post-dialysis compared to control RV (Supplemental Fig. 1A,B). 
A greater than 40% decrease was observed in the number of metabolites significantly altered for post-dialysis 
compared to pre-dialysis samples from both HHD nocturnal groups (frequent nocturnal and intermittent noc-
turnal, Supplemental Fig. 1C,D). There were no significantly altered metabolites between control RV and control 
one year follow up (1YR) groups in both HILIC and RPLC methods demonstrating that our analysis was robust 
in minimizing false positives.

plasma biomarkers of reduced kidney function in patients with a single kidney. The major-
ity of variation in the PCA containing all groups was influenced by differences between normal renal function 
and severe renal impairment. Therefore, differences between control and patients with a single kidney (living 
donor and transplant groups) were further assessed by orthogonal partial least squares discriminant analysis 
(OPLS-DA). A number of uremic toxins were significantly increased in plasma from living kidney donors after 
nephrectomy, including N,N,N-trimethyl-L-alanyl-L-proline betaine (TMAP), p-cresyl sulfate, indoxyl sulfate, 
CMPF, phenylacetylglutamine, pyrocatechol sulfate and creatinine (Fig. 2A, Table 2). Plasma levels of proline 
betaine, bilirubin, carnitine and several acyl-carnitines were significantly decreased one year post-donation 
(Fig. 2B). The most robust features defining kidney transplant patient plasma were drug and drug metabolites 
from antibiotic and immunosuppressant therapy (Fig. 2C). When compared to control subjects, kidney trans-
plant patients also had significantly increased pyrocatechol sulfate, TMAP, uridine and dimethyluric acid levels. 
Bilirubin was reduced in kidney transplant patient plasma compared to controls.

To assess the performance of metabolites significantly altered in living donor and transplant patients as bio-
markers of altered kidney function, we performed receiver operating characteristic analysis. TMAP, pyrocatechol 
sulfate, indoxyl sulfate, bilirubin, phenyl sulfate, and dimethyluric acid more accurately predicted decreased kid-
ney function in patients with a single kidney than creatinine (Fig. 3). TMAP and creatinine demonstrated the 
lowest variation between control RV and control 1YR. Moreover, only TMAP was significantly increased in both 
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living kidney donor and kidney transplant patient plasma when compared to control RV (P < 0.05, Fig. 3B). 
TMAP is also more sensitive than creatinine as demonstrated when comparing both metabolites with eGFR 
(Fig. 4). When assessing the performance of all metabolites in Fig. 3, the combined AUROC was 0.937 (0.816–
1.00), which was a slight improvement over eGFR.

plasma biomarkers of end-stage renal disease. To assess plasma metabolic disturbances in various 
dialysis modalities as well as NDD-CKD, we compared NDD-CKD as well as pre-dialysis conventional HD, 
NIPD and frequent nocturnal HHD to subjects with normal kidney function. Comparisons for each CKD group 
to control patients were well modelled by OPLS-DA (Supplemental Table 2). A total of 24 metabolites were found 
to be significantly increased in all kidney disease groups compared to normal kidney function. Many of these 
metabolites were gut-derived and indoxyl sulfate and p-cresyl sulfate had the largest increase in plasma levels 
for all groups when compared to controls (Supplemental Fig. 2). The majority of these metabolites were also 
sulfate containing compounds including O-sulfoyl-tyrosine, 5-hydroxy-6-indolyl-O-sulfate, phenyl sulfate, and 
pyrocatechol sulfate. 5-Hydroxy-6-indolyl-O-sulfate was newly identified as a potential uremic toxin (Table 2). 
Circulating carnitine, bilirubin, dehydroisoandrosterone sulfate and docosahexaenoic acid (DHA) levels were 
decreased in CKD plasma (Table 2).

Univariate ROC analysis was performed on each metabolite found to be significantly increased in NDD-CKD 
and pre-ESRD patient plasma compared to normal kidney function. TMAP, creatinine, indoxyl sulfate, 

Control Living Donor Transplant CKD
Conventional 
HD NIPD

Short Daily 
HHD

Intermittent 
Conventional 
HHD

Frequent 
Nocturnal 
HHD

Intermittent 
Nocturnal 
HHD

Number 10 10 10 20 10 10 6 5 5 5

Age (years) 34 (28–53) 48 (38–52) 55 (43–66) 69 (45–82)* 64 (62–77)* 65 (56–76)* 58 (52–67) 61 (45–69) 56 (40–60) 40 (30–54)

Body Mass Index 
(kg/m2) 27.1 (5.3) 25.5 (3.6) 27.2 (4.1) 25.6 (3.8) 28.9 (5.2) 26.3 (5.3) 32.8 (6) 33.7 (11) 32 (8.8) 24.8 (3.1)

Sex (M/F) 3/7 3/7 4/6 10/10 6/4 6/4 5/1 2/3 3/2 2/3

Race (C/B/A/F/O) (10/0/0/0/0) (9/1/0/0/0) (10/0/0/0/0) (19/1/0/0/0) (10/0/0/0/0) (8/0/1/1/0) (6/0/0/0/0) (4/1/0/0/0) (5/0/0/0/0) (4/0/0/0/1)

Etiology (DM/
PG/SG/IN/H/
CHC/M)A

(1/5/1/1/0/0/2) (4/1/3/0/5/2/5) (5/1/0/0/2/0/2) (2/0/1/0/1/0/6) (2/0/0/0/1/3/0) (2/1/1/0/0/1/0) (1/2/0/0/0/1/0/1) (0/2/0/0/1/2/0)

Diabetes (N/Y) 10/0 10/0 8/2 15/5 14/6 7/3 4/2 3/2 4/1 5/0

eGFR (mL/
min/1.73 m2) 
(RV → 1YR)B

93.5 (78.5–
98.25) → 89 
(76.75–98.75)

85.5 (69.25–
91.75) → 61.5 
(55.25–67.75)†

68.03  
(56.19–74.33)

12.51 
(7.85–18.86)*

6.385 
(4.54–9.13)*

Serum Cr 
(μmol/L) 
(RV → 1YR)B

73 (60.75–
85) → 71 
(65.25–90.5)

74 (67–
82.5) → 99.5 
(86–115)†

97.5  
(77.75–109.5)

361  
(281.3–503.8)*

560.5 
(425.3–807)*

683.5 
(537–969.3)*

832.5  
(571.8–863.3)*

521  
(431–698.5)*

596  
(398.5–758.5)*

596  
(495.5–758.5)*

Serum Hb (g/L) 
(RV → 1YR)B

136.4 
(14.29) → 140.7 
(12.6)

131.9 
(11.82) → 131.8 
(11.08)

133.5 (21.04) 113.9 (15.72) 104 (14.92)* 105 (11.3)* 125 (19.91) 108.8 (23.15) 105.8 (13.52) 123.8 (14.67)

HD or PD 
Frequency 
(sessions/wk)

3 (3–3) 6 (5.5–7) 6 (4.5–6) 3 (3–4) 5 (5–6) 3 (3–3.5)

HD or PD weekly 
duration (min/
week)

630 (608–720) 2880  
(2880–3068)D

975  
(680–1125)DE

720  
(585–840)DE

2400  
(2130–2460)D

1440 
(1260–1750)

Kt/V (single 
pooled for HD, 
weekly for NIPD)

1.52 
(1.25–1.62) 1.9 (1.81–2.26) 1.36 

(1.19–1.72) 1.52 (1.2–2.02) 2.22  
(1.92–2.97)DF

2.15 
(1.8–2.93)D

Hemodialysis 
Membrane 
Surface Area 
(m2)C

1.5 (1.5–1.5) 1.8 (1.5–2.2) 1.5 (1.5–1.8) 1.5 (1.2–1.5) 1.5 (1.5–1.8)

Hemodialysis Qb 
(blood flow rate) 
(mL/min)

350 (350–381) 400 (375–425) 400 (400–500) 300 (225–350) 300 (250–350)

Hemodialysis Qd 
(dialysate flow 
rate) (mL/min)

500 (500–500) 500 (500–550) 500 (500–750) 300 (300–400) 500 (300–500)

Table 1. Demographics and Baseline characteristics of study population. Demographic characteristics 
are presented as mean (SD) or median (interquartile range). Statistical differences were determined 
using the Kruskal-Wallis test followed by Dunn’s Test. Age and body mass index for Control and Living 
Donor groups were obtained at recruitment visit (RV). *p < 0.05 compared to control. †p < 0.05 by paired 
analysis. ADM = diabetes mellitus, PG = primary glomerulonephritis, SG = secondary glomerulonephritis, 
IN = interstitial nephritis, H = hypertension, CHC = cystic/hereditary/congenital, M = miscellaneous. BRV 
measurements are at recruitment visit for Control and prior to kidney donation for Living Donor patients. 1YR 
measurements were obtained at 1 year follow-up. The arrows signify the separation of values obtained at RV 
and 1YR. CMembrane surface area is presented as median (minimum to maximum). Dp < 0.05 compared to 
conventional HD. Ep < 0.05 compared to NIPD. Fp < 0.05 compared to Home HD SHD.
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N-methyl-2-pyridone-5-carboxamide (2-PY) and uridine were 100% accurate in predicting ESRD (Fig. 5). 
The ten most highly predictive biomarkers of ESRD also included phenlyacetylglutamine, hippuric acid, urate 
D-ribonucleotide, O-sulfotyrosine and 1-methyluric acid. TMAP appeared to be a more sensitive biomarker than 
creatinine and was 7.0-fold and 10.3-fold increased in NDD-CKD and conventional HD, respectively, compared 
to controls. Creatinine was only increased 4.2-fold and 5.8-fold in NDD-CKD and conventional HD compared 
to controls in the same patients. Correlation was also performed for key significantly altered metabolites with 
subject age. Dehydroisoandrosterone sulfate and bilirubin were negatively correlated with age (q < 0.05). 2-PY, 
uridine, p-cresyl sulfate, proline betaine, octanoyl carnitine and 1-methylhistidine were positively correlated with 
age. Metabolite differences between sexes were also determined and no significant differences were found.

plasma biomarkers of hemodialytic clearance. To assess the dialytic clearance of plasma metabolites 
we performed untargeted metabolomics analysis on pre and post-dialysis plasma samples from patients on con-
ventional HD, NIPD, short daily HHD, frequent nocturnal HHD, intermittent conventional HHD and inter-
mittent nocturnal HHD. Hemodialysis modalities resulted in the net clearance of many similar metabolites and 
several more than NIPD (Supplemental Figs 4 and 5). Decreased plasma levels of several gut-derived uremic tox-
ins were also found in post-dialysis hemodialysis samples. In NIPD patients, only the gut-derived uremic toxins 
phenylacetylglutamine and phenyl sulfate were significantly decreased in plasma after dialysis. All hemodialysis 
modalities caused a significant decrease in the same 25 plasma metabolites (Table 2); however, only 9 of these 
metabolites were also cleared by NIPD. Therefore, we focused our analysis on hemodialytic clearance.

To assess potentially novel biomarkers of dialytic clearance we combined all hemodialysis modalities and 
performed ROC analysis. TMAP was the most consistently cleared metabolite resulting in a 62–88% decrease 
in post-dialysis plasma levels in hemodialysis modalities (AUC: 0.993, Fig. 6A). Conversely, creatinine plasma 
levels only decreased 41–58% after hemodialysis (AUC: 0.929, Fig. 6B). Other metabolites significantly cleared 
by hemodialysis included o-sulfotyrosine, 2-PY, octanoyl carnitine, uridine, 1-methylhistidine and decenoylcar-
nitine (Fig. 6).

Finally, the identity of TMAP was confirmed by comparing feature fragmentation pattern and retention time 
in plasma samples with synthesized TMAP (Fig. 7).

Discussion
This study reports untargeted metabolomics to identify metabolic plasma biomarkers of reduced kidney func-
tion in early CKD, ESRD and hemodialytic clearance. In our initial analysis, plasma samples from patients with 
a single kidney were similar to control samples but distinctly different than NDD-CKD and all dialysis groups 
(Fig. 1). These striking differences demonstrate that substantial kidney function can be maintained with a single 
kidney and clearly show the benefits of kidney transplantation on the plasma metabolic profile when compared 
to dialysis.

The current guidelines for diagnosis and staging of CKD rely on creatinine as a biomarker to estimate GFR20. 
However, creatinine has limited sensitivity and may not be altered until kidney function has decreased by 50% 
(eGFR < 60 ml/min per 1.73 m2)21. Although creatinine was a consistent biomarker of reduced kidney function 
in ESRD, several metabolites including TMAP and pyrocatechol sulfate outperformed creatinine as biomarkers 
of reduced kidney function. Despite the limitations of creatinine as an early stage CKD biomarker, eGFR was 

Figure 1. Principal component analysis (PCA) of control (n = 10), living donor (n = 10), kidney transplant 
(n = 10), non-dialysis dependent CKD (NDD-CKD, n = 20) and ESRD including conventional hemodialysis 
(conventional HD, n = 10), nocturnal intermittent PD (NIPD, n = 10), frequent nocturnal HHD (n = 5), 
intermittent nocturnal HHD (n = 5), intermittent conventional HHD (n = 5) and short daily HHD (n = 6) 
plasma RPLC (A) and HILIC (B) untargeted metabolomics. Control and living kidney plasma samples were 
obtained during recruitment visit (RV) and one year follow-up (1YR).
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more accurate than all other individual plasma biomarkers measured in the study (Fig. 3A). However, the range 
of control and single kidney patient eGFR appeared to be less dependent on serum creatinine than other eGFR 
parameters (Fig. 4A). Indeed, the current equations for estimating GFR including MDRD and CKD-EPI are 
inaccurate in earlier stages of CKD22. Therefore, applying common eGFR parameters such as age, gender and 
race along with more predictive plasma biomarkers identified in this study (e.g. TMAP, pyrocatechol sulfate) may 
allow for the development of improved equations to estimate GFR in earlier stages of CKD. Moreover, a combi-
nation of biomarkers identified in this study may provide an improved metabolic fingerprint of early stage CKD.

The structure of TMAP was recently identified but its use as a biomarker of kidney function has not been 
reported23. Moreover, the variation in TMAP over one year for Control RV and Control 1YR was not significantly 
different than eGFR (Fig. 3A). Samples from the same patients were drawn one year apart, which suggests that 
TMAP may be a consistent and robust marker of kidney function.

The gut-derived metabolites, indoxyl sulfate and p-cresyl sulfate, were the most abundant in NDD-CKD and 
all dialysis modalities when compared to control subjects (Supplemental Fig. 2). Furthermore, indoxyl sulfate 
and p-cresyl sulfate were the most significantly increased metabolites one year after kidney donation in living 
donors (Fig. 2A). Indoxyl sulfate and p-cresyl sulfate have been correlated with cardiovascular events9. Aortic 
calcification and left ventricle systolic dysfunction are also associated with high levels of indoxyl sulfate12,24. In 
addition, high levels of unbound plasma p-cresyl sulfate have been shown to increase the risk of all-cause mortal-
ity11. Therefore, indoxyl sulfate and p-cresyl sulfate are strong predictors of cardiovascular mortality in ESRD and 
may increase the risk of cardiovascular disease in living kidney donors. Since levels are increased after only one 
year following donation, studies assessing long-term complications of kidney donation should assess the change 
of indoxyl sulfate and p-cresyl sulfate concentration.

As expected, dialytic clearance of several metabolites was demonstrated when comparing pre- and 
post-hemodialysis plasma samples. Patients receiving nocturnal hemodialysis had the greatest difference between 

Figure 2. Orthogonal partial least squares discriminant analysis (OPLS-DA) and S-plot projections comparing 
metabolic features from living kidney donor plasma at recruitment visit (RV, ■) and one-year follow up (1YR, ●)  
(A, RPLC; B, HILIC), and control (■) and kidney transplant patient plasma (C, RPLC; D, HILIC). Feature 
annotations can be found in Table 2. All labelled features had variable importance in projection (VIP) values > 1 and 
correlation (pcorr) values > 0.4 or <−0.4, n = 10.
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Ion
tR 
(min)

Mass 
(m/z)

Empirical 
Formula

Mass 
Error 
(ppm) Identity

ID 
Level p-value q-value

Change 
after 
Kidney 
Donation

Transplant 
change 
compared 
to Control

CKD and 
Dialysis 
change 
compared 
to 
Control

CKD and 
Dialysis 
change 
compared 
to 
Transplant

Levels Pre vs Post Dialysis

Conven-
tional 
HD NIPD

Frequent 
Nocturnal 
HHD

Short 
Daily 
HHD

Intermittent 
Conventional 
HHD

Intermittent 
Nocturnal 
HHD

A1 0.94 204.1233 C9H17 
NO4[H−] 1.5 Acetylcarnitine 2 1.53E-

11
7.91E-
11 ↓ ↑ ↑ ↑ ↑ ↑ ↑

A2 1.14 326.0876 C14H16 
NO8[H−] 0.0 Acetaminophen 

Glucuronide 1 1.05E-
08

4.16E-
08 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

B1 2.28 585.2707 C33H36 
N4O6[H−] −1.0 Bilirubin 1 9.53E-

04
2.12E-
03 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

B2 2.67 481.2434 C25H37 
O9[H−] −0.7

Hydroxyandro-
sterone-
glucuronide

3 3.32E-
14

2.12E-
13 ↑ ↑ ↑ ↑ ↑ ↑

B3 1.28 232.1545 C11H22 
NO4[H+] −1.7 Butyryl-L-

Carnitine 2 3.18E-
13

2.11E-
12 ↑ ↑ ↑ ↑ ↑

C1 0.55 114.0665 C4H6 
N3O[H−] −1.8 Creatinine 1 1.03E-

18
8.76E-
17 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

C2 0.53 162.1126 C7H16 
NO3[H+] −2.5 L-Carnitine 1 2.07E-

17
5.85E-
16 ↓

C3 2.47 239.0917 C12H15 
O5[H−] −1.3 CMPF 1 1.28E-

02
2.27E-
02 ↑

D1 2.22 314.2325 C17H32 
NO4[H+] −1.9 Decenoylcarnitine 2 1.34E-

05
3.61E-
05 ↓ ↑ ↑ ↑ ↑ ↑

D2 2.30 230.9964 C8H7 
O6S[H−] 0.0 Dihydroxyaceto-

phenone Sulfate 3 7.04E-
15

5.43E-
14 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

D3 6.44 327.2321 C22H31 
O2[H−] −0.9 Docosahexaenoic 

Acid (DHA) 1 1.21E-
07

4.10E-
07 ↓ ↓

D4 2.55 367.1577 C19H27 
O5S[H−] −0.5 Dehydroisoandro-

sterone sulfate 3 3.28E-
05

8.56E-
05

D5 2.71 195.0516 C7H7NO4 
O3[H+] −1.0 Dimethyluric acid 1 3.42E-

07
8.62E-
07 ↑ ↑ ↑ ↑ ↑ ↑ ↑

E1 3.82 426.3576 C25H47 
NO4[H−] 0.0 Elaidic carnitine 2 8.60E-

03
1.58E-
02 ↓

G1 2.08 226.0172 C5H9 
NO7P[H−] 24.3 Glutamyl 

phosphate 2 2.03E-
06

4.85E-
06 ↑

H1 1.60 178.0503 C9H8 
NO3[H−] 0.6 Hippuric Acid 1 2.61E-

14
1.73E-
13 ↑ ↑ ↑ ↑ ↑ ↑ ↑

H2 1.04 137.0460 C5H3 
N4O[H−] 0 Hypoxanthine 1 1.80E-

11
9.24E-
11 ↓ ↑ ↑

H3 1.18 227.9964 C8H6 
NO5S[H−] −1.3 5-Hydroxy-6-

indolyl-O-sulfate 2 1.29E-
13

9.34E-
13 ↑ ↑

H4 1.22 246.007 C8H8 
NO6S[H−] −1.2 Hydroxy acetami-

nophen sulfate 2 2.26E-
09

9.62E-
09 ↑ ↑ ↑ ↑ ↑

I1 1.71 212.0018 C8H6 
NO4S[H−] 0 Indoxyl Sulfate 1 4.18E-

16
6.28E-
15 ↑ ↑ ↑

M1 1.09 181.0359 C6H5 
N4O3[H−] −1.7 1-Methyluric Acid 1 1.21E-

13
8.82E-
13 ↑ ↑ ↑ ↑ ↑ ↑ ↑

M2 2.91 290.1600 C13H23 
NO6[H+] −1.0 3-Methylglutary-

lcarnitine 2 1.37E-
16

2.32E-
15 ↑ ↑

M3 4.98 170.0928 C7H12 
N3O2[H+] −0.6 1-Methylhistidine 1 2.87E-

15
2.55E-
14 ↑ ↑ ↑

M4 1.95 495.1500 C23H27 
O12[H−] −0.6 Mycophenolic 

Acid Glucuronide 2 2.17E-
06

6.42E-
06 ↑

M5 2.64 319.1181 C17H19 
O6[H−] −0.3 Mycophenolic 

acid 2 1.68E-
14

1.17E-
13 ↑

N1 1.09 153.0660 C7H9N2 
O2[H+] 0.0 2-PY 1 2.06E-

16
3.59E-
15 ↑ ↑ ↑ ↑ ↑ ↑ ↑

N2 2.03 294.0548 C12H12 
N3O4S[H−] −0.3 N4-Acetylsulfa-

methoxazole 1 4.15E-
09

1.71E-
08 ↑

N3 1.05 229.1549 C11H21 
N2O3[H+] −1.3

N,N,N-trimethyl-
L-alanyl-L-proline 
(TMAP)

1 6.06E-
19

6.53E-
17 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

O1 1.98 310.2012 C15H29 
NO4[Na+] 5.5 Octanoyl 

Carnitine 1 1.02E-
13

7.51E-
13 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

O2 1.06 260.0228 C9H10 
NO6S[H−] −0.4 O-Sulfo-L-

Tyrosine 1 1.67E-
18

9.93E-
17 ↑ ↑ ↑ ↑ ↑ ↑ ↑

O3 0.67 203.0014 C7H7 
O5S[H−] 1.5 O-methoxy-

catechol-O-sulfate 3 3.57E-
09

1.07E-
08 ↑ ↑ ↑ ↑ ↑ ↑ ↑

P1 1.67 283.0822 C13H15 
O7[H−] 1.4 P-Cresyl 

Glucuronide 1 8.58E-
12

4.60E-
11 ↑ ↑ ↑ ↑ ↑ ↑

P2 1.79 187.0066 C7H7O4 
S[H−] 0.5 P-Cresyl Sulfate 1 2.22E-

08
8.38E-
08 ↑ ↑ ↑

P3 3.71 144.1025 C7H14 
NO2[H+] 0.7 Proline Betaine 1 2.00E-

06
4.79E-
06 ↑ ↑ ↑ ↑ ↑ ↑ ↑

Continued
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pre- and post-dialysis samples (Fig. 1E,F); however, pre-dialysis levels for several metabolites were similar across 
hemodialysis groups regardless of protein binding. These data are consistent with a recent study evaluating the 
effect of dialysis frequency on steady-state uremic toxin levels, which suggests that steady-state metabolite lev-
els may also be dependent on other factors including metabolite production25. Interestingly, fewer metabolites 
underwent dialytic clearance during NIPD than all hemodialysis modalities. Unlike hemodialysis, NIPD relies 

Ion
tR 
(min)

Mass 
(m/z)

Empirical 
Formula

Mass 
Error 
(ppm) Identity

ID 
Level p-value q-value

Change 
after 
Kidney 
Donation

Transplant 
change 
compared 
to Control

CKD and 
Dialysis 
change 
compared 
to 
Control

CKD and 
Dialysis 
change 
compared 
to 
Transplant

Levels Pre vs Post Dialysis

Conven-
tional 
HD NIPD

Frequent 
Nocturnal 
HHD

Short 
Daily 
HHD

Intermittent 
Conventional 
HHD

Intermittent 
Nocturnal 
HHD

P4 1.63 172.9908 C6H5 
O4S[H−] 0.6 Phenyl Sulfate 1 4.97E-

13
3.15E-
12 ↑ ↑ ↑ ↑ ↑ ↑ ↑

P5 1.57 263.1033 C13H15 
N2O4[H−] 0.4 Phenylacety-

lglutamine 1 7.18E-
18

2.66E-
16 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

P6 1.59 188.9856 C6H5 
O5S[H−] −1.1 Pyrocatechol 

Sulfate 1 1.55E-
13

1.11E-
12 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

S1 1.31 216.9806 C7H5 
O6S[H−] −0.5 5-Sulfosalicylic 

Acid 2 1.40E-
14

1.21E-
13 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

S2 2.02 254.0598 C10H12 
N3O3S[H+] −0.4 Sulfamethoxazole 1 1.43E-

04
3.50E-
04 ↑

T1 2.65 498.2884 C26H44 
NO6S[H−] −2.2

Taurodeoxy 
(cheno)cholic 
Acid

2 1.96E-
03

4.11E-
03 ↓ ↑

T2 2.15 514.2833 C26H44 
NO7S[H−] 1.6 Taurocholic Acid 1 3.44E-

03
7.02E-
03

T3 1.49 291.1454 C14H19 
N4O3[H+] −1.0 Trimethoprim 1 3.82E-

10
1.75E-
09 ↑

U1 2.88 379.0334 C10H12N4 
O10P[H−] 11.3 Urate D-Ribonu-

cleotide 2 1.68E-
14

1.17E-
13 ↑ ↑ ↑ ↑ ↑ ↑

U2 3.86 167.0203 C5H3N4 
O3[H−] −1.2 Uric Acid 1 4.43E-

10
1.46E-
09 ↑ ↑ ↑ ↑ ↑ ↑

U3 3.56 243.0616 C9H12H 
NO6[H−] −0.4 Uridine 1 4.88E-

16
6.05E-
15 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

Table 2. Summary of metabolites altered in NDD-CKD and all dialysis modalities when compared to control 
subjects.

Figure 3. Diagnostic performance of plasma metabolites found to more accurately predict decreased kidney 
function in patients with a single kidney than creatinine. Metabolites are ranked by area under the receiver 
operating characteristic (AUROC) curve and p-value (A). The mean differences between control RV and 
control 1YR were compared to eGFR. Plasma levels of pyrocatechol sulfate (%CV = 9.0) (B), N,N,N-trimethyl-
L-alanyl-L-proline betaine (TMAP, %CV = 6.2, C), bilirubin (%CV = 8.5, D), phenyl sulfate (%CV = 6.5, (E) 
and dimethyluric acid (%CV = 8.4, (F) are presented for control RV, control 1YR, living donor RV, living donor 
1YR and transplant patients. Data is presented as mean ± SEM, *p < 0.05, **p < 0.01, FC = fold change.
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more on passive diffusion of solutes, likely decreasing metabolite clearance. However, the dialysis dose, defined by 
Kt/V, was similar for NIPD compared to hemodialysis modalities. Therefore, the use of several metabolites may 
provide a more informative assessment of dialysis and aid clinicians when choosing an appropriate modality for 
their patients.

TMAP was the most consistently cleared metabolite by all hemodialysis modalities in our untargeted metab-
olomics analysis. Although the biological origin of TMAP has not been identified, we suggest that TMAP may be 
produced from degradation of myosin light chain (MYL) proteins. N,N,N-trimethylalanine is mainly found in 
myosin light chain (MYL) proteins and in each of the four MYL isoforms (MYL1, MYL2, MYL3, and MYL4), the 
c-terminus of N,N,N-trimethylalanine forms a peptide bond with proline26. Therefore, MYL protein degradation 
may be responsible for the release of TMAP. Further study is necessary to determine the biological origin and 
potential physiological effects of TMAP.

There are several limitations to this study. The sample size for each group was 5 to 20 patients, which limited 
our ability to control age and sex across groups. The home hemodialysis patient groups were most limited due to 
the small number of patients prescribed each home hemodialysis modality. In addition, relative quantification 
was performed for all features in the study followed by confirmation with known standards.

In conclusion, this study provides evidence for novel plasma metabolic biomarkers of reduced kidney func-
tion in patients with a single kidney and ESRD as well as insight into the dialytic clearance of plasma metabolites 
in various hemodialysis modalities. Our key finding is the identification of TMAP as a potential novel plasma 
biomarker of reduced kidney function in early CKD, ESRD and hemodialytic clearance. Future study of TMAP 
in a larger patient population will be necessary to evaluate its use as a biomarker in the metabolic fingerprint of 
kidney disease. The potential impact of comorbidities, medications and other factors on TMAP interindividual 
variability also remain to be determined. Furthermore, a larger clinical study can determine the performance 
of TMAP in assessing CKD progression, inflammation and tubular injury including c-reactive protein, kidney 
injury molecule-1, IL-18, monocyte chemotactic protein-1 and YKL-4027 injury. Our results suggest that TMAP, 
possibly along with other metabolites, may allow for the derivation of a new equation to provide more accurate 
estimates of GFR. Furthermore, we demonstrate the pronounced metabolic differences between transplantation 
and dialysis therapy and the notable inferior NIPD dialytic metabolite clearance compared to hemodialysis.

Methods
study participants. Conventional HD, NIPD, short daily HHD, frequent nocturnal HHD, intermittent 
conventional HHD, intermittent nocturnal HHD, kidney transplant, NDD-CKD, living kidney donors and con-
trols were recruited from the Southwestern Ontario Regional Renal Program between 2010 and 2015. Eligible 
participants were over the age of 18 and excluded if they had evidence of gastrointestinal disease (not includ-
ing gastroesophageal reflux disease). Patients maintained their regular diet and were not asked to fast prior to 
the study. Participant demographic information was recorded on the day of sample collection from electronic 
health records. eGFR was calculated using the modified diet in renal disease (MDRD) equation. This study was 
approved by the Western University Health Sciences Research Ethics Board and was conducted according to the 
Declaration of Helsinki principles. Written informed consent was received from patients prior to inclusion in the 
study.

sample collection. For dialysis participants, blood was collected in EDTA coated tubes immediately prior to 
and following the dialysis session. CKD and transplant blood samples were collected during routine clinic visits. 
Blood from living kidney donors and matched control subjects were collected during a recruitment visit and one 
year following kidney donation or recruitment visit, respectively. Blood samples were centrifuged at 2000 × G to 
obtain plasma. Plasma was aliquoted and stored at −80C.

sample processing. For metabolomics analysis, plasma samples were thawed at 4 °C and proteins were 
precipitated using a 3:1 ratio of ice-cold acetonitrile to sample as previously described28,29. The acetonitrile con-
tained α-aminopimelic acid (100 μM, Toronto Research Chemicals) and chlorpropamide (2.5 μM, Sigma) as 

Figure 4. Association of creatinine (A) and TMAP (B) with eGFR plasma samples from control plasma at 
recruitment visit (RV), one-year follow up (1YR), living donor RV, living donor 1YR and kidney transplant 
patients, n = 10 for all groups. eGFR was calculated using the MDRD method.
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internal standards for HILIC and RPLC, respectively. Metabolites were separated by HILIC and RPLC followed 
by Time-of-Flight mass spectrometry on a Waters Xevo-G2S QTof/MS.

Chromatography and mass spectrometry for metabolomic profiling. For HILIC analysis, 1 μL of 
sample was injected onto a Waters ACQUITY UPLC BEH Amide (1.7 μm particle size, 100 × 2.1 mm). Samples 
underwent a subsequent 1:5 dilution in water for RPLC analysis and 5 μL was injected onto a Waters ACQUITY 
UPLC HSS T3 column (1.8 μm particle size, 100 × 2.1 mm). Both columns were maintained at 45 °C and mobile 
phase flow was set to 0.45 mL/min using a Waters ACQUITY UPLC I-Class system (Waters, Milford, MA). The 
mobile phase consisted of water containing 0.1% formic acid (A) and acetonitrile containing 0.1% formic acid 
(B). Mobile phase conditions for each column are described in Table S1. Time-of-Flight mass spectrometry was 
carried out using a Waters Xevo-G2S QTof/MS as previously described28,29. Briefly, capillary and cone voltage 
were set at 2 kV and 40 V, respectively. The source temperature was 150 °C and the desolvation temperature was 
maintained at 600 °C. Nitrogen gas for desolvation and the cone were set at 1200 L/h and 50 L/h, respectively. An 
MSE method was used to acquire ions in the range of 50–1200 m/z alternating between MS1 (no collision energy) 
and MS2 (collision energy ramp of 15–50 V) with a scan time of 0.1 s. Leucine-enkephalin (100 ng/L) was used as 
a lockmass set to a flow rate of 10 μl/min. The lockmass was acquired every 10 seconds and averaged over 3 scans 
to ensure mass accuracy throughout the run.

Quality control and batch organization. All samples were run as a single batch for each chromato-
graphic condition and ionization mode (e.g. RPLC-negative ESI, HILIC-positive ESI, etc.). A pooled sample was 
generated by combining the same volume of all samples into a single vial. The injection of samples was rand-
omized and the pooled sample was injected every 6 samples.

Figure 5. Diagnostic performance of the top 10 plasma metabolites found to accurately predict decreased 
kidney function in ESRD. Metabolites are ranked by area under the receiver operating characteristic (AUROC) 
curve and p-value (A). Plasma levels of indoxyl sulfate (%CV = 5.9, B), N,N,N-trimethyl-L-alanyl-L-proline 
betaine (TMAP, %CV = 6.2, C), N-methyl-2-pyridone-5-carboxamide (2-PY, %CV = 7.1, D), creatinine 
(%CV = 9.0, E), uridine (%CV = 8.3, F), phenylacetylglutamine (%CV = 5.4, G), urate d-ribonucleotide 
(%CV = 7.2, H), hippuric acid (%CV = 7.4, I), o-sulfo-L-tyrosine (%CV = 8.1, J) and 1-methyluric acid 
(%CV = 7.2, K) are presented for control RV (n = 10), non-dialysis dependent CKD (NDD-CKD, n = 20), 
conventional hemodialysis (conventional HD, n = 10), nocturnal intermittent PD (NIPD, n = 10), frequent 
nocturnal HHD (n = 5), intermittent nocturnal HHD (n = 5), intermittent conventional HHD (n = 5), and 
short daily HHD (n = 6). Data is presented as mean ± SEM, n = 10, *p < 0.05, **p < 0.01, FC = fold change.
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Data processing. Masslynx raw data files were converted to mzData files as previously described29 in R ver-
sion 3.2.0. Isotopologue Parameter Optimization (IPO version 1.7.4) was performed on pooled injections to opti-
mize peak-picking, retention time correction and grouping parameters prior to XCMS (version 1.42) analysis of 
samples30,31. The CAMERA package (version 1.26.0) was used to annotate adducts, isotopes and metabolites that 
ionize in both positive and negative mode32. Resulting features were normalized to internal standard. Features in 
pooled samples that exhibited a relative standard deviation greater than 30% over each sample batch were con-
sidered unreliable and removed from further analysis. Feature groups of adducts and isotopes were created and 
the feature with the maximum intensity in each group was chosen for analysis. For features that ionized in both 
positive and negative ESI modes, the more sensitive ion was used. Subsequently, positive and negative ESI mode 
data sets were combined for statistical analysis.

statistics. Univariate statistics. Data was analyzed using the Kruskal-Wallis ANOVA followed by Dunn’s 
post-hoc test with the R statistics and DescTools packages. P values were adjusted according to the Benjamini 
Hochberg procedure and q < 0.05 was considered significantly different. For pre and post-dialysis comparisons, 
a repeated measures ANOVA with Sidak’s correction was performed.

Multivariate statistics. The data was processed by mean centering and pareto scaling in EZinfo 2.0 (Umetrics, 
Umeå, Sweden). PCA was used to visualize general trends in the data. Metabolic differences between individual 
groups were assessed by orthogonal partial least squares discriminant analysis (OPLS-DA). A multilevel PLS-DA 
was used for paired analysis to report the within patient differences for pre- and post-dialysis and pre and post 
kidney donation as previously described33. Goodness-of-fit and predictive ability was determined based on R2Y 
and Q2Y values, respectively. Features with variable importance in projection (VIP) values > 1 and correlation 
(pcorr) values > 0.4 were considered significant and chosen as putative markers for identification.

Figure 6. Plasma metabolites most efficiently cleared by hemodialysis. Metabolites are ranked by area under the 
receiver operating characteristic (AUROC) curve and p-value (A). Pre and post-dialysis plasma levels of N,N,N-
trimethyl-L-alanyl-L-proline betaine (TMAP, %CV = 6.2, B), o-sulfo-L-tyrosine (%CV = 8.1, C), N-methyl-2-
pyridone-5-carboxamide (2-PY, %CV = 7.1, D), octanoyl carnitine (%CV = 12.0, E), creatinine (%CV = 9.0, 
F), uridine (%CV = 8.3, G), 1-methylhistidine (%CV = 12.9, H) and decenoyl carnitine (%CV = 6.1, I) 
are presented for control RV (n = 10), non-dialysis dependent CKD (NDD-CKD, n = 20), conventional 
hemodialysis (conventional HD, n = 10), nocturnal intermittent PD (NIPD, n = 10), frequent nocturnal HHD 
(n = 5), intermittent nocturnal HHD (n = 5), intermittent conventional HHD (n = 5), and short daily HHD 
(n = 6). Data is presented as mean ± SEM, and analyzed by repeated measures ANOVA with Sidak’s correction 
*p < 0.05, **p < 0.01, FC = fold change.
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Associations with age and sex. Potential correlations with metabolite level and age were determined using 
Pearson correlation coefficients and corrected by Benjamini Hochberg procedure. Metabolite level association 
with sex was determined.

Metabolite identification. Features considered for identification were searched in METLIN, Human 
Metabolome Database (HMDB), Lipid Maps and Chemspider. Spectral matching of feature fragmentation pat-
terns to putative compound fragmentation was determined using MassFragment®. Standards were purchased to 
confirm metabolite identities, if available. Metabolite identification levels are presented according to the Chemical 
Analysis Working Group, as previously described34.

Receiver operating characteristic analysis. Metabolites found to be significantly different by multivariate statis-
tics were assessed by univariate ROC analysis using MetaboAnalyst35. For biomarker ROC analysis, control RV 
and living donor RV samples were combined and classified as normal kidney function. The performance of each 
significantly altered metabolite as a biomarker of early stage CKD was compared to the performance of eGFR. 
ROC analysis was also performed on metabolites significantly increased in ESRD and significantly cleared by 
hemodialytic clearance.

Data Availability
Metabolite data tables will be made freely available upon request.
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