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Next Generation Sequencing is now routinely used in the practice of diagnostic pathology to detect 
clinically relevant somatic and germline sequence variations in patient samples. However, clinical 
assessment of copy number variations (CNVs) and large-scale structural variations (sVs) is still 
challenging. While tools exist to estimate both, their results are typically presented separately in tables 
or static plots which can be difficult to read and are unable to show the context needed for clinical 
interpretation and reporting. We have addressed this problem with CNspector, a multi-scale interactive 
browser that shows CNVs in the context of other relevant genomic features to enable fast and effective 
clinical reporting. We illustrate the utility of CNspector at different genomic scales across a variety of 
sample types in a range of case studies. We show how CNspector can be used for diagnosis and reporting 
of exon-level deletions, focal gene-level amplifications, chromosome and chromosome arm level 
amplifications/deletions and in complex genomic rearrangements. CNspector is a web-based clinical 
variant browser tailored to the clinical application of next generation sequencing for CNV assessment. 
We have demonstrated the utility of this interactive software in typical applications across a range of 
tissue types and disease contexts encountered in the context of diagnostic pathology. CNspector is 
written in R and the source code is available for download under the GPL3 Licence from https://github.
com/PapenfussLab/CNspector.

Detection of copy number variations (CNVs) is an important and clinically relevant part of characterizing the 
genomic aberrations in patients with malignancy. For example, patients with chronic lymphocytic leukaemia 
with a copy number loss at the TP53 locus have inferior outcomes when treated with chemoimmunotherapy1 and 
should preferentially be treated with non-chemotherapy based approaches2. CNVs can be detected by a variety 
of laboratory methodologies including conventional cytogenetics, fluorescence in situ hybridisaton (FISH) and 
single nucleotide polymorphism (SNP) array. CNVs can also be detected from next generation sequencing (NGS) 
data. This is important because sequence variant detection using NGS is increasingly being utilized in the clinical 
diagnostic laboratory in order to improve diagnosis, refine prognosis and enhance therapeutic decision making. 
Therefore the analysis of copy number data generated by assays that are typically designed for the detection of 
sequence variants can be used to further enhance clinical decision making.

1Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia. 2Department of Pathology, 
Peter MacCallum Cancer Centre, Parkville, VIC, Australia. 3Sir Peter MacCallum Department of Oncology, University 
of Melbourne, Melbourne, VIC, Australia. 4Department of Pathology, University of Melbourne, Melbourne, VIC, 
Australia. 5Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia. 6Bioinformatics 
Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. 7children’s cancer institute, 
University of New South Wales, Sydney, NSW, Australia. Anthony T. Papenfuss and Piers Blombery contributed 
equally. correspondence and requests for materials should be addressed to J.f.M. (email: john.markham@
petermac.org)

Received: 6 August 2018

Accepted: 8 April 2019

Published online: 23 April 2019

opeN
There are amendments to this paper

https://doi.org/10.1038/s41598-019-42858-8
http://orcid.org/0000-0002-7648-8896
https://github.com/PapenfussLab/CNspector
https://github.com/PapenfussLab/CNspector
mailto:john.markham@petermac.org
mailto:john.markham@petermac.org
https://doi.org/10.1038/s41598-019-42858-8


2Scientific RepoRts | (2019) 9:6426 | https://doi.org/10.1038/s41598-019-42858-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

Depending on the clinical indications, NGS assays can be done either with or without enrichment that targets 
specific regions of interest. Despite the decreasing costs of whole genome sequencing (WGS), targeted sequenc-
ing is still the mainstay of clinical diagnostics because, unlike in discovery applications, only clinically relevant 
regions need be considered3. Enrichment is commonly performed using capture-based approaches, where DNA 
or RNA baits attached to magnetic beads are used to bind and pull down DNA fragments for sequencing. The 
total size of the captured regions varies enormously – from commercially available exome kits that enrich for 
all annotated coding regions3 to custom, cancer-specific panels that enrich for tens to hundreds of clinically 
important genes4. This paper describes a visualisation tool, CNspector, to clinically assess CNVs derived from 
capture-based assays of all sizes as well as from WGS approaches. In addition CNspector provides extra function-
ality to address the large dynamic range found in read abundance generated by targeted sequencing.

Methods
Architecture. The inputs required by CNspector are available in most modern clinical genomics pipelines 
where sequence variants, CNV and SV calls are routinely generated for all samples. This is normally followed by 
loading into a database for access by clinical curation and reporting applications as shown in Fig. 1(A). CNspector 
reads in tracks as tab-separated text tables which can come either from actual files, from URLs or other R text-
mode connections5 making them easy to generate from a database query if required. Each instance of CNspector 
needs one initial index table whose rows specify all the other tables that may be displayed plus associated meta-
data. Figure 1(B) shows a typical index table for one sample – the first two entries are the clinical transcript 
annotations for all regions and for targeted areas respectively. The next two entries are cytoband co-ordinates and 
chromosome details required for display. There are four rows specifying tables containing copy number (CN) 
calls binned at four different resolutions and the final two rows specify tables with segmented CN calls and SV 
breakpoints. CNspector is not tied to any particular pipeline or variant caller. It only needs an index table pointing 
to valid annotations and sample tables containing a minimal set of columns (shown in Fig. 1(B)).

We have implemented CNspector as a client-server architecture using R-Shiny6 (Fig. 1(C)), allowing it to 
be used from any device with a web browser without installation or maintenance of special software on user 
machines. Alternatively, for users comfortable using R Studio, the server can be run locally on the same machine 
as the browser. Using a Shiny running on a server rather than a browser-based implementation in java script 
avoids browser portability/optimisation issues and enables use of R’s extensive library of numerical and bioin-
formatics packages. We have minimised computation on the server-side and a server with a Xeon E5-2660 and 
48 GB RAM is able to service the needs of 20–30 staff members working in a diagnostic pathology department 
with throughput of 100–200 samples per week. Pathologists and scientists examining patient data produced from 
the Peter MacCallum Cancer Centre (PMCC) clinical genomics pipeline use a curation and reporting system, 
PathOS7 to curate and annotate the relevant called variants. From here they can click on a link that quickly dis-
plays the patient data in CNspector for further analysis. Of note, CNspector is not tied to any particular variant 
curation platform or bioinformatics pipeline. The light-weight integration to PathOS could be trivially replicated 
in analogous systems.

Workflow. The information required to perform the tasks required for clinical assessment of CNVs is pre-
sented logically starting from the top of the user interface. The first summary statistics box (Fig. (2A)) is dynam-
ically generated when a sample is plotted and for target areas it shows the variation in the uncorrected read 
abundance followed by GC corrected version, and finally, the called copy number (CN). The next step is to read 
off chromosome arm-level CN changes from the 1 Mb bins displayed in the first plot. This is most easily done with 
the targeted track removed by unchecking the corresponding check box (SI Video 1). If there is sample contami-
nation or heterogeneity, this is typically apparent here. Red triangles at the top of the plot indicates overflow and 
so the plot scaling should be adjusted until these disappear to reveal focal amplifications. At this point turning on 
the targeted track will display bait-level CN in all three panels.

CN changes from the top panel can be further investigated by clicking on the containing chromosome arm. 
This causes the selection to be rendered in the middle panel using 50 kb bins (Fig. 2(C)). Highlighting an area 
of interest in this panel causes it to be rendered in the bottom panel with 5 kb bins. Depending on the area this 
will often display more than one gene so an option exists to double click near any gene to zoom in on it, at which 
points its exons will fill the bottom plot (Fig. 2(D)). Double clicking again returns to the originally selected area. 
Finally, selecting features in the bottom plot causes the raw data for those features to be placed into a table and 
summary of the CN (or relevant quantity stored in the column N) is shown (Fig. 2(E)). This is helpful when fol-
lowing up QC issues or checking supporting evidence from breakpoint calls and B-allele frequencies (Fig. 2(F)).

Interactive visualization at multiple scales with contextual data. Regardless of NGS assay type 
described above, read abundance is modulated by a variety of technical artefacts from different parts of the work-
flow. Examples are PCR bias arising from the DNA fragment’s length or GC content8 and factors affecting align-
ment such as the reference genome’s mappability and fidelity9 and deviation of the sample from the reference 
genome due to disease or just normal population-wide variability10. For assays involving enrichment, the cover-
age in targeted regions is additionally dependent on other factors such as pull down efficiency, non-uniform bait 
distributions, competitive binding by homologous sequence and flanking-region effects11. CNV callers correct 
for much of this variation but false positives remain a problem12. Consequently, in clinical reporting there is a 
requirement to visualise CNVs with reference to contextual data to provide supporting evidence and interpret 
biological implications. Note that this contextual data comes not only from the clinical variant calling pipeline for 
the same sample (for example SNVs, indels, breakpoints), but also from annotated historical samples that have 
been reported previously.
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To address the issues of contextualisation and interpretability we bin the CN calls at different scales required to 
capture the relevant biology and display them simultaneously at different levels of magnification. We implement 
this in a multi-scale browser where CN estimates from four different levels of detail can be displayed simultane-
ously in three different plots zoomed to match the levels of detail. By preparing all displayable tables in advance 

Figure 1. Integration of CNspector with existing clinical work flows. (A) Stages of processing for a clinical 
genomics pipeline (B) Pre-built tables at all viewable scales allow rapid rendering in CNspector (C) CNspector 
is implemented with a client-server architecture allowing it to be used on any device with a web browser. 
Integration with an existing clinical genomics system can be done by linking to a URL identifying the sample 
and loci to be viewed.
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and using dynamically-generated browser-based plots, it is possible to quickly navigate between the different 
scales by clicking on the relevant chromosome arm, selecting a desired genomic region or double clicking near 
a gene of interest. The bins sizes accommodate the full dynamic range from all assays – starting at 1 Mb when 
displaying genome-wide data and going all the way down to bait-size when looking at the targeted exon level – so 
that users can view the most accurate CN calls and the most precise breakpoint estimates simultaneously.

Multi-sample Mode. A multi-sample mode is available that enables samples to be compared with each other 
or with other groups of samples. This is turned on automatically when more than one sample is included in the 
index table and enables the option to estimate CN using a reference that is dynamically generated from samples 
selected in the index file. The selection is performed interactively by the user at run time, making it simple to 
call CN against references chosen on the basis of matching technical artefacts. This capability is especially useful 
during assay-development when references samples may not be available nor the effects of technical variability 
known in advance (SI Fig. 1).

Median and median absolute deviation are used to produce robust estimates for the reference mean and refer-
ence standard deviation (SD) respectively, as described in SI Section S1. The use of these robust estimators enables 
the inclusion of tumour samples into the reference set without introducing bias.The SD estimates can optionally 
be plotted as error bars, although it should be noted that they underestimate the SD of the CN since they only 
represent the contribution from the sample being tested and not from the reference set that was used to estimate 
them. Even so, with enough reference samples they become a good lower bound and useful both for assessing 
significance and finding assay trouble spots.

Results
Application to patient samples. In order to demonstrate the utility of CNspector across a range of sample 
types in clinical practice we present patient samples sequenced from both formalin-fixed paraffin embedded 
(FFPE) and fresh frozen tissue, from somatic and germline samples and with and without target enrichment. 
For all patient samples presented, relevant DNA library characteristics are summarized in SI Table 1, bait-based 
enrichment where applicable, is summarized in SI Table 2 and bioinformatics details for generation of CN and 

Figure 2. Steps when using CNspector to assess CNVs (A) An initial QC step consists of checking coverage 
and sample noise for raw read counts and estimated copy number (B) CN changes at the chromosome and 
chromosome arm level are checked in the top plot, made of 1MB bins. (C) Smaller scale gains and losses such 
as the one on 13q can be checked on the second plot. (D) Selecting regions of interest in the second plot enables 
assessment of CN with respect to exon-level annotations in the third plot. (E) Selecting points of interest in 
this plot displays relevant details such as copy number estimate at each bait, error estimate based on reference 
samples and estimated read abundance. (F) Supporting evidence may also be viewed – in this example one 
end of a breakpoint near exon 20 of RB1 is shown. Other sorts of supporting evidence would be boundaries of 
segmented regions and B-allele frequencies.
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other genomic features are described in SI Section S1. Bioinformatic details for CNspector internals are described 
in SI Section S2. A brief walk-through of each patient sample in CNspector can be found in SI Video 1.

Focal deletions in germline DNA from blood. Figure 3 is a germline sample derived from peripheral 
blood containing a focal heterozygous deletion of exon 15 of the tumour suppressor gene PTCH1. Germline alter-
ations in PTCH1 underlie the nevoid basal cell carcinoma syndrome or Gorlin syndrome, which is an autosomal 
dominant disorder predisposing to basal cell carcinomas. Large genomic rearrangements in PTCH1 occur in 
~6–21% of individuals diagnosed with nevoid basal cell carcinoma syndrome13–15.

Chromosome and exon level CNVs in tumour DNA from bone marrow. Figure 4 shows copy num-
ber data was obtained from a patient with multiple myeloma from DNA extracted from a bone marrow aspi-
rate. The copy number data demonstrates the typical non-random chromosomal gains that are associated with 
hyperdiploid multiple myeloma (involving chromosomes 3, 5, 7, 9, 11, 15, 19 and 21). In addition a monosomy 
13 is demonstrated which is, again, a typical aneuploidy associated with multiple myeloma. In addition to these 
large scale genomic events, a highly focal deletion on chromosome 17p can be seen involving the TP53 locus. 
TP53 copy number changes are associated with inferior outcomes in patients with myeloma16. This case demon-
strates the ability of CNspector to interrogate chromosomal level aneuploidies and focal, sub-chromosomal loss 
of tumour suppressor genes efficiently and intuitively.

CNVs and loss of heterozygosity in circulating tumour DNA from blood. Figure 5 shows copy 
number data obtained from a patient with diffuse large B-cell lymphoma from circulating tumour DNA extracted 
from the patient’s plasma. As can be easily appreciated from the copy number data visualisation, two high-level 
amplifications are present. Confirmation of overexpression of genes involved in these amplification was per-
formed by gene expression profiling on a tumour specimen. In addition, a highly focal copy number change 
involving TP53 is seen and CN-neutral loss of heterozygosity involving chromosome 1p and 2 (Fig. 5).

Complex CNVs and problematic samples. Interpretation of copy number data from FFPE-derived DNA 
can be particularly challenging due to the noise introduced by poor quality starting DNA17,18. SI Figure 6 is an 
FFPE sample from a high grade ovarian cancer with the copy number scale adjusted to highlight a focal amplifica-
tion of KRAS at 10–30 copies. At default scale settings it is also possible to detect CN gains on significant portions 
of most chromosomes and losses on parts of chromosomes 4q, 5q, 8p, 10q, 16q and 17q.

In SI Figure 7, CNspector is used to analyse a myeloma sample WG-sequenced to a coverage depth of just over 
2×. Despite the low coverage, it is still possible to zoom in and assess small features such as the focal amplification 
highlighted on the chemokine genes on chromosome 17q.

SI Figure 8 demonstrates how assessing complex genomic arrangements benefits from display at multiple 
scales. Chromosome 12 has undergone a series of genomic events that have left a patchwork of segments with 

Figure 3. CN estimates for enriched regions – in this case genes in which germline mutations confer an 
increased risk of cancer – show a focal loss at exon 15 in PTCH1.
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Figure 4. CN estimates for WG derived from targeted sequencing of a myeloma patient. Common 
chromosome duplications can be seen on odd chromosomes along with sub-clonal CNV on 1q, 8p and 16q. A 
focal deletion involving TP53 is hi-lighted for display in the bottom panel.

Figure 5. CN estimates for WG derived from targeted sequencing of circulating cell-free DNA from a patient 
with diffuse large B cell lymphoma. Several focal amplifications and deletions are apparent, including the hi-
lighted focal deletion spanning TP53.
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copy numbers at 1, 3, 5 and beyond. Within this busy context there are small segments of much higher CN 
encompassing clinically significant genes. CNspector makes it simple to assess these small focal amplifications, as 
is shown in the case of CDK4.

In the case of whole exome sequencing the density of targeted areas means that B-allele frequencies can be 
used by model-based methods to estimate allele-specific CN and tumour purity19,20. SI Figure 9 demonstrates 
how CNspector can also be used to read off similar information in the case of an Agilent V5 exome. For sim-
ple situations such as the one shown, this enables a quick visual confirmation to be made. Alternatively, when 
model-based methods are unable to resolve ambiguity and are confounded, CNspector may be used to investigate 
the source of the problem.

Novel applications enabled by multi-sample mode. Multi-sample mode is particularly useful for 
comparing two samples directly to check for small differences. In this case one of the samples is chosen as the 
reference and the ratio of the CN between the two is displayed. Applications for this capability include comparing 
samples from two time points to follow patient progression (SI Fig. 2), comparing negative controls from different 
sample batches to examine technical artefacts (SI Fig. 3) and troubleshooting suspected contamination (SI Fig. 4). 
Multi-sample mode can, in fact, be used to view ratios of any counts-based data provided that it can be scaled 
appropriately. For example it is possible to view differential expression between RNA-seq samples, allowing an 
exploration of the impact of chromosome-wide CN changes on transcript abundance (SI Fig. 5).

Integration of existing copy number callers to work with CNspector. The expected use case for 
CNspector is to view CNV data produced by existing clinical bioinformatics pipelines. To this end we provide 
scripts that generate and then convert the outputs from existing CN callers into tables suitable for display by 
CNspector. While there are many published CN callers in use, only a small proportion of them are able to pro-
duce WG CN calls at all scales using both small targeted panels and WGS. We have chosen three representative 
callers that meet these criteria11,21,22 and provide R scripts that can input output from these and hence provide a 
template for doing the same for other callers. CNspector requires CN calls at four different resolutions. When a 
caller can accept genomic regions (bins) specified by the user22 then the corresponding CN calls are generated by 
re-running the caller for each bin size. When the caller is unable to accept user-defined bins21,22 then the conver-
sion script needs to re-bin the CN calls to at each displayed scale.

Using these scripts to generate and import data tables from the chosen callers enables us compare the per-
formance of CNspector to the visualization methods that would otherwise be used. SI Figure 10 shows typical 
screen shots of data visualised with CNspector and with the default option typically used for the callers that we 
ran. SI Table 3 breaks this down in terms of functionality. As expected there is substantial improvement over 
other options. Perhaps less expected is that CNspector is also able to improve the CN calls themselves by using 
multi-sample mode to improve normalisation (SI Figure 11).

Discussion
Uncontrolled variation in read abundance means that false positives continue to be an issue for calling CNVs17,18. 
Consequently, for clinical applications, putative CNVs normally require verification – usually by (i) plotting them 
alongside contextual data to provide supporting evidence and (ii) applying filtering using prior knowledge to 
improve interpretability. Examples of contextual data and filtering include:

•	 B-allele frequencies to check for sample purity and heterogeneity, to rule out homozygosity or, in the case of 
severe aneuploidy, to confirm that the diploid state has been correctly assigned.

•	 Segmented CN to help identify small apparent-changes in CN in the presence of heterogeneity.
•	 Break point calls supported by read-pairs or split reads to give support to those predicted by segmented read 

abundance
•	 Error bars to allow comparison with assay-wide variation and estimation of statistical significance.
•	 Per-assay blacklists that can be used to selectively mask recurrent false positives
•	 Per-disease whitelists than can be used to selectively display only clinically relevant lesions for further 

consideration.
•	 Annotations that have been filtered to show only clinically relevant transcripts. This, in addition to optionally 

limiting display to annotations for those genes being reported, removes unnecessary clutter when assessing 
patient samples.

Uniquely, CNspector can use all of this extra information if it is available (SI Table 3). The extra information 
normally is available in a clinical workflow due to the high sample throughput and the extra time available for 
sample curation (in contrast to discovery or research workflows); for example in a clinical setting there are usu-
ally historical samples that can be used for background read depth and variance estimation as well as a supply of 
previously-curated and or orthogonally-tested samples that can be used to generate per-assay black lists.

CNspector’s ability to display and navigate at three different levels makes it possible to assess a patient sample 
at the best possible CN resolution for chromosome-scale variation while simultaneously viewing at the best pos-
sible genomic resolution for exon-scale variation, thereby making the most of the high dynamic range in coverage 
present in targeted sequencing assays.

Finally, the flexibility of CNspector to interactively display and highlight differences between selected samples 
and or groups of samples makes it ideal for use in a range of tasks required for assay development and debugging. 
For example, in our case this has made it possible to use CNspector, without modification, to interpret results 
from circulating tumour DNA, find contamination from circulating tumour cells, observe incremental CNVs 
following patient treatment and assess loci-dependent batch effects over time.
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Conclusions
The application of NGS assays to clinical genomics is driving rapid expansion in the areas of clinical testing and 
personalised medicine. As the price of sequencing drops, the catalog of known causal variants increases and more 
targeted therapies become available for treatment, this process is likely to accelerate. Interpreting the genetic 
lesions in a patient DNA sample and assessing their clinical significance remains one of the more challenging 
and expansive steps in the process. In the case of sequence variants, their well-characterised error profile, the 
more mature algorithms used to call and interpret their effect and the consequently greater literature have signif-
icantly improved and automated analysis23. The literature and analysis for SV’s and CNVs on the other hand are 
far less mature. Moreover, the processes generating false positives arising from short read data, especially when 
using targeted enrichment makes development of algorithms for automatic analysis challenging. As a result the 
clinical curation of CNVs and SVs requires plotting the putative lesion in the context of all available relevant 
evidence in order to interpret the nature and clinical significance. We have developed a multi-scale browser 
specifically for this task that accelerates and improves interpretation by conveniently presenting the necessary 
genomic features required for clinical reporting. Further, we have demonstrated that the combination of flexibility 
and features not found together elsewhere make CNspector uniquely useful for interpreting CNV in a range of 
commonly-encountered and challenging clinical situations.

Availability and requirements
Project name: CNspector.
Project home page: https://github.com/PapenfussLab/CNspector.
Operating system: Platform independent.
Other requirements: R >= 3.4.0, R::shiny >= 1.0.5.
Licence: GNU GPL3.

Data Availability
CNspector is written entirely in R and the source code is available for download under the GPL3 Licence from 
https://github.com/PapenfussLab/CNspector. A server running CNspector loaded with the figures from this pa-
per can be accessed at https://shiny.wehi.edu.au/jmarkham/CNspector/index.html. The patient data displayed in 
the figures is not publicly available due to the presence of potentially genotyping information, but de-identified 
versions are available from the corresponding author on reasonable request.
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