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Universal confined tensile strength 
of intact rock
Hengxing Lan  1,2, Junhui Chen1,3 & Renato Macciotta4

Strength criteria for intact rock are essential for the safe design of many engineering structures. These 
criteria have been derived mainly from tests in the compressive stress region. Very few results have 
been published for confined, direct tensile tests on intact rock. No appropriate criteria are available 
for addressing the issue on tensile strength of intact rock at current stage. We present the results of 
direct triaxial tensile tests on Longmaxi Shales under varying confining stresses. These and the results 
from previous tests in marble and sandstone prove that the phenomenon of “tension cut-off” at low 
confining stress and the positive correlations between confining stress and tensile strength above the 
confining stress threshold for brittle rocks occur also in more ductile rocks like shales. Such findings 
are consistent with the concept that tensile failure processes for intact rock are universal. Our results 
demonstrate that friction processes still have a significant role on intact rock strength in the tensile 
region which is leading to confined tensile failure and transitioning to a purely tensile mode. Further, 
strength criteria are presented which consider the frictional processes leading to failure under confined, 
direct tension tests and validated against published tensile strength data.

Design and assessment of engineering structures in rock materials requires adopting a set of rock strength crite-
ria1,2. Underperformance and collapse are associated with stresses reaching or exceeding these strength criteria3–5 
and the issue becomes the adequacy of the selected criterion, which can over or under predict rock strength when 
applied under conditions that are different than those used to derive the criteria6. The most common strength 
criteria used for rock are the Mohr-Coulomb and Hoek-Brown4. The Mohr-Coulomb criteria has been used 
extensively for different materials, including soil, metal and rock7–10. The Hoek-Brown criteria has become the 
preferred criteria for researchers and practitioners to better capture the strength characteristics of rock under 
varying stresses11. However, these criteria have been developed for compressive stress regions following loading 
stress paths (in the laboratory) as opposed to most engineering projects, which follow unloading stress paths 
tending towards the tensile region11. As a consequence, these criteria do not provide adequate characterization 
of intact rock strengths in the tensile region12 as they do not capture the processes of rock fracturing in tension. 
In this regard, Hoek and Martin13 proposed the use of a tension cut-off based on the Hoek-Brown criterion, 
which requires specimen testing within the tensile region and transitioning towards the unconfined compressive 
strength. The authors believe there is an opportunity for improving this approach and the efficiency for estimating 
the tension cut-off.

Previous research has been done in intact rock samples through indirect tensile laboratory tests14–16. These 
require conversion into applied tension, which is associated with limitations in their interpretation17–19. Very few 
research has been conducted through direct tensile testing, particularly under varying confining stresses. The work 
of Ramsey and Chester20 and Bobich21 present direct tensile results on marble and sandstone under different con-
finement stresses. Their results show the transition of intact rock strength, from a state where they are highly 
influenced by frictional processes (positive correlation between confining and tensile applied stresses), towards a 
state where frictional processes do not appear to influence the strength of the materials but are dominated by rock 
grain strengths and the bond between grains. The question remains about the universality of frictional processes in 
the tensile region for other rock types that are known to show different behavior from brittle rocks (e.g. shales). We 
have conducted a new set of direct tensile tests under varying confining stresses on a different rock type, Longmaxi 
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Shale. Tests have expanded the confining stresses applied to the shale samples to include unconfined direct tension. 
Our results, together with the results for the other rock types, allow for increased understanding of the processes 
leading to intact rock failure in the tensile region. Moreover, evidence of the transition between frictional processes 
and pure tension in the tensile region has been acquired through Nano-scale micro-fracture inspection using 
high-resolution Scanning Electron Microscope (SEM) imaging. Our results also present the opportunity to derive 
strength criteria considering frictional processes and the transition to a purely tensile mode of failure.

Confined tensile tests on Longmaxi Shale and previous tests
Experimental approach. We followed the procedures outlined in Ramsey22 and Bobich21. The samples were 
obtained as 50 mm diameter cylinders, then grinded to a reduced central neck (known as a dog-bone sample) of 
30 mm in diameter following a radius of 90 mm (Fig. 1). The final sample heights were 100 mm. This geometry 
allows reproducible and uniform stress conditions, and induces the location of failure at the center of the neck 
(smallest diameter)22,23. The rock tested was Longmaxi Shale, characterized by consistent discontinuities (bedding 
planes) and a strength under unconfined compression of 73.3 MPa. The sample was obtained with its symmetry 
axis parallel to the orientation of the bedding planes. It is noted that Patel and Martin24 showed through axisym-
metrical elastic analyses that the vertical tensile stresses within this geometry and at the center of the neck could 
vary +/− 60% of the average value, with the largest tensile stresses at the surface of the specimen and the lower 
tensile stresses at the center of the specimen. Calculations here considered the average values at the neck of the 
specimen and therefore the results present the average conditions at the specimen scale. This is compatible with 
interpretation for Brazilian Tests and flattened Brazilian Tests for tensile strength, as also shown by Patel and 
Martin24.

Figure 1. Sample geometry and dimensions. The applied stresses during testing are also shown in (a): Pc is the 
confining pressure, σ1, σ2 and σ3 are the principal stresses (σ1 the largest and equal to σ2, σ3 the lowest) applied 
at the centre of the specimen, ΔF is the incremental change in tensile force, and A is the section area at the 
ends of the sample. Bedding direction is shown (vertical direction) and a typical fracture profile after testing is 
sketched in white over the sample photo. The bottom is sample of (b) marble published in Ramsey and Chester20 
and (c) sandstone in Bobich21.
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Tension loading was applied with a closed-loop computerized triaxial testing apparatus with an integral rigid-
ity of 11 × 109 N/m and servo-hydraulic actuators (MTS 815). The maximum load capacity is 2600 kN with a 
measuring accuracy of ±0.5%. The sample is placed inside a thick-walled pressure vessel and confinement is 
applied by injecting pressurized fluid into the vessel. The apparatus required some modifications for the con-
fined tensile tests: (1) Placement of a synchronous chain between the actuator and loading platform. The plates 
that come in contact with the sample were then fixed to the actuator and platform, respectively, such that dis-
placements can be detected when expanding the system; (2) A sample fixture with multi-degree of freedom was 
developed that consisted of upper and lower cushion blocks connected to the frame through pistons. The sys-
tem provides force adjustments if bending is detected. Testing was conducted at room temperature (28 °C) and 
humidity. Tensile loading was applied through axial displacements at a rate of 2 × 10−2 mm/s.

Scanning Electron Microscope (SEM) imaging was used to observe the micro-fracturing of the samples tested. 
SEM imaging was done using a Zeiss Merlin SEM equipped with secondary electron detectors for Nano-scale 
micro-fracture imaging (10 nm pixel size).

Longmaxi Shale test Results and previous tests. Confined tests were conducted on 11 samples of 
Longmaxi Shale. These covered the tensile stress region (σ1 zero and above, σ3 below zero) and were extended 
into the compressive region (σ1 above zero, σ3 zero and above). σ1 was given by the confining stress and σ3 was 
calculated as the confined stress minus the applied axial stresses during the test (ΔF/area of the sample neck). 
The peak tensile strength obtained was −13.5 MPa at a confining stress of 5 MPa. The tensile strength under no 
confinement was −5.5 MPa. The maximum strength obtained in the compressive stress region was 50 MPa (σ1) at 
σ3 of 22 MPa. Tensile strength data for Carrara Marble and Berea Sandstone were obtained from the literature20,21 
to complement the tensile strength results obtained for Longmaxi Shale.

Figure 2 shows the testing results for Longmaxi Shale as well as the results for Carrara Marble and Berea 
Sandstone in σ1 against σ3 plots. This figure shows linear and positive correlations between the applied σ1 and σ3 
for the three rock types. This correlation holds true for the tests with σ1 above a threshold value (approximately 
5 MPa, 70 MPa and 50 MPa for the shale, marble and sandstone, respectively). These positive correlations are con-
sistent with the concept that strength is a function of confining stress, and would suggest that friction processes 
have a major effect on the tensile strength of these materials above these thresholds of σ1. For lower values of 
σ1, the linear correlation breaks and the tensile strength drops towards the unconfined tensile strength (σ1 = 0), 
suggesting that friction processes are less important and failure is dominated by the strength of the particles and 
their bonds. This behavior is known as the “tension cut”13,25, alluding to the sudden deviation from the positive 
correlation between σ1 and σ3, toward the unconfined tensile strength. It is interesting to note that the “tension 
cut-off ” remains true for Logmaxi Shale, indicating this cut is a universal behavior for intact rock.

Fracturing and strength in the tensile region. Martin26 and Rafiei Renani and Martin27 showed that 
failure of intact rock is initiated by the formation of new fractures (crack initiation), followed by progressive 
growth and further coalescence of the fractures until a critical condition is reached (crack damage) and total 
collapse. Therefore, the effect of friction by the time of failure will depend on the availability of these fractures to 
shear, and the stresses acting on their surfaces. Higher confining stresses would promote fracture surface contact 
and increased shear strength, while no confinement would be associated with lack of contact at the fracture sur-
faces or low stresses at these contacts. Figure 3 shows the fracture angle of the three rock types after testing. The 
results from Ramsey and Chester20 and Bobich21 that the fracture angle increases with increasing confining stress 
provided the basis for the hypothesis that a hybrid failure mode exists when transitioning between extension and 
shear failure. For Longmaxi Shale, however, the fracture angle decreases with confining stress. The fracture angle 
variation is attributed to a combination of the dominant presence of bedding in Longmaxi Shale specimens and 
the variable stress distribution within the neck of the specimens. The understanding of a transition between ten-
sile failure and frictional failure, however, remains valid. Figure 4 shows SEM images of typical micro-fractures 
in Longmaxi Shale after testing in the compressive region (higher confining stresses) and the tensile region (the 
lowest confining stress tested, σ1 = 0 MPa, σ3 = −5.5 MPa). These images evidence the lack of contact (larger frac-
ture aperture) between fracture surfaces in the sample tested under the lowest confining stresses when compared 
to the sample tested in the compressive region.

When the confining stress is less than the σ1 threshold, cracks would not allow for frictional processes to dom-
inate the strength of intact rock, and tensile strength will tend towards a constant value. This “tension cut-off ” is 
observed for all three different materials, which indicates a universal characteristic for intact rock strength in the 
tensile region. Above this threshold, the linear trend of intact rock strength as function on confinement in the 
tensile region can be characterized by a coefficient of friction, μ, and the failure criteria becomes:

σ = σ σ < σ + − μt3 at failure ; for ( T)/(1 ) (1)t 1

3 at failure (1 ) T; otherwise (2)1σ = − μ σ −

where T is the intersect of the linear trend of the data and the σ3 axis; and σt is the unconfined direct tensile 
strength (negative here). For the case of the three materials tested, the values of T and μ were 15.9 MPa and 0.23 
for Longmaxi Shale, 24.7 MPa and 0.81 for Carrara Marble, and 15.7 MPa and 0.84 for Berea Sandstone. In Fig. 2, 
the vertical dashed line followed by the solid line for increasing σ1 represent the criteria presented here.

Criteria applied to indirect tensile tests. Tensile strength data was obtained from other direct tensile 
tests and from indirect tensile tests (Brazilian tests)28–30. The Brazilian test consists on compressing a disk of rock 
in the direction parallel to its flat surface, which induces tensile stresses at the center of the disk and perpendicular 
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to the applied compression. The rock strength data is plotted in Fig. 5 and was used to assess the applicability of 
the criteria for other rock types and a wide range of strengths. Figure 5 also shows the strength criteria fitted for 
these rocks in the tensile region and the parameters T and μ for the fit. The data and the fit are in general agree-
ment. This approach can be used as stand-alone within the tensile region and the transition towards the uniaxial 
compressive strength, or as a complement to the tension cut-off proposed in Hoek and Martin13.

Figure 2. Test results in (a) Longmaxi Shale, (b) Carrara Marble20 and (c) Berea Sandstone21. Positive trends 
between confinement and strength are evident for a minimum confinement stress and above, consistent with 
previous criteria. Tensile strength reduction below this minimum confinement suggests a stress regime where 
friction has less influence on strength. A tensile cut-off (as shown) can be adopted for strength criteria based on 
these results.
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Discussion
The results of the analysis presented here show that: (1) friction processes have a significant effect on intact rock 
strength well into the tensile region. The strengths on Longmaxi Shale, Berea Sandstone and Carrara Marble 
then drop towards the unconfined tensile strength, which suggests that frictional processes do not dominate 
the strength of intact rock below a threshold value of confinement. This was evidenced by the Nano-scale SEM 
images, where unconfined tests presented larger crack apertures than confined tests, therefore precluding mobi-
lization of frictional resistance. Moreover, the observation for Longmaxi Shale that most micro-cracks are dis-
tributed parallel to bedding31 also suggests bedding plays a significant role in the fracture process. Fracturing 
develops through bedding and through coalescence of micro-cracks within the tensile regime. This is illustrated 
by the rough fracture surfaces observed at low confining stresses in Longmaxi Shale. As confinement increases, 
shear strength along the bedding increases and the failure surfaces become smoother (Figure 3). (2) This behavior 
and the observations through SEM imaging prove the “tension cut-off ” observed for brittle rocks occurs also in 
more ductile rocks like shales. This is understood as a transition to a state of low confinement stress, where frac-
tures have larger openings and mobilized friction is reduced substantially such that it has a minor to no effect on 
the confined tensile strength of rock. The fact that tensile strength of shale behaves in a similar fashion as for brit-
tle rocks, proves that tensile failure processes for intact rock are universal. Moreover, the effect of friction above 
a confinement threshold implies that even a minor increase in confinement stresses could mobilize frictional 
processes such that intact strengths in the tensile region could increase substantially, as is the case for Longmaxi 
Shale. This should be of particular interest to designers faced with the decision between leaving an intact rock 
structure unconfined and allocating resources to reduce the loss of confinement. This common behavior to intact 
rocks can be utilized for developing strength criteria that considers the frictional processes in the tensile region.

The tensile strength criteria presented here was derived with three comprehensive sets of confined, direct ten-
sile tests on rocks that are known to show somewhat different behavior: shale, sandstone and marble. The criteria 
were tested for a set of 9 indirect tensile tests published in the literature, showing a wide range of strengths. The 
strength data and the fit for the criteria are in general agreement, however for two of the rock types where the cri-
teria could overpredict the unconfined compression strength (Blair Dolomite and Cheshire Quartzite). However, 
data for these two rock types is scarce at the unconfined compressive strength for the indirect tensile test dataset 
and judgment on the adequacy of the criteria fit for these two rocks remains inconclusive. In general, the criteria 
are successful in representing the strength envelope in the tensile regime by representing the existence of a tension 
cut and considering a measure of the frictional processes (μ) and the amount of confinement (T).

The micro-fracture characteristics observed in the SEM images are consistent with our interpretation of 
the frictional processes leading to failure in the tensile regime and how they transition towards a purely ten-
sional mode. This represents a first for failure of intact rock in the tensile region and sets an approach for further 
research into this phenomenon.

Figure 3. Fracture angle of Longmaxi Shale (a), Carrara Marble20 (b), and Berea Sandstone21 (c). From left to 
right, the fracture angles for marble and sandstone increase with confining stress. The fracture angle for the 
shale, on the contrast, decreases as confining stress increases.
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Methods
We did tests on shales from Longmaxi Formation. It has extremely low porosity and small grains approximately 
less than 4μm in diameter. The grains include 31.8% to 42.7% quartz and 31.8% to 41.9% clay minerals (mainly 
illite), feldspar, dolomite, and pyrite according to the result of X-ray diffraction tests. The shales used in this study 
have very obvious bedding planes.

We follow the same test procedure and sample shape as Ramsey and Chester20 and Bobich21. The sample 
geometry referred to as the dog-bone geometry with a notch cut, consists of a cylindrical specimen with a reduced 
central neck. The purpose for this geometry was to produce the most reproducible and uniform stress conditions 
and predestine the location of failure within the center of the neck (i.e. at its smallest diameter)22,23.

The preparation of a dog-bone sample of shale is time-consuming due to its fragility under disturbance. This 
process starts with the rough grinding of 50 mm diameter shale cylinder approximately 120 mm long from a 
solid block of Longmaxi shale with a dimension of 300 mm × 300 mm × 300 mm. The laminae (bedding layers) 
of the samples are parallel to the axial of the cylinder. Next, two steps were taken during the sample fine grinding 
process to ensure that each sample meets quality standard. The neck portion of the sample is ground to 30 mm 
with the wheel radius of 90 mm. Then both ends of the sample are cut and ground perpendicular to the axis of 
the sample with a head depth of 9 mm. The target dimensions for all samples are 50 mm diameter for the cylinder 
ends, 30 mm diameter for the neck portion, and 90 mm radius of curvature. And the samples are 100 ± 0.85 mm 
in length, with a large head diameter of 50 ± 0.2 mm and neck diameter of 30 ± 0.67 mm.

All experiments for this study were conducted by the MTS 815. The MTS 815 is a closed-loop computerized 
triaxial testing apparatus with high-performance servo-hydraulic actuators. This MTS 815 apparatus is very suit-
able for extension experiments. First, the apparatus integral rigidity is 11.0 × 109 N*m−1, and when used in com-
bination with precisely machined samples, the generation of bending force in the samples is inhibited. Second, the 
MTS 815 is equipped with a high-resolution, digital data acquisition system. The maximum load capacity is 2600 
kN with the measuring accuracy of ±0.5%.

Figure 4. Scanning Electron Microscope (SEM) imaging of typical micro-fractures in Longmaxi Shale after 
testing in the compressive region (a) and the tensile region (b). Images evidence the lack of contact (larger 
fracture aperture) between fracture surfaces in the sample tested under the lowest confining stresses, limiting 
the ability for mobilizing friction processes.
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The MTS 815 apparatus was redesigned to meet the requirement of the triaxial extension experiments: (1) 
build a synchronous chain between actuator and loading platform. Two steel plates linked to the loading platform 
are bolted to the actuator so as to ensure the displacement gauge in the actuator can detect the displacement 
change during the test. (2) sample fixture with multi-degree of freedom was developed. The fixture consists of the 
upper cushion block, lower cushion block, cardan and the pistons connecting to the cushion blocks. The cardan 
could provide a multi-variant adjustment to avoid the bending force in case of the misalignment between ten-
sile direction and sample axial direction. New pistons were designed to glue samples and fasten to the end cup. 
Advanced Research Center in China South University is responsible for the modification.

The experiments were conducted at room temperature (28 °C) and humidity and extended axially at a rate 
of 2 × 10−2 mm*s−1. The whole experimental procedure involves 5 stages. First, 3 M™ Scotch-Weld™ Epoxy 
Adhesive 2216 is used to join sample and piston together, which requires more than 24 hours to maintain a strong 
bond. Then, a single polyolefin outer jacket is affixed to the piston and sample to prevent intrusion of the confin-
ing fluid. Next, a 0.1 kN tensile force is applied axially once the sample and piston are inside the vessel room, by 
pulling, in order for the specimen to be set in an adequate position before the testing start and no abrupt rear-
rangement of the specimen occurs. After that, the thick-walled pressure vessel is placed and the confining fluid 
is injected into the pressure vessel. The confining pressure is then set to the predetermined value. Application 
of tensile stress in the axial direction is achieved by displacing the loading platform such that the sample on the 
platform will be pulled until it breaks. A force gauge and a displacement gauge record the axial loads and displace-
ment through the entire procedure.

Figure 5. Tensile strength data28–30 and the fitted criteria presented in this paper. It can be observed that the 
criteria show general good agreement with the data (as per Fig. 2). Data for Blair Dolomite and Cheshire 
Quartzite appear to be overpredicted for the uniaxial compression, however data is scarce in these materials for 
a definite conclusion.
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Data Availability
The data that support the findings of this study are available from the authors on reasonable request.
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