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Boron tolerance and accumulation 
potential of four salt-tolerant plant 
species
Qian Zhao1,2, Jia Li1, Zheng Dai1, Chengcang Ma2, Hongwen sun1 & Chunguang Liu1

Boron (B) is an essential element for plants, but excess B is phytotoxic. Since excess B often occurs 
along with high salinity in the environment, the purposes of the experiments are to screen plants that 
tolerate both excess B and high salinity for the remediation of B-contaminated saline water or soils. 
Here we tested the capacities of B tolerance and accumulation of four salt-tolerant plant species, 
Tripolium pannonicum, Suaeda glauca, Iris wilsonii, and Puccinellia tenuiflora using hydroponic culture 
systems, and compared their potential for application in phytoremediation. The maximum B supply 
concentrations for the survival of T. pannonicum, S. glauca, I. wilsonii, and P. tenuiflora are 40, 250, 700, 
and 300 mg/L, respectively. The maximum B concentrations in the shoot tissue of these plants are 0.45, 
2.48, 15.21, and 8.03 mg/g DW, and in the root are 0.23, 0.70, 6.69, and 2.63 mg/g DW, respectively. Our 
results suggest that S. glauca, I. wilsonii, and P. tenuiflora are capable of tolerating and accumulating 
high levels of B, and I. wilsonii is a most promising candidate for the remediation of B-contaminated 
sites. This study will provide evidence in support of our future pilot studies (e.g., constructed wetlands) 
on the phytoremediation of B-contaminated water and soil.

Boron (B) is an essential element for plant growth, but it can be toxic when present in excess1. B toxicity in plants 
has been widely reported in North America, Southern Australia, the Middle East, Western Asia, North Africa, 
Malaysia, and China2–4. Soil B concentrations have been reported to be elevated by anthropogenic activities such 
as borate mining and processing, glass and ceramic production, as well as the use of B-enriched detergents, her-
bicides, fertilizers, and irrigation water2,5–7. B concentration is usually 0.1–0.5 mg/L in surface freshwaters, but the 
higher B concentrations are measured in some areas. For example, it has even been documented that B concentra-
tion in surface water of Rio Arenales and Loa River (two South American rivers) ranged between 4 and 26 mg/L 
in areas rich in B-containing soils8. High concentrations of boron in water are also very common in China. In an 
investigation in a B industry area, B concentrations in surface water and groundwater were up to 3.8 mg/L and 
140 mg/L, respectively9.

Phytoremediation is considered as a green and sustainable technology for the treatments of B-contaminated 
soil or water, including the restoration of B-mining sites and the purification B-laden effluent10,11. When phytore-
mediation technologies are applied to B-contaminated soils, it is essential to find suitable plant species that can 
tolerate and/or accumulate high levels of B12. Previous studies have recorded some extremely B-tolerant plant spe-
cies. For example, Gypsophila sphaerocephala, Chrysopogon zizanioides L., and Puccinellia distans were observed 
to survive up to 227 mg B/kg soil, 750 and 1250 mg B/L hydroponic solution, respectively13–15. In addition to B 
tolerance, some plant species have been reported to accumulate B efficiently. For example, Phytolacca americana, 
Ambrosia trifida L., and Commelina communis were reported to grow in the soil with 480–550 mg B/kg and obtain 
tissue B concentrations 2–3 folds greater than the soil16. High B-accumulation capacity was also recorded in 
Poplar sp., the leaves of which were observed to accumulate up to 845 mg B/kg dry weight17. Apart from terrestrial 
plants, some aquatic species are reported to be able to accumulate B. For example, a floating aquatic plant, Lemna 
gibba, was reported to accumulate 930 to 1900 mg B/kg dry weight in the tissue18.

In the soils of arid and semi-arid regions, excess B often presents simultaneously with excess salt (mostly 
sodium chloride), which may aggravate B toxicity in plants or affect B tolerance of the plants12,19. To remediate 
the soils with high B and salinity using plants, therefore, it is necessary to screen plant species that tolerate both B 
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and salt. Although the tolerance to B and salt has been demonstrated in some plant species20–22, few of which are 
considered as good accumulators of B. We recently selected four salt-tolerant plant species, Tripolium pannoni-
cum, Suaeda glauca, Iris wilsonii, and Puccinellia tenuiflora, which are popularly used for the revegetation of saline 
lands23–26. Unfortunately, the capacities of B tolerance and accumulation of these four species are still unknown. 
In the present work, we cultivated these four plant species in different concentrations of B using hydroponic solu-
tions and then determined plant biomass and tissue B concentrations. We tested B tolerance and accumulation 
of the four salt-tolerant species and evaluated their potential for the phytoremediation of B-contaminated soils.

Materials and Methods
Plant culture. The seedlings of T. pannonicum and S. glauca were collected from Dagang, a coastal area of 
Tianjin, China (N38°44′43.27″, E117°28′52.77″). The seedlings of I. wilsonii and the seeds of P. tenuiflora were 
obtained from the Tianjin Landscape Institute (N39°5′51.81″, E117°15′55.28″). The seeds of P. tenuiflora were 
germinated in sand to obtain seedlings. The seedlings were cultivated in modified half-Hoagland’s solution15 
in the culture room for 50 days after germination. All seedlings were 7–8 cm in height before B treatment. The 
seedlings of the four plant species were cultivated in 1-L polyethylene bottles (9 cm in diameter and 18 cm in 
height), which were filled with 1 L of half-Hoagland’s solution. The bottles were covered with aluminum foil to 
exclude light, and the solution was aerated continuously. In each bottle, one seedling was grown for T. pannoni-
cum, S. glauca, or I. wilsonii, and three seedlings were grown for P. tenuiflora. All the seedlings were acclimated 
in half-Hoagland’s solution for 2 weeks before treatment. The experiment was conducted in a culture room at 
25 ± 2 °C with an irradiance of 72 µmol/m2/s supplied with a 12-h photoperiod.

B treatment. B was added to the half-Hoagland’s solution in the form of boric acid to obtain desired B con-
centrations. The pH of the solution was adjusted to 6.5. The B supply concentrations ranged from 0.25 to 40 mg/L 
for T. pannonicum, from 0.25 to 250 mg/L for S. glauca, from 0.25 to 700 mg/L for I. wilsonii, and from 0.25 to 
300 mg/L for P. tenuiflora. These four ranges of B concentration were established according to preliminary tests 
for each species. In preliminary tests, the threshold of B concentrations for the four species was determined. And 
preliminary experimental conditions such as light and pH in the process of the experiment are the same as the 
formal experiment. The lowest concentration of B (0.25 mg/L) was the “control” treatment (assumed sufficient to 
prevent B deficiency). Each treatment was triplicated. The solutions were replaced once a week throughout the 
experiment.

Plant analysis. After treated with B for 2 weeks, the plants were harvested. The plant samples were rinsed 
with tap water and then separated into shoot and root. The samples were dried at 75 °C for 24 h and then weighed 
to determine the dry weight (DW). The dried tissue was ground into powder and then digested using nitric acid/
hydrogen peroxide microwave digestion, and the B concentrations in the tissue were quantified using inductively 
coupled plasma atomic emission spectroscopy (ICP-AES)15.

The bioconcentration factor (BCF) of B in plant shoot and root was calculated using the following equation27:

BCF C C/ (1)p w=

where Cp is the concentration of B in plant tissue (mg/g DW) and Cw is the concentration of B in the culture 
solution (mg/ml).

The translocation factor (TF) of B was calculated using the following equation27:

TF C C/ (2)i r=

where Ci is the concentration of B in shoot tissue (mg/g DW) and Cr is the concentration of B in root tissue (mg/g 
DW).

Statistics. The data in the figures and tables were reported as the mean ± standard deviation (SD). All the 
data were analyzed using the program SPSS 17 (IBM Corp., Armonk, NY, USA). One-way ANOVA tests were 
conducted to determine the influence of B treatment on the dry weight and B concentration in plant tissue of the 
four species. Prior to ANOVA, the Levene score and significant values of dry weight and B concentration in plant 
shoot and root were analyzed. The homogeneity of the normal score of variances was verified with Levene’s test. 
All the tests were conducted with a 95% confidence interval (α = 0.05). Duncan’s multiple range tests were used 
to calculate the significant differences between the means of different treatments at the level of p < 0.05. All figures 
were produced using Origin 8.5 software (OriginLab Corporation, Northampton, MA, USA).

Results
Plant growth. According to the preliminary tests, the seedlings of S. glauca, I. wilsonii, and P. tenuiflora were 
able to survive at 250, 700, and 300 mg B/L, respectively, while T. pannonicum was unable to survive B concentra-
tions higher than 40 mg/L. With increasing B concentrations, dry weight of the four species increased initially and 
then decreased progressively (Fig. 1). Shoot DW of T. pannonicum reached a maximum at 10 mg B/L, and shoot 
DW of S. glauca, I. wilsonii, and P. tenuiflora reached a maximum at 50 mg B/L. Significant decreases in shoot 
DW for T. pannonicum, S. glauca, I. wilsonii, and P. tenuiflora were achieved at B supply concentrations of 40, 200, 
150, and 100 mg/L, respectively. At these concentrations, compared with the control (0.25 mg B/L), shoot DW of 
the four species decreased by 29.31%, 30.67%, 21.63%, and 33.70%, respectively. Root biomass showed similar 
tendencies with shoot biomass but had fewer changes with increasing B supply concentrations. Over the B supply 
concentrations, root DW of T. pannonicum showed no significant changes. Root DW of S. glauca, I. wilsonii, and 
P. tenuiflora significantly decreased at 250, 700, and 100 mg B/L, respectively.
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B concentrations in plant tissue. Shoot B concentrations of the four test species increased with increasing 
B supply concentrations. Although root B concentration in P. tenuiflora at B supply concentration of 100 mg/L 
was higher than that at 200 mg/L, the data of the two groups have no significant difference. But the general trend is 
that root B concentrations increased with increasing B supply concentrations. B concentrations of the four tested 
species in shoot were much higher than those in root (Fig. 2).

At B supply concentrations of 30, 250, 700, and 300 mg/L, shoot B concentrations in T. pannonicum, S. glauca, 
I. wilsonii, and P. tenuiflora increased to the maximum values, 0.45, 2.48, 15.21, and 8.03 mg/g DW, respectively. 
Similarly, at the same B supply concentrations, their maximum B concentrations were recorded in root as 0.23, 
0.70, 6.69, and 2.63 mg/g DW, respectively. Compared with the other three species, over the whole range of B 
concentrations for plant survival, T. pannonicum showed the lowest capacity of B accumulation. For example, the 
maximum accumulation of B in the shoot of I. wilsonii was 15.21 mg/g DW, which was 33.8 times greater than 
that of T. pannonicum. And the maximum accumulation of B in the root of I. wilsonii was 29.09 times greater than 
that of T. pannonicum.

When tissue B concentration of the four plant species is plotted against B supply concentration, there is a high 
degree of correlation between the two parameters (Fig. 3). Because S. glauca, I. wilsonii, and P. tenuiflora were all 
able to grow over the range of 0.25–250 mg B/L, changes in tissue B concentrations between the three species can 
be compared. Over this range, shoot B concentrations in I. wilsonii and P. tenuiflora were similar and greater than 
those in S. glauca. In root, B concentrations of P. tenuiflora were greater than those in I. wilsonii and S. glauca, 
especially when B supply concentrations exceeded 100 mg/L.

B accumulation and translocation in plant. Bioconcentration factor (BCF) and translocation factor 
(TF) are popularly used for evaluating the potential of plant for the phytoremediation of heavy metals and metal-
loids27,28. The BCF and TF values of B in the four plant species were calculated and shown in Table 1. In the shoot 
and root of the four species, the BCF values tended to decrease with increasing B supply concentrations. Among 
the four plant species, I. wilsonii (BCF in shoot: 19.83–41.3) and P. tenuiflora (BCF in shoot: 26.44–56.31) showed 
greater BCF values than T. pannonicum (BCF in shoot:10.39–19.84) and S. glauca (BCF in shoot: 8.78–18.77). 
For these plant species, BCF values in shoot (mostly exceeded 10) were much greater than those in root. Over the 
range of 0.25–40 mg B/L, with increasing B supply concentrations, the changes in TF values in T. pannonicum 
were not obvious (p < 0.05). At relatively higher B supply concentrations, greater TF values were yielded in the 
test plants except T. pannonicum. Most TF values in the four plants were greater than 1.0.

Figure 1. Dry weight of the shoot and root of the four plants grown at different B supply concentrations for 2 
weeks. Means with different letters are significantly different (p < 0.05). Lowercase and uppercase letters are for 
the data of shoot and root, respectively.
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Discussion
To remediate the soil with excess B and salt, it is important to find candidate plants that are able to tolerate both B 
and salt and have great capacities of B accumulation. Here we show that three salt-tolerant plant species (S. glauca, 
I. wilsonii, and P. tenuiflora) have the capacities of B tolerance and accumulation, especially for I. wilsonii (toler-
ates up to 700 mg B/L and accumulates up to 15.21 mg B/g DW in shoot). Our findings have provided potential 
candidates for the phytoremediation of high-B soils with high salinities.

As a candidate for the remediation of high-B soils, the plant must be able to survive at high B concentrations. 
We have observed that T. pannonicum was not able to survive at B concentrations greater than 40 mg/L, while S. 
glauca, I. wilsonii, and P. tenuiflora were able to survive 250, 700, and 300 mg B/L, respectively. So far, there are 
no criteria for the assessment of B tolerance of plants. In general, crop plants are more sensitive to B toxicity than 
other species. For some tolerant species (e.g., carrot, alfalfa, sugar beet, etc.), 2–4 mg B/L in irrigation water may 
be harmful concentrations29. Some species used for the phytoremediation of B-contaminated soils have exhibited 
greater B tolerance. For example, Puccinellia, a genus of alkali grass, has been demonstrated to tolerate high con-
centrations of B. Some species of this genus, P. frigid and P. distans, have been recorded to survive over 500 mg/
L30 and 1250 mg B/L15 under hydroponic conditions, respectively. In the present study, P. tenuiflora, a species of 
Puccinellia, was also observed to survive at high B concentrations (up to 300 mg/L).

Besides the survival abilities, the changes in plant biomass also reflect the capacities of plants adapting to B 
toxicity. Previous studies have demonstrated that B-tolerant species, cultivars, or genotypes exhibit less reduc-
tion in biomass or yield than sensitive ones when exposed to B toxicity31,32. Our results show that the optimal B 
concentrations for biomass accumulation were 10 mg/L for T. pannonicum and 50 mg/L for S. glauca, I. wilsonii, 
and P. tenuiflora, rather than 0.25 mg/L (B concentration of half Hoagland’s solution) (Fig. 1). These results are 
consistent with previous observations in some B-tolerant plant species, which obtained the highest biomass at 2.5 
to 50 mg B/L15,33,34. The data of the four species in the present study suggest that these species require more B for 
growth than those provided by the half-Hoagland’s solution. In the present study, when B supply concentrations 
exceeded 50 mg/L, the biomass of S. glauca, I. wilsonii, and P. tenuiflora all decreased. The significant drop of 
shoot biomass for S. glauca, I. wilsonii, and P. tenuiflora was observed at B concentrations of 200, 150, and 100 mg 
B/L, respectively, which were quite different with the survival concentrations of B for the three species (250, 700, 
and 300 mg/L, respectively). These results suggest that the plant species surviving at higher B concentrations may 
not maintain greater capacities for biomass accumulation at high B concentrations.

A mechanism of B tolerance for plant is to restrict B transfer from root to shoot which restrict the accumu-
lation of B in shoot13,15,35. In the present study, tissue B concentrations of S. glauca, I. wilsonii, and P. tenuiflora 
were observed to increase with increasing B supply. Compared with B supply concentrations of 50 mg/L, there 
was no significant increase in shoot B concentrations of S. glauca, I. wilsonii, and P. tenuiflora until B supply 

Figure 2. B concentrations of the shoot and root of the four plants grown at different B supply concentrations 
for 2 weeks. Means with different letters are significantly different (p < 0.05). Lowercase and uppercase letters 
are for the data of shoot and root, respectively.
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Figure 3. Relationship between B concentration in plant tissue of the four species and in the culture solution. 
Values shown are the averages, n = 3.

T. pannonicum S. glauca I. wilsonii P. tenuiflora

BCFS* BCFR** TF BCFS BCFR TF BCFS BCFR TF BCFS BCFR TF

0.25 160.20a*** 55.98a 2.86a 146.68a 361.78a 0.41c 589.63a 256.10a 2.30bc 81.77a 26.00a 3.14b

5 17.99b 6.65a 2.70a

10 19.84b 10.42a 1.90a

20 16.76b 6.26a 2.68a

30 15.03b 7.79a 1.93a

40 10.39b 5.46a 1.90a

50 18.77b 8.55a,b 2.19b 41.30b 21.02b 1.96b,c 56.31b 10.35c 5.44a

100 13.28b 3.16b 4.20b 30.16b 10.36b 2.91a,b 29.48c 18.02b 1.64c

150 13.28b 2.18b 6.10a 29.20b 8.68b 3.36a,b,c

200 8.78b 2.86b 3.10b 26.47b 6.40b 4.14a 26.44c 8.37d 3.16b

250 9.91b 2.81b 3.53b

300 32.77b 7.61b 4.31a 26.77c 8.76d 3.06b

400

500 19.83b 10.10b 1.96c

700 21.73b 9.56b 2.27b,c

Table 1. Bioconcentration factor (BCF) and translocation factor (TF) in the four plant species after 2 weeks of 
exposure to B. *BCFS: BCF values in the shoot. **BCFR: BCF values in the root. ***Means in the same column 
with different superscript letters are significantly different (p < 0.05).
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concentrations reached 150, 150, and 200 mg/L, respectively (Fig. 2). These results indicate that the three species 
are all able to restrict B accumulation in shoot in response to increasing B supply. Over the range of B supply con-
centrations of 50 to 200 mg/L, I. wilsonii and P. tenuiflora obtained higher shoot B concentrations than S. glauca, 
indicating less B was accumulated in S. glauca (Fig. 3). Since B concentrations in the root of S. glauca were also 
lower than those in the root of I. wilsonii and P. tenuiflora, S. glauca is likely to have the ability to restrict B uptake 
or B efflux from the root.

As is known, greater bioconcentration factor (BCF) and translocation factor (TF) indicate the higher potential 
of the plant for element accumulation and greater transfer capacity of an element from root to shoot, respec-
tively27. In the present study, over the range of 50–200 mg/L of B supply, the BCF values in the shoot of I. wilsonii 
(41.30–26.47) and P. tenuiflora (56.31–26.44) were much greater than those of S. glauca (18.77–8.78) (Table 1). 
These results demonstrate that I. wilsonii and P. tenuiflora have a greater accumulation capacity than S. glauca. 
Along with high BCF values, high TF values were also observed in I. wilsonii, indicating that, at extremely high 
B concentrations, I. wilsonii did not restrict B uptake and its translocation from root to shoot. According to pre-
vious studies, for the same plant species, the tolerant varieties usually accumulate less B in shoot than sensitive 
varieties31. However, this rule may not be suitable for the comparison between different species. Under high B 
conditions, I. wilsonii seems to have a different mechanism of B tolerance, which remains to be determined. 
Nevertheless, these findings have provided evidence that I. wilsonii will be a most promising candidate for the 
phytoremediation of high-B soil. Although I. wilsonii has been used for removing nitrogen and phosphorus from 
water as candidate plant of constructed wetland36, the removal of B by I. wilsonii has not been investigated in con-
structed wetlands. In our future research, I. wilsonii will be applied to the treatment of high-B saline water using 
constructed wetland systems. Plants have been proved to play a direct role in B removal process in constructed 
wetlands37,38. Therefore, I. wilsonii might be a promising candidate for constructed wetlands in saline areas.

Many species of Puccinellia, such as P. distans and P. frigida, are known for their extremely high tolerance to 
B, and they also have been widely considered as potential candidates for the phytoremediation of B-contaminated 
sites6,30,34,39,40. In the present work, P. tenuiflora also has been proved to be tolerant to B and capable of B accu-
mulation, confirming that Puccinellia is a B-tolerant genus. The other three plants, S. glauca, I. wilsonii, and  
P. tenuiflora, have not yet been studied for B tolerance and B enrichment. Since many species of Puccinellia are 
also tolerant to salt, more species of this genus should be screened for the remediation of soils with high salinities. 
In our laboratory, we have confirmed that the other three plants S. glauca, I. wilsonii, and P. tenuiflora are also 
more salt-tolerant species. Although most species of Puccinellia have small biomass, which is a disadvantage for B 
accumulation, their high growth rate may allow them as an initial cover for the restoration of B-contaminated soil.

The four species we used are all seedlings which are more sensitive to B than adult individuals. Although two 
weeks test period is not so long, it is enough to evaluate B toxicity in plant and to screen the species with high B 
tolerance and accumulation. It is important to note that our data are obtained under room conditions with plants 
cultivated in hydroponic systems. Therefore, it is hard to identify these three species as hyperaccumulators of B. 
But we believe that the present study will provide the scientific theoretical basis for controlling B-contaminated 
soils and water by phytoremediation technology in reality. Absolutely, more research and further verification in 
practical applications were required. In our future studies, plant growth rate will be determined to know whether 
the candidate plant species can absorb B within a reasonable time and whether the accumulation is decreased by 
extreme growth reduction34. In addition, because B toxicity and salt stress often occur simultaneously, the interac-
tion of B and salt should be considered. Despite the four test species are all salt-tolerant, it should be emphasized 
that they should be evaluated under the combined stresses of B and salt before being applied in the phytoremedi-
ation of B-contaminated soils.

Conclusions
Among the four tested plant species, I. wilsonii is the most tolerant species to B toxicity and has the highest 
B accumulation capacity. S. glauca and P. tenuiflora show similar B tolerance, but P. tenuiflora has a greater B 
accumulation capacity than S. glauca. T. pannonicum has the lowest tolerance to B and the lowest accumulation 
capacity. Our results suggest that S. glauca, I. wilsonii, and P. tenuiflora are suitable for the phytoremediation of 
high-B soil with high salinities. We propose that I. wilsonii as a most promising candidate for B-phytoremediation 
because of its great capacity for B tolerance and accumulation.
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