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The influence of spatial and 
temporal resolutions on the 
analysis of cell-cell interaction: a 
systematic study for time-lapse 
microscopy applications
M. C. Comes1, P. Casti1, A. Mencattini   1, D. Di Giuseppe1, F. Mermet-Meillon2, A. De Ninno3,4, 
M. C. Parrini2, L. Businaro4, C. Di Natale1 & E. Martinelli1

Cell-cell interactions are an observable manifestation of underlying complex biological processes 
occurring in response to diversified biochemical stimuli. Recent experiments with microfluidic devices 
and live cell imaging show that it is possible to characterize cell kinematics via computerized algorithms 
and unravel the effects of targeted therapies. We study the influence of spatial and temporal resolutions 
of time-lapse videos on motility and interaction descriptors with computational models that mimic 
the interaction dynamics among cells. We show that the experimental set-up of time-lapse microscopy 
has a direct impact on the cell tracking algorithm and on the derived numerical descriptors. We also 
show that, when comparing kinematic descriptors in two diverse experimental conditions, too low 
resolutions may alter the descriptors’ discriminative power, and so the statistical significance of the 
difference between the two compared distributions. The conclusions derived from the computational 
models were experimentally confirmed by a series of video-microscopy acquisitions of co-cultures of 
unlabelled human cancer and immune cells embedded in 3D collagen gels within microfluidic devices. 
We argue that the experimental protocol of acquisition should be adapted to the specific kind of 
analysis involved and to the chosen descriptors in order to derive reliable conclusions and avoid biasing 
the interpretation of results.

Direct observation of cell behaviour using light microscopy is certainly one of the least invasive techniques 
throughout biology to extract meaningful information on living organisms, connecting multiple scales of com-
plexity. A series of technological advances have revolutionized our ability to characterize complex biological 
events, previously unexplored, including individual and collective cell motion1,2, and cell-cell interactions3–6. 
Firstly, microfluidic cell culture chips, with the more recent application in organ-on-chips devices, have enabled 
recapitulation of physiological multicellular microenvironments at both physical and biochemical levels and have 
emerged as front-line in vitro testing tools for preclinical evaluation of therapeutic agents7,8. Secondly, live cell 
imaging at increased spatial-temporal resolution have allowed monitoring of complex cell behaviours by produc-
ing vast amounts of high-content imaging data9,10. Lastly, computerized algorithms for cell tracking and analysis 
have provided the means to automatically detect cell trajectories and quantify relevant motility descriptors11.

Within this emerging pipeline for high-throughput experimentation, image-based systems approaches may 
provide great contributions to dissect cellular interactions in highly complex heterogeneous tissues such as the 
tumor microenvironment, which have been found to modulate metastasis, angiogenesis and the regulation of 
immune response. Extraction of quantitative meaningful data from intercellular communication networks in 
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such ecosystems12 may be exploited to evaluate the efficacy of anti-tumor immune strategies, including targeted 
therapies and immunotherapies.

Recently Moore and colleagues13 investigated the interactions between tumor biopsy fragments and flowing 
tumor-infiltrating lymphocytes (TILs) in a dynamic microenvironment. Difference in temporal levels of TILs and 
tumor death were automatically quantified and correlated to the cell response to immunotherapy. Cancer-stromal 
interaction was studied by Chen et al.14 by means of a dedicated microfluidic prototype. By isolating paired cells 
in a chamber, the authors demonstrated a relationship between the proliferation rate of myoblasts and the pairing 
ratio of cancer cells. Parlato et al.5 analysed dendritic cell-cancer cell interactions within a three-dimensional 
tumour microenvironment on chip. They showed that immunotherapy with interferon-alpha in combination 
with romidepsin increases the phagocytosis of tumour cells by dendritic cells, resulting in high levels of cell apop-
tosis. Vacchelli et al.15 identified a loss-of-function mutation in the allele of the gene coding for formyl peptide 
receptor 1 (FPR1) that was associated with poor survival in breast and colorectal cancer patients receiving adju-
vant chemotherapy. Using a simple microfluidic platform described in Businaro et al.4, they imaged over time the 
different migration patterns of immune cells collected from human healthy volunteers carrying all the FPR1 gen-
otypes towards the cancer cells in 2D through microchannels. Experiments confirmed that FPR1 and its ligand, 
annexin-1 (ANXA1), promoted stable interactions between dying cancer cells treated with anthracyclines and 
leukocytes, while FPR1 deficiency leads to the immune failure in approaching apoptotic cells leading to defective 
anticancer immune response and less efficient chemotherapy.

The promising results obtained through the investigation of the dynamic response of cells to external stimuli 
or chemotactic signalling, have posed the attention to the applicability of numerical descriptors to characterize 
the cell-cell interactions observed at the microscopic level6. Several aspects related to the acquisition and data 
interpretation protocol contribute to the significance of the derived descriptors in confirming or not the hypoth-
eses on a given experiment. Among them, the set-up of the imaging acquisition device plays a crucial role in 
determining the performance of the tracking algorithm and, consequently, the efficacy of the kinematic descrip-
tors. Increasing the spatial resolution is desirable to resolve finer details and facilitate automatic cell detection. In 
addition, higher frame rates allow a more accurate reconstruction of the cell trajectories and of the interaction 
dynamics from time-lapse videos. However, a trade-off between video quality and high resolution is needed 
to avoid cell damage due to photobleaching and phototoxicity16, as well as to reduce the overall data volume. 
Moreover, it is important also to remark that an eventual restriction of the field of view to improve an initial low 
spatial resolution would clearly reduce the number observed cells and then negatively affecting statistical validity 
of the results. Beltman et al.17,18 were pioneers in tackling the issue about imaging space and time constraints by 
estimating interaction time among immune cells during migration. They exhaustively highlighted the main lim-
itations of measuring what they called “contact time” among interacting cells due to frequent artifacts occurring 
during video acquisition. Mainly, for an unbiased estimation, cell interaction phenomena have to be entirely 
visualized during the video to avoid underestimation of the contact time. In line with this, we will provide exper-
imental results in support of an accuracy worsening due to a lower frame rate.

Only recently, the pivotal role of the temporal resolution on parameter inference for biological mechanistic 
models describing biological transport processes, has been investigated by Harrison et al.19. A Bayesian inference 
was carried out to estimate posterior distributions of the motility model parameters at increasing time discretiza-
tion (i.e. at decreasing temporal resolution). From the study, it emerged that spurious characterization of motile 
behaviour may be avoided thanks to a more rational experimental setting. Anyway, these suggestions regarded 
the impact of only temporal resolution on a particular motility dynamic referring to specific parameters of the 
relative mathematical model.

With the aim to present a more general approach to the problem of extracting reliable quantitative descriptors 
from the motility and cell-cell interaction phenomena, we investigated the effect of both temporal and spatial 
resolutions on cell tracking software (see Supplementary Text S1) and related kinematics features. Although it 
is intuitive that the choice of the temporal-spatial resolutions in live cell imaging acquisition is associated with 
potential artefacts on extracted descriptors, by our knowledge, no one had drawn up an experimental protocol 
addressed to practitioners providing scientific details to what degree their experimental results may be more or 
less altered at varying combination of temporal-spatial resolutions.

To the aim, we analysed simulated scenarios for a diversified set of experiments, inspired by the work of 
Vacchelli and colleagues15. We first derived a stochastic interacting particle model for immune cells migrating 
towards and interacting with a target cell (see Fig. 1A). The directed motion of the cells was modelled as a random 
walk with drift, constant in modulus |μ|3, so that the probabilistic motion step is biased towards the target as a 
spontaneous intrinsic process20. The physical interactions among cells were modelled through repulsive-attractive 
potentials4. In particular, for the immune-cancer interaction, we imposed an attractive potential in proximity of 
the target cell for a given effectiveness time, Teff. For different experimental conditions, including a control case 
scenario and different comparative case studies, we generated an atlas of artificial videos (by varying |μ| and Teff), 
that we downsampled at varying spatial and temporal resolutions (see Fig. 1B). After applying a cell tracking 
software, Cell Hunter5 (see Fig. 1C), a set of commonly used kinematic and interaction descriptors was extracted 
from the detected trajectories (see Fig. 1D): migration speed5, persistence5, angular speed21, Shannon entropy22 of 
angular speed, mean turning angle3, ensemble-averaged mean square displacement (MSD)23, and mean interac-
tion time5. The mathematical expressions of the descriptors are summarized in Table 1. The theoretical trajecto-
ries obtained at the maximum spatial and temporal resolutions and the consequent extracted features were used 
as ground truth for performance evaluation (see Fig. 1B and D respectively).

The conclusions obtained by the analysis of the artificially generated videos were fully validated by the analysis 
of videos of real cell-biology experiments, in which unlabelled human cancer cells (the BT474 cell line repre-
sentative of the HER2+ breast cancer subtype) and immune cells (PBMCs, peripheral blood mononuclear cells, 
from healthy donors) were co-cultured in 3D collagen gels within microfluidic devices. We show that when the 
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extracted descriptors are used for comparing cell motility in diverse experimental conditions (i.e., not treated 
versus treated target cells), spatial and temporal resolutions have a direct impact on the overlap between the 
two compared distributions and on the statistical significance of the difference24. With respect to the interac-
tion between immune cells and target cells, we demonstrate that the entropy of the interaction descriptor, at 
decreasing resolutions, is entwined with the entropy values of pre and post-interaction phases, meaning that the 
information on the interaction can be completely lost at low resolutions. Accordingly, the influence of experimen-
tal resolutions is crucial to investigate the interaction phenomenon and to extract not misleading motility and 
interaction descriptors.

By providing an extensive characterization of the experimental platform for the analysis of cell-cell interac-
tions in organ-on-chip devices, we show how resolutions can alter their individual discriminative capacity, thus 
biasing the interpretation of results and the efficacy of the overall experimental platform.

Figure 1.  Steps of the analysis platform for the study of the effects of spatial and temporal resolutions on 
kinematics descriptors. (A) Definition of the stochastic particle interaction model. (B) Generation of artificial 
videos. (C) Automatic cell tracking at decreasing spatial and temporal resolutions. (D) Feature analysis at 
decreasing spatial and temporal resolutions. Dotted red circles in (A) and (B) indicate the interaction radius. 
The steps in (C) and (D) have been also applied to real experiments based on organ-on-chip devices.
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Interaction Time5 Tint: for each target cell, the number of frames in which each immune 
cell remains within the interaction radius, Rint.

Table 1.  List of kinematic and interaction descriptors. The index i denotes the ith track, ri
l indicates the position 

of the ith track at time l, d is the Euclidean distance, and Li stands for the length of the ith track. For the 
computation of the ensemble-averaged MSD, l = 1, …, max(Li).
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Results and Discussion
We used innovative computational models and experiments on organ-on-chip devices to study how spatial 
and temporal resolutions of time-lapse videos influence the quantitative multi-parametric image analysis. The 
dynamic of intercellular interactions in highly complex biological ecosystems such as tumor microenvironments 
and the assessment of cell response to drug treatments were inquired. We demonstrated inadequate microscopy 
set-up procedures may become detrimental, notably, on derived conclusions between experimental conditions in 
comparison. Actually, biologically relevant differences may be obscured, e.g. the influence of drug administration 
on immune-cancer interaction time, which is a crucial parameter to estimate the efficacy or not of the therapy. 
Our results may represent experimental advices to the practitioners in the choice of suitable resolutions in analys-
ing their own experiments. Indeed, they can be generalized to cover a wide spectrum of experiments.

Analysis of the simulated scenario.  The study of the interaction between different cell populations is 
crucial in our study and it is mimicked by the proposed stochastic particle model (see equations (1, 2), Methods). 
Therefore, we investigated how the interaction phenomenon modified the kinematic behaviour of immune cells. 
By computing the time-varying distance of each immune cell from the target cell in relation to the interaction 
radius (see Methods), we were able to distinguish three main motion phases (Fig. 2A): 1) a pre-interaction phase 
characterized by a directed motion of immune cells towards the target cell; 2) an interaction phase where immune 
cells were in proximity of the target cell, within the interaction radius; and 3) a post-interaction phase in which 
immune cells move away from the interaction radius. During interaction with the target, the presence of the tar-
get cell forced the immune cells to move in an abnormal diffusion motion (sub-diffusion)2, quite different from 
the random directed motion occurring during the pre- and post-interaction phases. The diffusion anomaly may 
be observed with the calculus of the ensemble-averaged MSD (Table 1), chosen for our computation because, as 
a result of a “weak ergodicity breaking”, the time-averaged MSD of a single particle may not convey the desired 
information23. By approximating MSD(t)~tα, α < 1 means anomalous subdiffusion, α = 1 normal Brownian 

Figure 2.  Analysis of the three motion phases. (A) Distance of a single cell from the target cell. Dotted lines 
indicate the extremes of the interaction phase. Based on the interaction radius, three different motion phases 
are defined: pre-interaction, interaction and post-interaction phase. (B) Ensemble-averaged Mean Square 
Displacement (MSD) curves for the three motion phases as defined in (A); mean values and the within standard 
deviation regions are computed over the 100 simulations. (C) Fitted curves of the MSD curves in (B) during 
the three motion phases: pre-interaction (directed Brownian motion), interaction (sub-diffusive motion), post-
interaction (directed Brownian motion). (D) Shannon entropy of the angular speed averaged over all tracks of 
the immune cells in each of the 100 videos.
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diffusion, and α = 2 directed motion (random walk with drift)23,25. In Fig. 2B the MSD curves computed during 
the three mentioned motion phases and averaged over all videos are shown. The MSD curve computed during 
the interaction phase stand out from the other two curves, computed during the pre- and post-interaction phases, 
whose shapes were very similar to each other. By fitting the average curves shown in Fig. 2B, we obtained the 
following results:
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where R2 expresses the goodness of fit (Fig. 2C). The change in motion type, i.e., directed-subdiffusion-directed, 
also influences the Shannon entropy of the angular speed (Table 1), which assumes fairly low and similar values 
during the two extremal phases, while it increases in the middle phase, in which the angular speed is mostly 
unpredictable22 (Fig. 2D). As spatial and temporal resolutions decrease, the representation provided by the 
Shannon entropy becomes misleading. At decreasing resolutions, in fact, the entropy of the angular speed during 
interaction is entwined with the entropy values of pre- and post-interaction phases, as shown in Fig. 3a, that is, 
the information on the interaction was lost at low resolutions. To confirm this, we observe in Fig. 3b that the 
percentage of detected interactive cells drastically reduces at lower spatial and temporal resolutions. Accordingly, 
the influence of experimental resolutions is crucial to investigate the interaction phenomenon and to extract 
meaningful kinematic and interaction descriptors. In fact, the experimental set-up of time-lapse microscopy, 
in terms of resolutions, affected the reliability of the cell tracking software (see Supplementary Text S1) and the 
relative cell-track feature extraction.

Mean and standard deviation maps of the relative error over 100 simulations, expressed in percentage, are rep-
resented in Supplementary Fig. S2 for three of the features in Table 1 (ensemble-averaged MSD, interaction time, 
migration speed) at varying spatial and temporal resolutions. The extracted features deviated from the respective 
ground-truth values at decreasing resolutions, with average (and standard deviation) values of the relative error 
up to 50.3%(10.9%), 34.2%(19%), and 40%(6.4%), respectively for ensemble-averaged MSD, interaction time, 
migration speed. Therefore, working at low resolutions leads to the possibility of unknowingly extracting unreli-
able descriptors for the experimental scenario.

Comparison between different experimental conditions in simulated videos at varying 
spatio-temporal resolutions.  The analysis is now extended to the exploitation of the information 
content carried out by the cell kinematics for diversified biological experiments. After generating videos of 
cancer-immune interaction at different experimental conditions by changing some of the kinematic parame-
ters, i.e., effectiveness time and/or drift modulus (see Numerical Simulations), we analyzed the combined effect 
of resolutions on the extracted features. Our goal was to understand the role of time-lapse microscopy setting 
in determining the ability of the derived kinematic features in discriminating different biological conditions. 
In particular, as a topic of growing interest in this field5,15, we compared scenarios that emulates the effects of 
targeted therapies on immune cells and on cancer-immune cells interaction. For the scope, we set for a control 
case, without treatment, (Simulated control in Fig. 4) |μ| = 3.0 μm/min and Teff = 8.3 min (see Supplementary 
Video S1) and for a comparative study case, with treatment, (Simulated treatment in Fig. 4) |μ| = 3.0 μm/min and 
Teff = 13.3 min (see Supplementary Video S2). Both scenarios were studied by analysing the extracted kinematic 
and interaction descriptors (Fig. 4 and Supplementary Fig. S3). The boxplots in the left and central panels of Fig. 4 
show the distributions of the features for the simulated control and the simulated treatment obtained for the set 
of generated videos at decreasing temporal (with maximal spatial resolution) and decreasing spatial resolutions 
(with maximal temporal resolution), respectively. In addition to a systematic effect of resolutions on the values of 

Figure 3.  Loss of interaction information at decreasing temporal resolutions when the maximum spatial 
resolution is fixed. (a) Shannon Entropy boxplots for the three phases of motion: pre- interaction (blu), 
interaction (green), post-interaction (red). (b) Percentage of detected interactions between immune cells and 
the target cells averaged over all simulations.
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the descriptors for each scenario, the degradation of resolutions increases the proximity of the two distributions, 
thus reducing the difference observed between the two experimental scenarios.

Maps at varying resolutions of the p-values and AUC values obtained for ensemble-averaged MSD, turning 
angle, and persistence, are shown in the right panels of Fig. 4. The indicators show reduced discriminability and 
higher p-values at combinations of decreasing resolutions. P-values higher than 0.05 are observed for lower frame 
rates and spatial resolutions. For the case of persistence, by combining spatial resolutions of [0.99, 1.32] μm/pixel 
with temporal resolutions of [0.33, 0.30] frames/min, p-values of the order of 10−3–10−4 indicate a statistical 
significance of the difference between the simulated control and the simulated treatment, whilst the AUC values 
indicate a slight discriminatory ability of the descriptor (AUC = [0.60–0.63]). Therefore, the two indicators are in 
accordance, but they do not lead at identical results. P-value is the measure of statistical evidence par excellence, 
but it has limits because it is calculated in relation to the null hypothesis only. By involving more extreme data 
closely related to the experiments under consideration26 (in our case the simulated control,the simulated treat-
ment), they could show differences also when discrimination between the two situations is not as evident. The 
same discussion is valid for the other computed parameters in Table 1 (see Supplementary Fig. S3).

In the case of the interaction analysis, poor resolutions strongly compromise interaction time values not 
revealing the difference between experiments with different biological conditions. The extracted mean interaction 
time distributions for the simulated control and the simulated treatment at extreme combinations of resolutions, 
i.e., (0.33 μm/pixel; 3 frames/min), (0.33 μm/pixel; 0.25 frames/min), (1.32 μm/pixel; 3 frames/min), and (1.32 
μm/pixel; 0.25 frames/min), are shown in Fig. 5a. At lower resolutions, the crucial role of the tracking algorithm 
consisted in equalizing the distributions until they become almost uniforms, and above all reducing separability 
between them. At (1.32 μm/pixel; 0.25 frames/min) the discrimination ability is purely random (Fig. 5b).

Figure 4.  Comparison of diverse experimental conditions for three kinematic descriptors. (a) Ensemble-
averaged MSD. (b) Turning angle. (c) Persistence. In the legends S. C. denotes the simulated control 
(|μ| = 3.0 μm/min, Teff = 8.3 min), S.T. denotes the simulated treatment:|μ| = 3.0 μm/min, Teff = 13.3 min. Left 
panels represent the feature values (mean and standard deviation values) at the maximum spatial resolution 
(0.33 μm/pixel) and decreasing temporal resolution. Central panels represent the feature values at the maximum 
temporal resolution (3 frames/min) and decreasing spatial resolutions. Every region delimited by vertical 
dotted lines stands for a unique temporal (left panel) or spatial (central panel) resolution. Right panels show 
the maps of p-values for the K-S test and the area under the receiver characteristic (AUC) curve at varying 
resolutions (see methods). The white dotted line in the p-value maps indicates the contour line at p = 0.05.
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In Supplementary Figure S4, we show the p-values maps obtained with K-S test when the simulated control 
was compared with different comparative scenarios, which mimic different biological conditions. By increasing 
the modulus of the drift and the effectiveness time to |μ| = 3.4 μm/min and Teff = 11.6 min, respectively, (see 
Supplementary Fig. S4a), p-values higher than 0.05 interested a larger portion of the map than increasing Teff only 
(see Supplementary Fig. S4b), with a similar trend obtained by varying |μ| only (see Supplementary Fig. S4c). 
The reason of this effect is that immune cells with a higher value of |μ| remain within the interaction radius for 
less time, leading the values of the mean interaction time to get closer to the values in the simulated control. On 
the contrary, by increasing even more Teff in the abovementioned simulated treatment, p-values higher than 0.05 
were resolved at very lower resolutions (see Supplementary Fig. S4d). Therefore, based on the evidence of the 
compared scenarios and on the chosen descriptor, the combined effect of spatial and temporal resolutions may 
result in failures to detect existing differences between experimental conditions. As a final remark, it is crucial 
to discuss about the choice of spatio-temporal resolution, when the experimental environment does not permit 
the optimal setting. Spatial resolution is the core point in the cell detection step. For the first two spatial resolu-
tions, we obtained reasonable results in terms of detected cell trajectories and swapping error (see Supplementary 
Text S1 and Fig. S1). Practitioners may take into account the possibility to lose a large amount of cell trajectories if 
they want to acquire images at lower resolutions. For a scenario showing interaction, a higher number of missed 
cell trajectories leads to an increasing error in mean interaction time computation (Fig. S2b) and to a reduction 
in number of interacting cells (Fig. 3b). Temporal resolution also plays a fundamental role in the computation of 
mean interaction time as well as of kinematic descriptors. A low frame rate does not allow to capture a detailed 
cellular dynamic. Moreover, combined effects of spatio-temporal resolution may influence the evaluation of dif-
ferences among diverse experimental conditions in terms of extracted descriptors. From the earlier discussion 
about Fig. S4, we underlined how these combined effects impacted differently on the grounds of the couple of 
experiments under examination.

In conclusion, practitioners have to carefully consider the experiments under observation also according to 
their own experience. It would be unpractical to suggest a unique setting for all the experiments, regardless if it is 
a problem of cell-cell interaction under cell subtyping (e.g., cells exhibit different receptors leading to weak differ-
ent kinematics) or cell-cell interaction under different chemical stimuli that lead to highly different cell behaviour 
(e.g., immune and cancer cells in presence of not of chemotherapeutic agent). One possibility could be to run 
preliminary experiments using two different settings and see whether numerical results of the extract descriptors 
remain stable and statistical significance is verified. If so, consider the opportunity to use, for the following exper-
iments, the less expensive configuration so to reduce computational time and memory required. Otherwise, the 
more compelling setting is required.

Analysis of organ-on-chip experiments.  As experimental validation on videos from real cell 
co-cultures, we investigated how temporal and spatial resolutions affect the reliability of results extracted from 
two organ-on-chip experiments by exploiting tumor-immune on chip models in 3D settings. We performed the 
analysis on time-lapse videos acquired at spatio-temporal resolution of (0.45 μm/pixel; 3 frames/min) (see para-
graph Organ-on-chip experiment). For the control and comparative cases, respectively, we extracted six and seven 
Regions Of Interest (ROIs), each of which focused on the interaction between immune cells and a single target 
cell. Each target cell was placed at the center of the video crop (see Supplementary Videos S6–S11 for the control 
case and Supplementary Videos S12–S18 for the comparative case), so that each ROI corresponds to one target 

Figure 5.  Combined effects of tracking and resolutions on the mean interaction time. (a) Histograms for two 
experimental scenarios at four different combinations of spatial and temporal resolutions. Simulated control 
(S.C.): |μ| = 3.0 μm/min, Teff = 8.3 min (in blue). Simulated treatment (S.T.): |μ| = 3.0 μm/min, Teff = 13.3 min 
(in red). (b) ROC curves illustrating the discriminatory ability of the mean interaction time with reference to 
the same experimental scenarios and combinations of resolutions.
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cell. For the real case, we conducted the same analysis steps as for the simulated videos. Firstly, by considering the 
extracted ROIs as single videos, they were subsampled at different combinations of resolutions over the ranges 
[0.45–1.80] μm/pixel and [3–0.25] frames/min. Next, the automatic tracking software was applied. In Fig. 6a,b 
the extracted trajectories at maximum spatial and temporal resolutions for two ROIs (control case in Fig. 6a 
and comparative case in Fig. 6b) are shown. At the maximum resolutions, the statistical difference between the 
two scenarios was evident only in terms of interaction time (Fig. 6c), not in terms of kinematic descriptors. The 
result makes sense in light of the treatment adopted for the comparative case, which affected proliferation and 
survival of the target cells as well as the immune-cancer cells interaction, but it seems to have no effects or impact 
on immune cells kinematics (see paragraph Organ-on-chip experiment). The maps shown in Fig. 6c demonstrate 
that, by decreasing both spatial and temporal resolutions, the interaction time parameter loses its discriminative 
capacity. The information about the interaction, in fact, was lost when resolutions became lower, similarly to the 
case of the simulated scenarios (Fig. 3). In fact, by computing the Shannon entropy of the angular speed on the 
tracks of each of the seven ROIs (seven target cells) of the comparative case, during the interaction phase of the 
motion, the Shannon entropy values are clearly higher than the values of the pre- and post-interaction phases 
(Fig. 6c). Fixed the maximum spatial resolution, at decreasing temporal resolutions, the gap among the Shannon 
entropy distributions in the interaction phase and the distributions in the pre- and post-interaction phases dras-
tically decreases (Fig. 6d).

Methods
Stochastic particle model.  We use a two-dimensional stochastic particle model which describes immune 
cells migrating towards a target cell (cancer cell). During their random directed motion, immune cells are 
attracted by the cancer cell within an interaction radius for apriori imposed time. The model takes into account 
two distinct fundamental parts: (1) single-cell migration, (2) cell-cell interaction.

Single-cell migration.  We model single immune cell dynamics using a random walk with drift3 and a dissipative 
damping term27. Random walks, however, are uncorrelated and independent from the presence of other immune 
cells. Therefore, we added to the model also cell-cell interaction components, as follows.

Cell-cell interaction.  We distinguish two kinds of interactions: (1) immune-immune interaction as a short-scale 
repulsion, (2) cancer-immune interaction which includes an attraction component in addition to the repulsive 
component. The interactions are expressed as forces readapted to our case from27, where the authors intended to 
simulate a collective migration behaviour of a single cell population.

Figure 6.  Organ-on-chip experiments. (a) Automatic tracking applied on a ROI for the control case 
experiment. (b) Automatic tracking applied on a ROI for the comparative case experiment. (c) Maps of p-values 
for the K-S test and the area under the receiver characteristic (AUC) curve at varying resolutions for the 
descriptor of interaction time. The white dotted line in the p-value maps indicates the contour line at p = 0.05. 
(d) Shannon entropy of angular speed behaviour for the comparative case in the three different motion phases 
(pre-interaction, interaction and post-interaction phase) averaged over all tracks of the immune cells in each of 
ROIs (Regions Of Interest). (e) Shannon Entropy boxplots for the three phases of motion: pre- interaction (blu), 
interaction (green), post-interaction (red) at fixed maximum spatial resolution and at decreasing temporal 
resolutions.
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Mathematical description of the model.  With the aim of describing single immune cell dynamics, we 
approximated the motion of each cell by the motion of the corresponding geometric center. Denoting with ri the 
two-dimensional position vector of the ith center, with Δti the interval between two consequent time steps, the 
updating displacement, Δri = ri(ti) − ri(ti − 1), is given by

 σ μ∆ = Δ + + Δr vt t(0, ) ( ) , (1)i i i i i
d

i
1/2

where the first term represents the random component of the displacement, modelled as a Gaussian random 
walk3, with volatility σi, whilst the second term, represents a deterministic component, with μi a systematic drift 
and vi

d a deterministic term varying with time. The deterministic drift, μi, outlines a general flow, deviated 
because of the presence of the cancer cell attracting the immune cell under consideration for an imposed time, so 
that, after interaction, the immune cell goes away from the interaction radius tacking the flow back6. In order to 
simulate a global flow, the drift was implemented with constant modulus contrary to its direction that, for the sake 
of simplicity, varies at each time from cell to cell according to the angle formed by the positions of the cell and the 
cancer cell. Since we are primarily interested in the study of how the interaction phenomenon is affected by 
changing spatial-temporal resolutions, in this way we ensure all cells will interact with the cancer cell. The deter-
ministic speed, vi

d is updated at each time step as

∑α∂ = − + +
≠

v v F f ,
(2)

t i
d

i
d

i j
ij

where ∂t denotes the temporal partial derivative. The first term expresses a dissipative damping with coefficient 
α27, whilst the other terms describe the interaction forces with cells belonging to the same population, ∑ ≠ Fi j ij, 
and with the target cell, f, respectively. In detail, every addendum Fij = −∇U(rij) denotes the force exerted to the 
ith immune cell by the jth immune cell at the distance rij = |ri − rj|. The term U(rij), inspired by27, represents a 
short-scale Gaussian repulsive potential defined as,

=







− <( )( )U r U r a r R

otherwise
( ) exp / ,

0, , (3)
ij

ij ij im0 0
2

where U0, a0, and Rim specify the intensity of the repulsive potential, the maximum immune cell-cell overlapping 
distance, and the interaction radius between the ith and the jth immune cells, respectively.

In addition, computed the distance ri
c of the ith immune cell from the target cell, the interaction force between 

them is defined as27

= −∇f U r( ), (4)i
c

with

=





− + − − <
.

U r U r a U r a H r a r R
otherwise

( )
exp( ( / ) ) ( ) ( ),

0, (5)
i
c i

c
i
c

i
c

i
c

int0 1
2

1 1
2

1

The interacting potential, U r( )i
c , takes into account a repulsive potential (first term) similarly to equation (3) 

and a long-range attractive potential (second term). Given the Heaviside function, H(x), the attractive potential, 
whose intensity is U1, plays a role only when the ith immune cell exceeds the interaction radius, Rint, but it does not 
overlap the cancer cell >r a( )i

c
1 , as shown in Fig. 1A. The attractive potential acts for an imposed time that we call 

the effectiveness time, Teff. The motion of the tumor cell was modelled as a pure random walk.

Numerical simulations.  We integrate equation (2) explicitly using the Adams–Bashforth method28. The 
model parameters were chosen using realistic values mimicking the experiments in15 and then converted at a 
spatial resolution of 0.33 μm/pixel and a temporal resolution of 3 frames/min, which is six times faster than the 
frame rate used for most of our studies5,6,15. A region of interest of dimensions 198 μm × 198 μm was considered 
to mimic the last 80 min of the experiment in which N = 16 immune cells with radius rim = 4 μm, and a cancer 
cell with radius rc = 10 μm were present. Every ith cell started its migration with a drift constant in modulus, μi, 
directed towards the target cell. The two components of σi and α were set to 6.86 μm/min2 and 1.5 min−1,respec-
tively. We imposed Rim = 2rim and Rint = 2(rim + rc); U0 and U1 were set as in27, whilst a0 = Rim, a1 = Rint/2. The 
cancer-immune attraction was exerted for a priori imposed time, named the effectiveness time, Teff. By varying 
Teff, thereby implicitly varying the interaction time between immune cells and the cancer cell, we were able to 
simulate different experimental conditions, e.g., not treated versus treated cells. For the control case, parameters 
were set in agreement with the experiments in5,15, with |μ| = 3 μm/min and Teff = 8.3 min (see Supplementary 
Video S1). The alternative scenarios included different combinations of effectiveness time and of the mod-
ulus of the drift, i.e.,|μ| = 3.4 μm/min and Teff = 8.3 min (see Supplementary Video S2), |μ| = 3.0 μm/min and 
Teff = 11.6 min (see Supplementary Video S3), |μ| = 3.4 μm/min and Teff = 11.6 min, (see Supplementary Video S4) 
|μ| = 3.0 μm/min and Teff = 13.3 min (see Supplementary Video S5).

An atlas of 100 videos was generated in MATLAB R2017b (MathWorks, Natick, MA) as illustrated in 
Fig. 1B. Examples of generated video sequences are available in Supplementary Materials (see Supplementary 
Videos S1–S5). We thus obtained a population of NTOT = 1600 cells, statistically useful to perform the analysis 
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of the kinematic descriptors at different combinations of temporal and spatial resolutions. All videos were sub-
sampled at different combinations of resolutions over the ranges [0.33–1.32] μm/pixel and [3–0.25] frames/min.

Organ-on-chip experiment.  Cancer cells (the HER2+ breast cancer BT474 cell line) and immune cells 
(PBMCs, peripheral blood mononuclear cells, from healthy donors) were embedded into 3D biomimetic hydro-
gels (made of collagen type I at 2.5 mg/mL, the major component of the extra-cellular matrix (ECM)), inside 
micro-chambers (1000 μm wide, 200 μm high) of microfluidic devises fabricated by soft lithography using PDMS 
(poly-dymethylsiloxane), a silicone rubber which is biocompatible, gas-permeable and transparent5. The targeted 
final densities of BT474 and PBMC cells in gels were respectively 1 × 106 cells/mL and 10 × 106 cells/mL (ration 
1:10). The co-culture medium was EBM-2 (Lonza, CC-3156) supplemented with a cocktail of growth factors 
(Lonza, CC-4176).

PBMCs, peripheral blood mononuclear cells, were isolated from blood of healthy donors, obtained from the 
national blood bank “Etablissement francais du sang” (EFS), a public organization that is in charge of collecting, 
preparing, distributing blood derivatives mainly for transfusion purposes, strictly following French guidelines 
and regulations on the matter.

Time-lapse videos were acquired with a Leica DMi8 inverted microscope equipped with a Retiga R6 camera 
and illumination by Lumencor SOLA SE 365. The automated imaging system was controlled by the software 
Metamorph (Universal Imaging). Transmission images were taken every 20 sec for 3 hrs, at a spatial resolution 
of 0.454 μm/pixel.

Statistical analysis.  In the present work, we compare couple of diverse experimental conditions. To quan-
tify how the difference between the two distributions reneges at decreasing resolutions we used two approaches. 
The first one is a statistical approach based on the Kolmogorov-Smirnov (K-S) test29, a nonparametric test that 
quantifies the difference between two empirical distribution functions with no assumption on normality of data. 
Under the null hypothesis that the samples are drawn from the same distributions, the obtained p-values quantify 
the strength of evidence against the null hypothesis. We considered here that p-values lower than 0.05 indicate a 
statistically significant difference between the two samples.

The second approach is based on the concept of predictive performance of the descriptors with respect to a 
binary classification problem in which the two classes are represented by the two experimental scenarios. Given 
the two classes, class1 (negative) and class2 (positive), e.g. corresponding to a control case and a comparative case, 
the Receiver Operating Characteristics (ROC) curve is a two-dimensional graph representing pairs of (sensitiv-
ity, 1- specificity) values for decreasing cut-points. The cut-points are used on the given descriptor as threshold 
values to determine the assigned class. Sensitivity expresses the rate of instances properly assigned to the positive 
class for a given cut-point, whilst 1-specificity indicates the rate of instances belonging to the negative class but 
assigned to the positive class, normalized over the actual number of positive and negative instances, respec-
tively30,31. The Area Under the ROC Curve (AUC)30 provides information about the discriminatory ability of the 
descriptor: it can take values ranging from 0.5 to 1, indicating random guess and perfect discriminatory ability, 
respectively. The greater the AUC is (i.e., the more the curve approaches the top of the chart), the greater the dis-
criminating power of the descriptor is.
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