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Tailoring exceptional points 
with one-dimensional graphene-
embedded photonic crystals
Shanshan Chen1, Weixuan Zhang1, Bing Yang1,2,3, Tong Wu1 & Xiangdong Zhang1

We theoretically demonstrate that tunable exceptional points (EPs) can be realized by using graphene-
embedded one-dimensional (1D) photonic crystals with optical pumping in the terahertz (THz) 
frequency range. By tuning the Fermi level of graphene sheet, the energy band are altered significantly 
and the EP appears. In particular, multiple EPs at different frequencies can be selectively produced via 
subtly adjusting the band structure. Furthermore, topological features of these EPs, such as crossing 
and anti-crossing of the real and imaginary parts of the eigenvalues, have been analyzed in detail. We 
expect that tunable EPs can provide an instructive method to design active optical devices based on 
photoexcited graphene sheets in the THz frequency range.

Since the pioneering work of Bender et al.1, it is recognized that the non-Hermitian Hamiltonian with parity-time 
(PT) symmetry can have purely real eigenvalues. Beyond some non-Hermiticity threshold, typically called the 
exceptional point (EP), the PT-symmetry is broken, and the system experiences an abrupt phase transition with 
eigenvalues becoming complex. The EP represents spectral singularity for the non-Hermitian Hamiltonian, where 
the eigenvalues and their corresponding eigenvectors coalesce simultaneously2. Inspired by the unique property, 
a lot of attentions have been paid to the PT-symmetric quantum systems3–5 and the concept of PT-symmetry 
has been successfully extended to wave optics. Photonic platforms are well-suited for constructing structures 
that satisfy the conditions of balanced gain and loss required by PT-symmetry6–22. In the PT-symmetric systems 
with EPs, a great variety of interesting optical phenomena have been discovered, such as asymmetric light prop-
agation8–10 and invisibility11,12, Bloch oscillation of energy13, coherent perfect laser absorber14–18, single-mode 
laser19,20 and loss-induced suppression and revival of lasing21,22. While, the EP sustained in the previous investi-
gation is fixed once the geometry and non-Hermitian parameters are determined. The EPs that can be tailored 
have many potential applications, such as controllable unidirectional invisibility and adjustable single-mode laser. 
However, the tunable EPs based on external fields are still rare.

On the other hand, due to the high-performance electric, thermal, mechanic and optical properties23,24, 
graphene has sparked keen interest and remained in the scientific limelight for over a decade, resulting in a 
rapid development of the field of graphene plasmonics. For example, the nanopatterned graphene sheet can be 
used as an active medium for infrared electro-optic devices25,26. Moreover, embedding graphene in the photonic 
crystal allows the system to exhibit desirable optical properties, such as enhanced nonlinear and absorption27–31. 
Furthermore, it have been demonstrated theoretically that loss induced amplification of graphene plasmons32 
and singularity-enhanced sensing based on the PT-graphene metasurface33 are characteristics of EP behaviors. In 
addition, the utilization of the tunable graphene layer to control EPs has been rarely studied34,35. Motivated by the 
above investigations, the problem is whether or not the tunable EPs can be obtained in a quasi-PT symmetrical 
system, which is made up of the incorporation of graphene sheets into a one-dimensional photonic crystal with 
the PT symmetry.

In this work, we explore the possibility to tailor EPs in 1D graphene-embedded photonic crystals with optical 
pumping in the THz frequency range. By investigating the evolution of the complex band structures of the sys-
tem, we find that the energy band can be effectively modified by tuning the Fermi level of graphene sheet and the 
EPs in THz frequency region emerge. Particularly, these EPs have topological features, such as the crossing and 
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anti-crossing behaviors around them. In addition, many EPs at different frequencies are realized by altering only 
the Fermi level of the graphene sheet.

Results and Discussions
The graphene-embedded 1D photonic crystal and formulations of the model Hamiltonian.  The 
systems considered to realize the control of the EPs are 1D graphene-embedded photonic crystals, composed of 
the multi-layered unit cell that satisfies the quasi-PT symmetric condition with the tunable graphene layer. Here, 
we only show one of the systems we studied, and the other structures have similar results (see Supplemental 
Materials). As shown schematically in Fig. 1, each unit cell consists of five dielectric layers. The central layer 
(black) represents the photoexcited graphene sheet. The remaining four layers are gain (B2 and A2) and loss (B1 
and A1) dielectrics with corresponding dielectric constants being ε ε ε= − iB B Br i2

, ε ε ε= − iA A Ar i2
, 

ε ε ε= + iB B Br i1
, and ε ε ε= + iA A Ar i1

, respectively. The thicknesses of A1 (A2) and B1 (B2) are taken to be dA and 
dB. We can clearly figure out that the system presented in Fig. 1 is PT-symmetric, when the graphene sheets are 
neglected. While, the system degenerates into a general non-Hermitian system with graphene sheets being 
embedded in the original PT-symmetric system. Here the graphene sheet is considered as an extremely thin film, 
and the thickness is chosen to be ∆ = . nm0 5 36,37. The optical properties of the graphene layer can be described 
by the equivalent permittivity εg,eq, and the relationship between εg,eq and the complex surface conductivity of the 
graphene σg is expressed as38
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where η ≈ Ω( 377 )0  is the impedance of air, π λ=k 2 /0 , λ is the wavelength of the incident wave in the air. The 
surface conductivity of the monolayer graphene consists of two parts: the intraband conductivity σintra and the 
interband conductivity σinter, which can be approximately expressed as (in the THz frequency)39:
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where e represents the charge, kB is the Boltzmann constant,  is the reduced Planck’s constant, ω πν= 2  is the 
angular frequency (v is the frequency of the incident wave), τ is the intra-band transition time, and Ef denotes the 
quasi-Fermi energy level of electrons and holes at temperature T. The energy splitting of the quasi-Fermi levels Ef 
is expressed as40

α
ν τ

πν
=











⋅E
k T

I6
(4)

f
F

B

r
2


where α πε≡ ~e c/4 ( 1/137)2
0  is the fine-structure constant, vF is the Fermi-velocity of charge carriers in the 

graphene, τr is the recombination time for electron-hole pairs and I describes the intensity of the photo-doping 
pump source. It can be seen that Ef is highly tunable via the external pumping strength I, thereby affecting the 
optical properties of graphene. Motivated by the above characteristic, we study the evolution of the complex band 

Figure 1.  Schematic picture of a graphene-embedded photonic crystal and the profile of real/imaginary parts of 
the dielectric constants ε ε[Re( )/Im( )] in one unit cell.
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structure by tuning the Fermi level of graphene sheet in such a general non-Hermitian system and explore 
whether the tunable EPs can be gained.

According to ref.41, in order to calculate the complex band structures of the non-Hermitian system, we 
should utilize the transfer matrix method to calculate the dispersion relation of the corresponding Hermitian 
part firstly, where the gain and loss of the photonic crystal are chosen to be zero. Then, the Hamiltonian for the 
non-Hermitian system can be set up by using the Bloch states of a fixed k (the Bloch wave vector) for the corre-
sponding Hermitian part as a basis. The same method was used to investigate the band structure (TE mode) of 
the graphene-embedded 1D photonic crystal in this work.

Firstly, the eigen equation for the 1D photonic crystal in the absence of gain or loss can be obtained by using 
the transfer matrix method with the consideration of the boundary condition and the periodicity of the struc-
ture42. It can be expressed as:
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where an and bn are the amplitudes of the field propagating in the forward and backward directions in the medium 
layer marked with n (for the structure we studied, n is A1, A2, B1, B2 or Graphene), k is the Bloch wave vector, a is 
the lattice constant, and ωT( ) is the product of the transmission matrix → ′tn n  and the propagation matrix pn for the 
unit cell43. Here, ω = → → → → →T p t p t p t p t p t( ) B B A A A Graphene Graphene Graphene A A A B B B B2 2 1 1 1 2 2 2 1 1 1 2

. The dispersion rela-
tionship can be drawn and the gained Bloch states can be written as =E x u x e( ) ( )m m

ikx, where um(x) is obtained 
from Eq. (5), m denotes the band index corresponding to any given k, which is a positive integer. Secondly, the 
Bloch wave functions of the non-Hermitian system can be described as = 

E x u x e( ) ( )l l
ikx  with 

= ∑ ′u x C u x( ) ( )l l l m m, , where = ⋅ ⋅ ⋅l l1, 2, 3, , max, and ′u x( )m  is the derivative function with normalized um(x). 
Substituting this expansion into Helmholtz equation, we arrive at the corresponding model Hamiltonian for this 
non-Hermitian system:
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where ∼H  is a ×l lmax max matrix, C  is a column vector consisting of expansion coefficients Cl,m, c is the speed of 
light in vacuum, ω is the angular frequency. From the above equations, the complex band structure of the 
non-Hermitian system can be calculated.

The appearance of EP in graphene-embedded 1D photonic crystal.  The eigenvalue of the above 
non-Hermitian system is generally complex, and the real and imaginary parts correspond to the energy and line-
width of the Bloch mode, respectively. The calculated complex band structures for the real and imaginary parts 
are depicted in Fig. 2(a,b), respectively. Here the Fermi level is . meV71 8 44, and other parameters are taken as: 
ε = .5 0Ar

, ε = .7 8Br
, ε ε= = .2 0A Bi i

, µ= .d m2 1A , µ= .d m37 5B , µ = .1 0r  and lmax = 25. As shown in Fig. 2(a,b), 
due to the existence of graphene sheet in the structure breaking the PT symmetry of the system, the dispersion 
curves of the considered structure are non-symmetric and the position with the smallest band gap is not neces-
sarily formed at the center or boundary of the Brillouin zone. The black rectangular frames plotted in Fig. 2(a,b) 
mark the position of the EP, which deviates the center of the Brillouin zone. Therefore, the EPs may not be gener-
ated primarily at these high symmetry points, but may appear at other locations.

In order to clearly see the process of the emergence and disappearance of the EP, we present the complex band 
structures with different Fermi levels in Fig. 2(c–e). The red and blue curves within each figure represent the real 
and imaginary parts of the eigenfrequencies, respectively. The two curves have the same abscissa, and the red 
(blue) ordinate axis on the left (right) side is used to sketch the real (imaginary) part of the eigenvalues. Figure 2(c) 
shows the enlarged band structure marked in the box of Fig. 2(a,b), where the two curves intersect at the same 
abscissa ( π = .ka/2 0 0982). That is to say, an eigenvalue whose real and imaginary part are equivalent simultane-
ously emerges and the EP is obtained. Such a phenomenon is very sensitive to the Fermi level of the graphene 
sheet. When Ef < EfEP (EfEP is the value for the appearance of the EP), such as = .E meV52 5f , red curves (real 
parts of eigenvalues) do not cross, and an intersection of blue curves (imaginary parts of eigenvalues) occurs, as 
shown in Fig. 2(d). While, when = .E meV80 0f  (Ef > EfEP), the red curves intersect, but the blue curves reopen.

From the above results, we find that the EPs can be gained by subtly adjusting the Fermi level of graphene 
sheet in the graphene-embedded 1D photonic crystal. It is very significant that the Fermi level can be controlled 
expediently by only tuning the external electric field. This is in contrast to the case without graphene, in which the 
EPs can only be obtained by changing the geometry (such as the thickness of the media) or dielectric parameters 
(such as loss and gain) of the system. Such a switching effect is very beneficial to the optical devices based on EPs.

Topological structure of the EPs in the graphene-embedded photonic crystal.  The results illumi-
nated in Fig. 2(c–e) implies that the band structure has the characteristics of the Riemann surface. This can be 
clearly seen in Fig. 3. In Fig. 3(a,b), we plot the real and imaginary parts of the eigenvalues adjacent to the EP as 
functions of the Fermi level and normalized Bloch wave vector ( πka/2 ). We find that both two surfaces, belonging 
to the real and imaginary parts of the eigenvalues, intersect along the two olive curves. Furthermore, the two olive 
curves also intersect at a single point marked by black arrows. At this point, the complex eigenvalues coincide and 
an EP emerges.When encircling the EP in the parameter space constituted by the Fermi level of the graphene 
sheet and the normalized Bloch wave vector, the energy levels are exchanged. Consequently, the corresponding 

https://doi.org/10.1038/s41598-019-42092-2


4Scientific Reports |          (2019) 9:5551  | https://doi.org/10.1038/s41598-019-42092-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

eigenmodes are also approximately exchanged. This EP have the topological features. The crossing and 
anti-crossing behaviors around it have been demonstrated.

We study the transition between crossing and anti-crossing by only changing the Fermi level of the graphene 
sheet. The real part of the complex band structures in the vicinity of the EP are plotted in Fig. 3(c,e) for 

= .E meV70 0f  and = .E meV72 5f , respectively. The corresponding imaginary parts are visualized in Fig. 3(d,f). 
One can clearly see the anti-crossing (crossing) behavior of the real (imaginary) parts of the complex eigenener-
gies in the photonic crystal with the smaller Fermi level (Fig. 3(c,d)) and the opposite behavior when the Fermi 
level increases to a value greater than EfEP (Fig. 3(e,f)). In addition, comparing Fig. 3(c,e), the energy level at 
position 3 changes from the red level to the blue level, and at position 4 from the blue level to the red level.

Tailoring EPs by tuning the Fermi level of graphene sheet.  The above results only focus on the case 
with the EP formed around the 8th and 9th bands. In fact, many EPs emerged around other frequency ranges can 
also be obtained by precisely adjusting the Fermi level of the graphene sheet. In this part, we studied the lowest 12 
bands of the 1D photonic crystal. Six EPs at different frequencies and normalized Bloch wave vectors are realized 
by altering the Fermi level of the graphene sheet.

The real and imaginary parts of the eigenfrequencies of different EPs are plotted in Fig. 4(a,b), respectively. 
The points with the same color correspond to the EP generated at a certain Fermi level of the graphene sheet. For 
example, the green dots represent the case with the Fermi level being = .E meV71 8f , that is the EP marked in 
Fig. 3(a,b). In this case, the normalized Bloch wave vector π = .ka/2 0 098, and the real part and imaginary part of 
the frequency are 5.413 and −0.214. Apart from this EP, the Fermi levels, normalized Bloch wave vectors, and real 
and imaginary parts of the eigenfrequencies corresponding to the other five EPs are ( . meV24 6 , 0.027, . THz6 962 , 
. THz0 154 ), ( . meV45 48 , −0.45, . THz2 043 , . THz0 001 ), ( . meV48 4 , 0.009, . THz4 169 , . THz0 105 ), ( . meV62 15 , 

0.46, . THz0 716 , − . THz0 007 ), ( . meV73 88 , −0.449, . THz2 051 , . THz0 003 ), separately. These five EPs have the 
same properties as the EP mentioned above. We find that more than one EP emerge in the process of regulating 
the Fermi level, and they are distributed at different frequencies. This indicates that the switching between 

Figure 2.  Real (a) and imaginary (b) parts of the complex band structures for the graphene-embedded 1D 
photonic crystal. The Fermi level of the graphene sheet is = .E meV71 8f . Other parameters of the system are 
chosen to be ε = .5 0Ar

, ε = .7 8Br
, ε ε= = .2 0A Bi i

, µ= .d m2 1A , µ= .d m37 5B , and µ = .1 0r . (c–e) Complex 
band structure in the black boxes of (a,b) with the fermi level being = .E meV71 8f , = .E meV52 5f  and 

= .E meV80 0f , respectively.
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different EPs can be achieved in our system by just tuning the Fermi level of the graphene sheet. Consequently, 
even if the structure is determined, the EPs can also be tailored by using the external fields.

Figure 3.  Perspective view of the Riemann sheet structure of two coalescing energy levels in the vicinity 
of the EP. Real (a) and imaginary (b) parts of the eigenvalues. The olive curves indicate the intersection of 
two surfaces. The black arrows point to the position of EP. The black curves represent the trajectory of the 
eigenvalues encircling the EP in the parameter space. The crossing and anti-crossing of the real and imaginary 
parts of the eigenvalues for Ef < EfEP and Ef > EfEP are shown in (c–f). All the other parameters are the same as 
shown in Fig. 2(a,b).

Figure 4.  The normalized Bloch wave vectors, Fermi levels, and real (a) and imaginary (b) parts of the 
eigenfrequencies corresponding to the Eps we found. (c–h) The phase rigidities of the eigenstates obtained with 
different Ef: = .E meV24 6f  (red dots), = .E meV45 48f  (magenta dots), = .E meV48 4f  (blue dots), 

= .E meV62 15f  (cyan dots), = .E meV71 8f  (green dots), = .E meV73 88f  (dark yellow dots), respectively.
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In order to further analyze the behavior of these EPs, we also calculate the phase rigidity. The phase rigidity is 
the quantitative measurement of the ratio between the orthogonality and the bi-orthogonality of the eigenstates, 
which has been discussed in detail in refs45–47. According to refs46,47, the phase rigidity is defined as:

=
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u x u x
u x u x
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where the parentheses on the numerator represent the bi-orthogonal product of the two terms and the denomi-
nator is the inner product of the two terms. The u x( )l

R  represents the right eigenstate of the lth eigenvalue of the 
Hamiltonian and u x( )l

L  is the corresponding left eigenstate. In non-Hermitian quantum mechanics, right and left 
eigenstates can be defined by the corresponding eigenvectors of the matrix representing the non-Hermitian oper-
ator in some complete set of orthonormal basis functions, which have been described in detail in ref.48. They can 
be expressed as:48
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where Dl,m is the element in the eigenvector ∼D of the transpose matrix of Hamiltonian ∼H . The phase rigidity exhib-
its the degree of mixing of the two eigenstates near an EP and vanishes at the EP according to a power-law behav-
ior41. During the process away from the EP, the phase rigidity gradually increases and is close to 1 at the position 
of the maximum width of the bifurcation. When the non-Hermiticity parameters are nonexistent, meaning that 
the system becomes Hermitian, the phase rigidity takes the maximum value of 145. For the above 6 EPs, the cor-
responding phase rigidities are all calculated, as shown in Fig. 4(c–h). We find that the phase rigidities all vanish 
at these EPs. This further confirms that these points are actually EPs.

It is worthy to note that the above results are only for the photonic crystal with a certain geometry and 
non-Hermitian potential. In fact, if we change the thickness and the relative permittivity of the dielectric layer 
and keep the multi-layered unit cell satisfies the quasi-PT-symmetric condition, EPs can always be found by tun-
ing the Fermi level of the graphene sheet. In addition, we want to point out that the geometric structure shown 
in Fig. 1 is not necessary to observe such a phenomenon. For the photonic crystals with the PT symmetry, when 
the graphene sheets are introduced in the systems, the structures that satisfy the quasi-PT-symmetric condition 
may be constructed. In Supplemental Materials, we provide the calculation results of tailoring exceptional points 
while using other geometric structures and parameters. Therefore, we can tailor EPs at any desired condition by 
reasonably designing the graphene-embedded 1D photonics crystal.

Conclusions
In conclusion, using the non-Hermitian transfer matrix method based on the basis expansion with the results in 
the Hermitian potential, the band spectrum of a 1D graphene-embedded photonic crystal was obtained, exhib-
iting the EP in higher-order mode. The characteristics of the Riemann sheet structure and the phenomenon of 
crossing and anti-crossing of the eigenvalues adjacent to the EP were also studied. Furthermore, the behaviors of 
EPs have been disclosed by calculating the phase rigidity in the vicinity of the EPs. In particular, many EPs were 
gained at different frequencies by only tuning the Fermi level of graphene sheet. This means that we can tailor 
the EPs by using the external fields, which is very beneficial for the designs of optical functional devices based on 
the EPs.
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