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RNA interference and validation of 
reference genes for gene expression 
analyses using qpCR in southern 
pine beetle, Dendroctonus frontalis
Bethany R. Kyre1, thais B. Rodrigues  1,2 & Lynne K. Rieske1

RNA interference (RNAi) is a highly specific gene-silencing mechanism that can cause rapid insect 
mortality when essential genes are targeted. RNAi is being developed as a tool for integrated pest 
management of some crop pests. Here we focus on an aggressive forest pest that kills extensive tracts 
of pine forests, the southern pine beetle (spB), Dendroctonus frontalis. We sought to identify reference 
genes for quantitative real-time PCR (qPCR) and validate RNAi responses in SPB by mortality and gene 
silencing analysis. Using an adult beetle feeding bioassay for oral ingestion of dsRNA, we measured the 
expression and demonstrated knockdown of target genes as well as insect mortality after ingestion 
of target genes. Our study validates reference genes for expression analyses and demonstrates highly 
effective RNAi responses in SPB, with RNAi response to some target dsRNAs causing 100% beetle 
mortality after ingestion.

The southern pine beetle (SPB), Dendroctonus frontalis, is an oligophagous, tree-killing bark beetle that undergoes 
extreme population outbreaks that can cause devastating losses in timber1,2 and tourism revenue3, making it the 
most significant forest pest in the southeastern US4,5. SPB outbreaks, and their management, create significant 
disturbances, resulting in increased light availability to the forest floor, changes in temperature and soil mois-
ture, competition, and growing space6–9. The influx of coarse woody debris following tree mortality affects forest 
succession, nutrient cycling, and wildlife associates7. The loss of large tracts of forest also impacts hydrologic 
processes that influence water quality and quantity10. In recent decades, changing climate patterns and lack of 
proactive management have allowed an unprecedented northward range expansion, and SPB is now infesting 
pine forests of New York, New Jersey, Rhode Island and Connecticut11,12. The alarming geographic range expan-
sion, coupled with persistent outbreaks over its historic range, demonstrate the need for innovative means of 
managing SPB populations.

RNA interference (RNAi) technology is a novel approach to forest pest management. Introducing exogenous 
double stranded RNA (dsRNA) into the insect cells activates RNAi pathways that normally function to induce antivi-
ral responses13. The dsRNA is bound by the DICER enzyme, cleaving it into small interfering RNAs (siRNA), which 
then binds to the RNA induced silencing complex (RISC), where it is digested to produce single-stranded RNA 
templates able to bind to complementary messenger RNA (mRNA). Binding of siRNA to mRNA induces degrada-
tion of the mRNA, preventing its translation and producing nonsensical end products. RNAi technology has proven 
efficacious in coleopterans, including the notable invasive forest pests, emerald ash borer (Agrilus planipennis)14,15  
and Asian longhorned beetle (Anoplophora glabripennis)16. Because the process relies on matching 19 bp or more to 
target sequences17, RNAi is more target-specific than current insect suppression methods. Non-target effects can be 
further avoided by choosing novel target genes over highly conserved ones. Though coleopterans appear especially 
sensitive to RNAi18,19, this sensitivity is variable, and may be influenced by the beetle life stage that is targeted20, the 
process by which dsRNA is delivered21, and the selected target gene(s)22.

The analysis of target gene silencing using real-time quantitative PCR (qPCR) to evaluate relative gene expres-
sion is a standard method used to validate and confirm cellular RNAi machinery. Identifying appropriate ref-
erence gene(s) is vital for interpretation of results for other genes that are targeted in experimentation23. Ideal 
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reference genes exhibit expression levels that are conserved across all cells. Reference genes (RG) are essential for 
proper cell metabolism (e.g. glyceraldehyde-3-phosphate dehydrogenase (GAPDH)) and/or structural integrity 
(e.g. actin) often exhibit stable expression making them commonly used as reference genes. The stable expression 
of reference genes is used as an internal control to normalize target gene expression. Though universally present 
in cells, reference gene expression levels can differ between organisms, and under stress and changing environ-
ments; therefore, a gene with constant non-varying expression is preferred and must be identified experimentally 
by screening.

We sought to validate the RNAi response in SPB by using oral delivery of dsRNA to (i) measure the expression 
of target genes and demonstrate gene silencing and (ii) evaluate insect mortality after dsRNA ingestion. Due to 
the lack of known reference genes in SPB, we screened for and identified stable genes for our gene silencing study 
and future gene expression studies involving SPB. Ours is the first study to validate reference genes for expression 
analyses and demonstrate RNAi responses in SPB.

Results and Discussion
Reference genes. Because qPCR is highly sensitive, normalization by internal controls is essential for accu-
rate quantification of mRNA levels. For our study, moderately expressed genes were chosen as potential reference 
genes because genes with extremely high or low expression are more likely to introduce variability16. The Cq 
values for all 8 RG from all four treatments, temperature, photoperiod, sex, and introduction of dsRNA, was 
between 18 and 26 cycles (Fig. 1A–D). Analysis of the comprehensive values for all four treatments showed succi-
nate dehydrogenase flavoprotein subunit A (sdf) was the least expressed, with average Cq values between 25 and 
26, while tubulin (tub) was the most expressed with average Cq values ranging between 18 and 18.5. Ribosomal 
protein S18 (rps18) was the most moderately expressed RG with values ranging between 19.5 and 20.5 cycles. In 
this study, we focused primarily on dsRNA treatment beetles, for which sdf was the least expressed, with average 
values ranging from 22 to 23 cycles, and elongation factor – 1 alpha (ef1a), which was the most highly expressed 
with Cq values ranging between 13 and 13.5 cycles (Fig. 1D). Ribosomal protein S18 (rps18) was again the most 
moderately expressed with Cq average values ranging between 19 and 19.5 cycles.

The Cq values from qPCR analysis were analyzed using four separate algorithms: GeNorm, NormFinder, 
BestKeeper, and the delta-Ct method. Genes were analyzed by all four algorithms, and comprehensively across the 
four algorithms, as well as analyzed separately by treatment and comprehensively across all treatments (Table 1). 
Again, we focused primarily on results from the dsRNA treatments. GeNorm compares all genes based on a gene 
expression stability value (M). Under dsRNA treatment, 7 of the 8 candidate genes expressed comprehensive M 
values below 1.5, with rps18 and ef1a both being ranked first. NormFinder ranks genes based on an overall stability 
value (SV) and a SV below 1 is considered acceptable. With the exception of ubiquitin (ubiq), all genes produced 
a SV less than 1, with arginine kinase (ak) being ranked first. BestKeeper ranks genes based on standard deviation 
(SD); genes with a SD above 1 are considered less stable. Under dsRNA treatment only 4 of the 8 genes produced 
a SD below one and rps18 was ranked first. Using the delta-Ct method, where lower stability values are considered 
favorable, ribosomal protein L32 (rpl32) was ranked first. Using the geomean value to create a comprehensive rank-
ing of all four algorithms, with lower values considered more stable, rps18 was ranked first. Given that rps18 was 
ranked first using two of the four algorithms as well as comprehensively (RefFinder), it was deemed the most stable 
and selected as a reference gene for our study. A second reference gene, ef1a, was also chosen based on its rankings 

Figure 1. Cq values for 8 candidate reference genes in four independent experiments: (A) temperature, 
(B) light, (C) sex, (D) RNAi exposure. rps18 was consistently the most moderately expressed. Under RNAi 
exposure, sdf was the least expressed, and ef1a was the most highly expressed. Bars show the maximum and 
minimum Cq values.
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under GeNorm (first) and Bestkeeper (second), as well as its comprehensive ranking of second. rps18 and ef1a pro-
duced corroborating results during gene expression studies. Although our study focused on dsRNA treated beetles 
for reference gene selection, these results identify potential genes for other gene expression studies using light, 
temperature, and sex as parameters. rps18 ranked highly under all treatments and has a comprehensive treatment 
ranking of 1. rpl32 ranks highly under light treatments, while rpl13 does well under temperature treatments, and ak 
ranks highly when comparing male and female gene expression (for treatment-specific rankings for each method, 
metadata summary, and raw Cq values, see Supplemental Materials).

Analysis of target gene expression. Of the three target genes evaluated, heat shock protein (hsp), shibire 
(shi), and inhibitor of apoptosis (iap), hsp and iap have the greatest relative expression and shi has the lowest 
(Fig. 2). There is no detectable difference in expression between hsp and iap, but both differ significantly from shi. 
Higher gene expression levels do not necessarily make hsp and/or iap better RNAi targets for inducing mortality. 
Highly expressed genes may produce shorter half-life proteins and thus require a higher level of expression to 
perform necessary functions, making them more susceptible to RNAi24, whereas genes with lower levels may 
produce longer half-life proteins, and therefore do not need to be highly expressed.

Beetle mortality. With the exception of a single beetle lost in the dsHSP treatment, which may be attributed 
to experimental handling, no mortality was observed in any dsRNA treatment after 24 hours. After 5 days both 
dsHSP and dsSHI treated beetles exhibited 40% mortality, which rose to 80% and 73.33% respectively on day 8. 
At 10 days dsHSP treated beetles experienced 100% mortality, and dsSHI beetles experienced 86.67% mortality 
(Fig. 3). The difference in mortality between hsp and shi was not significant (t-test, one tailed P = 0.65), but both 
mortalities were significant relative to control beetles (t-test, one tailed, P = 0.0005). Mortality in dsIAP treated 
beetles did not differ from control beetles (t-test, one tailed P = 0.72).

Gene silencing. To assess whether beetle mortality was caused by an RNAi response, gene expression anal-
ysis was performed 24 h after dsRNA ingestion using both rps18 and ef1a as internal standards, which showed 
corroborating results. Ingestion of dsHSP and dsSHI by adult beetles resulted in significant silencing of nearly 
50% when compared to expression in control beetles (Fig. 4), whereas ingestion of dsIAP did not result in signifi-
cant silencing of the iap gene. Our gene silencing results corroborate the mortality produced in hsp and shi treated 
beetles. The lack of iap silencing and the inability to induce mortality in iap treated beetles further supports that 
the mortality we observed was a result of gene silencing using the RNAi pathway. However, our iap mortality 
and gene silencing results differ from studies with emerald ash borer (EAB), another forest pest in which iap is 
a highly effective target gene16; higher concentrations, longer exposure of dsIAP, or the use of additional dsIAP 
fragment(s) may produce results similar to those found in EAB. The lack of significant mortality in dsIAP treated 
beetles corroborates results from our gene expression studies, and demonstrates that iap is not a suitable target 
gene for SPB under our experimental parameters.

Gene

GeNorm NormFinder BestKeeper delta-CT Comprehensive

M R SV R SD R SD R GM R

rps18 0.028 1 0.81 7 0.65 1 0.94 5 2.43 1

ef1a 0.028 1 0.773 6 0.67 2 0.92 4 2.63 2

rpl13 0.617 6 0.336 3 1.44 7 1.08 7 5.66 7

ak 0.501 5 0.165 1 1.41 6 0.97 6 3.83 6

sdf 0.1 2 0.666 5 0.71 3 0.87 3 3.41 5

rpl32 0.326 4 0.206 2 1.11 5 0.84 1 2.66 3

tub 0.177 3 0.546 4 0.79 4 0.86 2 3.36 4

ubiq 1.16 7 2.777 8 3.1 8 2.79 8 8 8

Table 1. Final ranking of candidate reference genes from dsRNA-treated beetles according to values given 
by GeNorm, NormFinder, BestKeeper, and delta Ct and a comprehensive ranking by RefFinder. M: gene 
expression stability; R: ranking; SV stability value; SD: standard deviation; GM: Geomean value.

Figure 2. Relative expression of hsp, shi, and iap in adult SPB. Relative expression of hsp and iap is higher than 
that of shi (means followed by the same letter do not differ, one way ANOVA, F2,17 = 36.7, Tukey’s P < 0.0001).
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In conclusion, ours is the first study to demonstrate an RNAi response in southern pine beetle, which led to 
100% beetle mortality after ingestion of dsRNA. Although gene silencing in agricultural pests has been studied 
extensively25–28, an understanding of the pervasiveness and efficacy of RNAi mechanisms in forest pests is lacking. 
Initial work with SPB adults demonstrates that a single oral delivery of dsSHI and dsHSP, chosen based on prece-
dence with other forest pests16,29 results in 86.6% and 100% mortality respectively after 10 days. These results align 
with studies using emerald ash borer neonates29 and red flour beetle (Tribolium castaneum)30. However, our study 
differs from that investigating EAB in that EAB neonate feeding lasted 4 consecutive days and generated 80% and 
93.3% mortality. And though the T. castaneum study generated mortality of 100%, the beetles were injected rather 
than fed. Oral delivery of dsRNA is less invasive and largely reduces mechanical injury to the insect, but can be 
less reliable as gut morphology may prevent the delivery of the dsRNA to the midgut epithelium31 and dsRNA 
degrading enzymes can be present in the gut32. Our results suggest that silencing of the target genes hsp and shi 
is efficient in SPB, and that SPB may be particularly sensitive to RNAi. Future efforts evaluating RNAi in SPB 
should focus on screening additional candidate target genes to ensure selection of the most rapid and efficacious 
for SPB suppression. We recognize that not all effective target genes need lead to high mortality. For example, tar-
geting genes for reproductive suppression or genes leading to a gradual decline in fitness may also prove suitable. 
Optimal target gene selection is essential for development of effective RNAi technologies to combat southern pine 
beetle, whose impacts are exacerbated by land management practices33, and changing temperature and precipita-
tion regimes34. Dose responses and combinations of target genes should also be investigated, as these factors have 
played a role in RNAi efficacy in other forest pests29. Development and deployment of innovative gene silencing 
technologies such as RNAi in combating forest pests could provide a much-needed tool for natural resource man-
agers, providing an additional component for integrated pest management while minimizing off target effects. 
Our study is the first step in investigating the feasibility of the use of RNAi against southern pine beetle.

Methods and Materials
Insects. Adult beetles were obtained from loblolly pine, Pinus taeda, bark samples collected from areas with 
high SPB populations in the southeast USA and stored in darkness at 4 °C. Infested bark was removed as needed, 
and placed in emergence containers consisting of a sealed, darkened 2 L container with a clear 25 ml collection 
tube in one end containing a moistened tissue. Emergence containers were held at 23 °C and monitored daily, and 
only newly emerged adult beetles were used in bioassays.

Figure 3. Adult SPB survival 10 days after ingesting 1 µL of 10 µL of dsRNA. At day 5, significant differences 
in survival were evident for beetles ingesting dsHSP and dsSHI relative to those ingesting dsIAP and dsGFP 
(ANOVA, F3,39 = 4.69, P = 0.0073).

Figure 4. Ingestion of gene specific dsRNAs by adult SPB fed with 1 µL of 10 µg/µL of dsRNA, or dsGFP as a 
control, resulted in significant silencing of A) hsp (P = 0.0445) and B) shi (P = 0.0013) (one-tailed t-test), but 
not C) iap (P = 0.3033) (* denotes significant differences).
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Reference gene(s). Candidate gene treatments and selection. Eight reference genes were selected as can-
didate reference genes: ribosomal protein S18 (rps18), elongation factor – 1 alpha (ef1a), ribosomal protein L13 
(rpl13), arginine kinase (ak), succinate dehydrogenase flavoprotein (sdf), ribosomal protein L32 (rpl132), tubulin 
(tub), and ubiquitin (ubiq)16,35,36. Gene expression was analyzed in individual adult beetles (N = 5) while con-
trolling for four parameters: temperature, light, sex, and exposure to dsRNA, or RNAi response. Temperature 
treatment beetles were kept at 20 °C and 25 °C. Light treatment beetles were maintained in either total darkness 
or at 15:9 (L:D). Beetles maintained in both temperature and light regimes were kept in layers of bark and tissue 
in standard size petri dishes (60 × 15 mm) and were evaluated after three days. Male and female beetles were 
sexed upon emergence using the presence of pronotal grooves (female) and frontal tubercles (male)37 and used 
in experiments immediately after sexing. For RNAi exposure, individual adult beetles (N = 5) were fed four sep-
arate dsRNA treatments (hsp, shi, iap, and gfp) of 10 µg/µL in a 1% sucrose solution. Following dsRNA ingestion, 
beetles from each treatment were placed together in petri dishes containing damp filter paper and pine bark; 
dishes were oriented vertically and maintained at 23 °C with a 15:9 L:D photoperiod. Beetles were evaluated after 
24 hours.

Stability analysis. Stability of candidate genes was evaluated by inputting the mean Cq (quantification cycle) 
value of each beetle per primer into BestKeeper38, an Excel based tool which uses pair-wise comparisons to evalu-
ate gene stability, and into the web based tool, RefFinder39, which integrates four separate algorithms (Table 1) to 
determine the stability: GeNorm, NormFinder, BestKeeper, and the delta-Ct method. GeNorm measures stability 

Gene Name Sequence 5′3′ R2 Eff%

rps18 – Ribosomal Protein S18
GCCCTCTTGTTCAAATCCAC

0.99 98.6
CTTAACGGCCATCAAAGGAG

ef1a – Elongation Factor – 1 alpha
TCCAAGAGGTGGGAATTCAG

0.99 100
GATCGTCGTTCAGGAAAAGC

rpl13 – Ribosomal Protein L13
AACCCCAAGAGGAAAGGATG

0.99 96.2
CCAGGCGCTTTTTAGAACTG

ak – Arginine Kinase
GATGGGGTCGAACAAATCAG

0.99 98.3
AGAAAACGTCCTTCGGTTCC

sdf – Succinate dehydrogenase flavoprotein subunit A
AGTTGGCAGAGACCCATTTG

0.99 100
CGCGTGTCGAGATGTTAAAGC

rpl32 – Ribosomal Protein L32
ATTGTGGACCAGCACTTTCC

0.99 99.3
TATCGACAACAGGGTGAGGAG

tub - Tubulin
TCCTGATCCTGTCCAAAACC

0.99 99.3
TGATCACCGGAAAGGAAGAC

ubiq -Ubiquitin
ATTGGAAGATGGACGCACTC

0.99 95.7
TGCCAGTCAAACTCTTCACG

Table 2. Candidate reference genes and corresponding primer sequences. R2: Correlation Coefficients; Eff: 
Amplification efficiency.

Gene Primer Primer Sequence (5′-3′) Amplicon (bp)

hsp – heat shock protein

F-qRNA-HSP ACACGCACACTCGTTCTCAC
139

R-qRNA-HSP TACGCGTACTCGCTGAAGAA

F-dsRNA-HSP TAATACGACTCACTATAGGGGTGCAG
CAACTGGTCAAAGA

351
R-dsRNA-HSP TAATACGACTCACTATAGGGGTCTTT

GGTCATGGGACGTT

shi – shibire

F-qRNA-SHI AGTTCGCCGTTGATGAAATC
86

R-qRNA-SHI TCGAGCAGGGCTTTATGTCT

F-dsRNA-SHI TAATACGACTCACTATAGGGTAGATC
GGTGTCAGTTCCCC

379
R-dsRNA-SHI TAATACGACTCACTATAGGGGCGAGC

GCGTTTTCTATTAC

iap – inhibitor of apoptosis

F-qRNA-IAP TTTCGTTTGATGCTCGACTG
109

R-qRNA-IAP TCTTCGCCTGTCCTGTCTTT

F-dsRNA-IAP TAATACGACTCACTATAGGGGTCCCGC
TCATCCAGATAAA

370
R-dsRNA-IAP TAATACGACTCACTATAGGGTTTTGCCT

CTTTCGCACTTT

Table 3. Primer sequences and amplicon size for qPCR and dsRNA synthesis of the target genes hsp, shi, and 
iap. Bold letters denote promoter sequences of T7 RNA polymerase.
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by taking the geometric average and mean pairwise variation of all candidate genes, the results of which produce 
an M-score (M). Lower M-scores denote higher stability; and genes with scores greater than 1.5 are not consid-
ered40. GeNorm selects the best pair of genes, rather than the best single gene. NormFinder produces an overall 
stability value (SV) by measuring intra and intergroup variations of candidate genes. As with GeNorm, the lower 
the value, the more stable the gene, with 1 being the cutoff41. BestKeeper measures the standard deviation (SD) 
of each gene. Again, lower scores denote higher stability, and genes with a SD greater than 1 are considered less 
stable42. The delta-Ct method is a comparative method that estimates stability based on delta-Ct value variation. 
Again, lower scores denote greater stability43. RefFinder calculates a comprehensive final ranking of the geometric 
mean of the four algorithms with smaller geometric means denoting higher stability44.

RNA extraction, cDNA synthesis, and qpCR. Total RNA was isolated from whole beetles with TRI 
Reagent RT (Molecular Research Center Inc., Cincinnati, OH), RNA integrity was verified using gel electropho-
resis and absorbance was measure at 260/280 and 230/280. cDNA was synthesized using SuperScript¨ III Reverse 
Transcriptase (Invitrogen, Carlsbad, CA) according to manufacturer’s instructions at a concentration of 3000 ng/
ml and used as a template for the qPCR standard curve, constructed using a 5-fold dilution. Each qPCR sample 
contained 1 µL of 3000 ng/µL synthesized cDNA (diluted 1:1), 0.2 µL of each primer (forward and backward), 
3.6 µL of nuclease free ddH2O, and 5 µL of SYBR Green PCR Master Mix (Applied Biosystems, USA); totaling 
10 µL. All reactions were performed using SYBR Green Master Mix and amplified under the following cycling 
conditions: beginning cycle at 95 °C, 40 cycles at 95 °C for denaturation, followed with 30 s at 65 °C for annealing 
and extension, and ending with generation of a melting curve consisting of a single peak to rule out non-specific 
product and primer dimer formations. Each sample was repeated three times and measured using the mean 
Cq value. For evaluating reference genes, the mean Cq value of each sample and each primer was used as input 
data. For gene expression analysis the 2−∆∆Ct method45 was used to calculate the relative expression level of the 
target gene with rps18 and ef1a as reference genes. For statistical analysis, we performed a one-way ANOVA with 
Tukey’s HSD to evaluate differences (P < 0.05). Primers for the eight selected genes (Table 2) as well as three target 
genes (Table 3) were designed using Primer3Plus and validated using correlation coefficients (R2) and amplifi-
cation efficiencies (Eff). Standard curves were constructed using 5-fold serially diluted cDNA for each pair of 
primers. A desired R2 is >0.99 and acceptable amplification efficiencies fall between 90% and 110%46.

dsRNA synthesis from cDNA. Gene specific primers (Table 3) designed using SnapDragon were used to 
amplify dsRNA templates, and run under normal PCR conditions as follows: 4 min at 94 °C, followed by 35 cycles 
of 30 sec at 94 °C, 30 sec at 60 °C, and 45 sec at 72 °C. The final step is an extension incubation which takes place 
at 72 °C for 10 min. PCR templates were purified using a Qiagen purification kit (Qiagen, Germantown, MD). 
Once purification was completed, MEGAscript RNAi Kit (Thermo Scientific, Waltham, MA) was used in dsRNA 
synthesis, per manufacturer’s instructions. The reaction mix was then incubated at 37 °C for 14 hours; after which 
it underwent 30 minutes of DNase treatment at 37 °C. dsRNA was recovered by adding 2 µL (0.1 × volume) of 
sodium acetate and 50 µL (2.4 × volume) of 100% EtOH to the reaction mix which was then incubated at −20 °C 
for 2 hours. After incubation, the mix was spun at −4 °C for 30 min (14000 rpm), then washed with 750 µL of 
75% EtOH and spun at −4 °C for 15 min at 13000 rpm. Once rinsed, samples were dried at 37 °C for 25 min 
and re-suspended in 20 µL of nuclease free H2O. dsRNA quality was checked using electrophoresis and quanti-
fied with a spectrophotometer (NanoDrop Technologies, Wilmington, DE). To attain a desired concentration of 
10 µg/µL, dsRNA was dried using vacuum speed at 30 °C for 15 minutes and resuspended in nuclease free H2O.

Figure 5. Adult SPB feeding on sucrose droplet.
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Adult beetle feeding assays. To evaluate adult SPB mortality and gene silencing, adult beetles (N = 15 
per treatment for mortality assay; N = 5 per treatment for gene silencing) were fed dsRNA diluted in sucrose. A 
1 µL drop of 10 µg of dsRNA in a 1% sucrose solution colored with blue food coloring for easier visualization was 
placed on the wall of a 50 mm petri dish (Fig. 5)15. Individual beetles were then placed in the petri dish so that 
their mouthparts were in contact with the droplet and held in place with a paintbrush, applying slight pressure to 
the back of the head. Each beetle was held in place until the solution was consumed (3–5 min). Beetles were fed 
one at a time to ensure complete ingestion of the droplet.

Once dsRNA ingestion was complete, beetles from each treatment were placed together in petri dishes con-
taining damp filter paper and pine bark; dishes were then oriented vertically beneath a clear plastic chamber 
and maintained at 23 °C with a 15:9 L:D photoperiod. Beetles were monitored for 10 days, with mortality being 
recorded every 24 hours. For gene silencing analysis, beetles were collected after the first 24 hours, at which time 
total RNA was extracted. For statistical analysis of beetle mortality, a one way ANOVA on non-transformed data 
was performed, and Tukey’s test was used to identify differences between treatments. For gene silencing analysis, 
data were determined to be normal (Shapiro-Wilk test, W = 0.6652), and a one-tailed t-test was used to compare 
differences of a single variable.

References
 1. Holmes, T. P. Price and welfare effects of catastrophic forest damage from southern pine beetle epidemics. Forest Sci. 37, 500–516 

(1991).
 2. Pye, J., Holmes, T., Prestemon, J. & Wear, D. Economic impacts of the southern pine beetle. In Coulson, R.N. & Klepzig K.D. 

Southern Pine Beetle II. U.S. Department of Agriculture Forest Service, Southern Research Station, Gen. Techn. Rep. SRS-140, 
Asheville, NC. Pp 213–222 (2011).

 3. Leuscher, W. A. & Young, R. L. Estimating the southern pine beetle’s impact on reservoir campsites. Forest Sci. 24, 527–537 (1978).
 4. Schowalter, T. D., Coulson, R. N. & Crossley, D. A. Role of the southern pine beetle and fire in maintenance of structure and function 

of the southeastern coniferous forest. Environ. Entomol. 10, 821–825 (1981).
 5. Drooz, A. T. Insects of eastern forests. U.S. Department of Agriculture Forest Service Misc. Publ. 1426, Washington DC (1985).
 6. Pacala, S. W., Canham, C. D., Silander, J. A. & Kobe, R. K. Sapling growth as a function of resources in a northern temperate forest. 

Can. J. For. Res. 24, 2172–2183 (1984).
 7. Palik, B. J., Mitchell, R. J., Housead, G. & Pederson, N. Effects of the canopy structure on resource availability and seedling responses 

in a longleaf pine ecosystem. Can. J. For. Res. 27, 1458–1464 (1997).
 8. McGuire, J. P. et al. Gaps in a gappy forest: Plant resources, longleaf pine regeneration, and understory response to tree removal in 

longleaf pine savannas. Can. J. For. Res. 31, 765–778 (2001).
 9. Coleman, T., Clarke, S., Meeker, J. & Rieske, L. K. Forest composition following overstory mortality from southern pine beetle and 

associated treatments. Can. J. For. Res. 38, 1406–1418 (2008).
 10. Tchakerian, M. D. & Coulson, R. N. Ecological impacts of southern pine beetle. In Coulson, R.N. & Klepzig K.D. Southern Pine 

Beetle II. U.S. Department of Agriculture Forest Service, Southern Research Station, Gen. Techn. Rep. SRS-140, Asheville, NC. Pp. 
223–234 (2011).

 11. Liebhold, A. & Williams, D. Climate change and the outbreak ranges of two North American bark beetles. Agric. For. Entomol. 4, 
87–99 (2002).

 12. Lesk, C., Coffel, E., D’Amato, A. D., Dodds, K. & Horton, R. Threats to North American forests from southern pine beetle with 
warming winters. Nat. Clim. Change 7, 713 (2017).

 13. Dietrich, I. et al. The antiviral RNAi response in vector and non-vector cells against orthobunyaviruses. PLOS Neglected Tropical 
Diseases 1, 5, https://doi.org/10.1371/journal. pntd.ooo5272 (2017).

 14. Zhao, C., Gonzales, M. A. A., Poland, T. M. & Mittapalli, O. Core RNAi machinery and gene knockdown in the emerald ash borer 
(Agrilus planipennis). J. Insect Physiol. 72, 70–78 (2015).

 15. Rodrigues, T. B., Rieske, L. K., Duan, J. J., Mogilicherla, K. & Palli, S. R. Development of RNAi method for screening candidate genes 
to control emerald ash borer, Agrilus planipennis. Sci. Rep. 7, https://doi.org/10.1038/s41598-017-07605-x (2017).

 16. Rodrigues, T. B., Dhandapani, R. K., Duan, J. J. & Palli, S. R. RNA interference in the Asian longhorned beetle: Identification of key 
RNAi genes and reference genes for RT-qPCR. Sci. Rep. 7, https://doi.org/10.1038/s41598-017-08813-1 (2017).

 17. Whyard, S., Singh, A. D. & Wong, S. Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem. Mol. 
Biol. 39, 824–832.

 18. Zhu, F., Xu, J., Palli, R., Ferguson, J. & Palli, S. R. Ingested RNA interference for managing the populations of the Colorado potato 
beetle, Leptinotarsa decemlineata. Pest Manage. Sci. 67, 175–182 (2011).

 19. Palli, S. R. RNA interference in Colorado potato beetle: steps toward development of dsRNA as a commercial insecticide. Curr. Opin. 
Insect Sci. 6, 1–8 (2014).

 20. Huvenne, H. & Smagghe, G. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: A review. J. Insect 
Physiol. 56, 227–235 (2010).

 21. Yu, N. et al. Delivery of dsRNA for RNAi in insects: An overview and future directions. Insect Sci. 20, 4–14 (2013).
 22. Baum, J. A. et al. Control of coleopteran insect pests through RNA interference. Nat. Biotech 25, 1322, Nbt1359#supplementary-

information, https://www.nature.com/articles (2007).
 23. Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geo- metric averaging of multiple internal 

control genes. Genome Biol. 3, 10–1186, https://doi.org/10.1186/gb-2002-3-7-research0034 (2002).
 24. Hong, S. W., Jiang, Y., Kim, S., Li, C. J. & Lee, D. K. Target gene abundance contributes to the efficiency of siRNA-mediated gene 

silencing. Nucleic Acid Therapeutics 24, 192–198, https://doi.org/10.1089/nat.2013.0466 (2014).
 25. Bolognesi, R. et al. Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm 

(Diabrotica virgifera virgifera LeConte). PLoS One 7, e47534, https://doi.org/10.1371/journal.pone.0047534 (2012).
 26. Palli, S. R. RNAi methods for management of insects and their pathogens. DNA 5, 3 (2012).
 27. Galdeano, D. M., Breton, M. C., Lopes, J. R., Falk, B. W. & Machado, M. A. Oral delivery of double-stranded RNAs induces mortality 

in nymphs and adults of Asian citrus psyllid, Diaphorina citri. Plos One 12, 0171847, https://doi.org/10.1371/journal.pone.01 (2017).
 28. Miller, S. C., Miyata, K., Brown, S. J. & Tomoyasu, Y. Dissecting systemic RNA interference in the red flour beetle Tribolium 

castaneum: Parameters affecting efficiency of RNAi. Plos One 7, https://doi.org/10.1371/journal.pone.0047431 (2012).
 29. Rodrigues, T. B., Duan, J. J., Palli, S. R. & Rieske, L. K. Identification of highly effective target genes for RNAi-mediated control of 

emerald ash borer, Agrilus planipennis. Sci. Rep. 8, 520, https://doi.org/10.1038/s41598-018-23216-6 (2018).
 30. Ulrich, J. et al. Large scale RNAi screen in Tribolium reveals novel target genes for pest control and the proteasome as prime target. 

BMC Genomics 16, 674, https://doi.org/10.1186/s12864-015-1880-y (2015).
 31. Scott, J. G. et al. Towards the elements of successful insect RNAi. J. Insect Phys. 59, 1212–1221, https://doi.org/10.1016/j.

jinsphys.2013.08.014 (2013).

https://doi.org/10.1038/s41598-019-42072-6
https://doi.org/10.1371/journal.
https://doi.org/10.1038/s41598-017-07605-x
https://doi.org/10.1038/s41598-017-08813-1
https://www.nature.com/articles
https://doi.org/10.1186/gb-2002-3-7-research0034
https://doi.org/10.1089/nat.2013.0466
https://doi.org/10.1371/journal.pone.0047534
https://doi.org/10.1371/journal.pone.01
https://doi.org/10.1371/journal.pone.0047431
https://doi.org/10.1038/s41598-018-23216-6
https://doi.org/10.1186/s12864-015-1880-y
https://doi.org/10.1016/j.jinsphys.2013.08.014
https://doi.org/10.1016/j.jinsphys.2013.08.014


8Scientific RepoRts |          (2019) 9:5640  | https://doi.org/10.1038/s41598-019-42072-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

 32. Arimatsu, E., Kotani, Y., Sugimura, Y. & Furusawa, T. Molecular characterization of a cDNA encoding dsRNase and its expression 
in the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 37, 176–183, https://doi.org/10.1016/j.ibmb.2006.11.004 (2007).

 33. Nowak, J. T., Meeker, J. R., Coyle, D. R., Steiner, C. A. & Brownie, C. Southern pine beetle infestation in relation to forest stand 
condition, previous thinning, and prescribed burning: evaluation of the southern pine beetle prevention program. J. For. 113, 
454–462 (2015).

 34. Weed, A., Ayres, M. & Hicke, J. Consequences of climate change for biotic disturbances in North American forests. Ecol. Monograph 
83, 441–470 (2013).

 35. Rodrigues, T. B. et al. Validation of reference housekeeping genes for gene expression studies in western corn rootworm (Diabrotica 
virgifera virgifera). PLoS ONE 9, 109825, https://doi.org/10.1371/journal.pone.0109825 (2014).

 36. Koramutla, M. K., Aminedi, R. & Bhattacharya, R. Comprehensive evaluation of candidate reference genes for qrt-pcr studies of 
gene expression in mustard aphid, Lipaphis erysimi (Kalt). Sci. Rep. 6, https://doi.org/10.1038/srep25883 (2016).

 37. Osgood, E. A. & Clark, E. W. Methods of sexing and sex ratios of the southern pine beetle. Dendroctonus frontalis Zimm. Can. 
Entomol. 95, 6–10 (1963).

 38. Pfaffle, M., Tichopad, A., Prgomet, C. & Neuvians, T. Determination of stable housekeeping genes, differentially regulated target 
genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26, 47, https://doi.
org/10.1023/B:BILE.0000019559.84305 (2004).

 39. Spiegelaere, W. D. et al. Reference gene validation for RT-qPCR, a note on different available software packages. PloS One 10, https://
doi.org/10.1371/journal.pone (2015)

 40. Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal 
control genes. Genome Biol. 18, https://doi.org/10.1186/gb-2002-3-7-research0034 (2002).

 41. Anderson, C. L., Jensen, J. L. & Orntoft, T. F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based 
variance estimation approach to identify if genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res., 
https://doi.org/10.1158/0008-5472.CAN-04-0496 (2004).

 42. Pfaffl, M. W., Tichopad, A., Prgomet, C. & Neuvians, T. P. Determination of stable housekeep- ing genes, differentially regulated 
target genes and sample integrity: Bestkeeper – excel-based tool using pair-wise correlations. Biotechnol. Lett. 26, 509–515 (2004).

 43. Silver, N., Best, S., Jing, J. & Thein, S. L. Selection of housekeeping genes for gene expression studies in human reticulocytes using 
real-time PCR. BMC Mol. Biol. 7, 33 (2006).

 44. Spiegelaere, W. D. et al. Reference gene validation for RT-qPCR, a note on different available software packages. PloS ONE, https://
doi.org/10.1371/journal.pone.0122515 (2015).

 45. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(t)(-delta delta 
c) method. Methods 25, 402–408 (2001).

 46. Broeders, S. et al. Guidelines for validation of qualitative real-time PCR methods. Trends in. Food Sci. Technol. 37, 115–126, https://
doi.org/10.1016/j.tifs.2014.03.008 (2014).

Acknowledgements
The authors thank David Coyle, Wood Johnson, and William Shepherd (USDA Forest Service) for assistance 
obtaining beetles, and Bruce Webb (University of Kentucky) for comments on an early version of this manuscript. 
This is publication number 18-08-070 from the Kentucky Agricultural Experimental Station and is published 
with the approval of the director. This work was supported by the University of Kentucky, the USDA Forest 
Service Forest Health Research and Education Center, and the Kentucky Agricultural Experiment Station under 
McIntire-Stennis 2351197000.

Author Contributions
B.R.K. conducted the experiments. B.R.K., T.B.R., and L.K.R. conceived the experiments, analyzed and 
interpreted the results, and prepared the manuscript. All authors approve of the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-42072-6.
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-42072-6
https://doi.org/10.1016/j.ibmb.2006.11.004
https://doi.org/10.1371/journal.pone.0109825
https://doi.org/10.1038/srep25883
https://doi.org/10.1023/B:BILE.0000019559.84305
https://doi.org/10.1023/B:BILE.0000019559.84305
https://doi.org/10.1371/journal.pone
https://doi.org/10.1371/journal.pone
https://doi.org/10.1186/gb-2002-3-7-research0034
https://doi.org/10.1158/0008-5472.CAN-04-0496
https://doi.org/10.1371/journal.pone.0122515
https://doi.org/10.1371/journal.pone.0122515
https://doi.org/10.1016/j.tifs.2014.03.008
https://doi.org/10.1016/j.tifs.2014.03.008
https://doi.org/10.1038/s41598-019-42072-6
http://creativecommons.org/licenses/by/4.0/

	RNA interference and validation of reference genes for gene expression analyses using qPCR in southern pine beetle, Dendroc ...
	Results and Discussion
	Reference genes. 
	Analysis of target gene expression. 
	Beetle mortality. 
	Gene silencing. 

	Methods and Materials
	Insects. 
	Reference gene(s). 
	Candidate gene treatments and selection. 
	Stability analysis. 

	RNA extraction, cDNA synthesis, and qPCR. 
	dsRNA synthesis from cDNA. 
	Adult beetle feeding assays. 

	Acknowledgements
	Figure 1 Cq values for 8 candidate reference genes in four independent experiments: (A) temperature, (B) light, (C) sex, (D) RNAi exposure.
	Figure 2 Relative expression of hsp, shi, and iap in adult SPB.
	Figure 3 Adult SPB survival 10 days after ingesting 1 µL of 10 µL of dsRNA.
	Figure 4 Ingestion of gene specific dsRNAs by adult SPB fed with 1 µL of 10 µg/µL of dsRNA, or dsGFP as a control, resulted in significant silencing of A) hsp (P = 0.
	Figure 5 Adult SPB feeding on sucrose droplet.
	Table 1 Final ranking of candidate reference genes from dsRNA-treated beetles according to values given by GeNorm, NormFinder, BestKeeper, and delta Ct and a comprehensive ranking by RefFinder.
	Table 2 Candidate reference genes and corresponding primer sequences.
	Table 3 Primer sequences and amplicon size for qPCR and dsRNA synthesis of the target genes hsp, shi, and iap.




