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Identifying Rare Variant Associations 
in Admixed Populations
Huaizhen Qin1,2, Jinying Zhao1 & Xiaofeng Zhu3

An admixed population and its ancestral populations bear different burdens of a complex disease. 
The ancestral populations may have different haplotypes of deleterious alleles and thus ancestry-
gene interaction can influence disease risk in the admixed population. Among admixed individuals, 
deleterious haplotypes and their ancestries are dependent and can provide non-redundant association 
information. Herein we propose a local ancestry boosted sum test (LABST) for identifying chromosomal 
blocks that harbor rare variants but have no ancestry switches. For such a stable ancestral block, our 
LABST exploits ancestry-gene interaction and the number of rare alleles therein. Under the null of no 
genetic association, the test statistic asymptotically follows a chi-square distribution with one degree 
of freedom (1-df). Our LABST properly controlled type I error rates under extensive simulations, 
suggesting that the asymptotic approximation was accurate for the null distribution of the test statistic. 
In terms of power for identifying rare variant associations, our LABST uniformly outperformed several 
famed methods under four important modes of disease genetics over a large range of relative risks. In 
conclusion, exploiting ancestry-gene interaction can boost statistical power for rare variant association 
mapping in admixed populations.

Admixture is an omnipresent evolutionary force in complex disease genetics of recently admixed populations. 
Admixture mapping locates genomic segments that harbor causal alleles with distinct ancestral frequencies 
through admixture linkage disequilibrium (ALD). It has been successfully applied to locate genetic variants 
for a range of diseases and traits, e.g., hypertension1,2, type 2 diabetes3,4, obesity5,6 and Alzheimer’s dementia7. 
Systematic reviews of admixture mapping approaches can be found in the literature8–10. Genome-wide association 
studies (GWASs) have proven successful in identifying individual common genetic variants associated with com-
mon diseases and traits11. In the era of GWASs, admixture mapping has become a useful compliment for identi-
fying common variant associations12. Several hybrid methods for combining the genotype and allele ancestry at 
a single-nucleotide polymorphism (SNP) have been developed13–15. These methods may claim variants which are 
in ALD with the true causal variants but not associated with the phenotype in any ancestral population. ALD may 
extend for substantial distances16–18. Qin and Zhu12 proposed a two-stage fine mapping method to first identify 
candidate local genomic segments and then identify individual variants responsible for the admixture mapping 
evidence.

The common variants identified in GWASs merely explain a small proportion of the heritability19, leading to 
many explanations of the ‘missing’ heritability20–23. A potential source of the missing heritability is the contribu-
tion of rare variants24,25. Evidenced by deep sequencing studies26–28, rare variants may have stronger effects on 
complex diseases than do common variants. Multiple methods have been developed for identifying rare variant 
associations. Collapsing methods, e.g., the CAST29 and the CMC30, utilize the number of rare alleles in a gene 
for each individual to enrich association information. The SDWSS31 scales SNPs in a test set by their minor 
allele frequencies in unaffected individuals. It utilizes a Wilcoxon type statistic to aggregate information and 
assesses the significance by permutation. The VT method32 utilizes the maximum of the test statistics over all 
allele-frequency thresholds. All these methods implicitly assume that all effects have an identical direction. To 
combine the effects of opposite directions, the data-adaptive sum test33 incorporates the signs of the observed 
effects into the CAST, whereas the C-alpha method34 and the SKAT35 test for genetic variance component. In 
particular, two methods have been proposed to combine the effects of different sizes and opposite directions. The 
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ORWSS36 scales SNP wise numbers of minor alleles by the logarithms of amended odds ratios in the 2 × 2 tables 
of disease status by allele states. The EREC method37 scales SNP wise numbers of minor alleles by the estimated 
regression coefficients. When families are available, incorporating linkage evidence in rare variants analysis has 
also been developed38–41.

However, these existing methods may be underpowered for identifying rare variant associations in admixed 
populations, because they do not explicitly exploit the association information conveyed by local ancestries, 
particularly, ancestry-gene interaction. An admixed population and its ancestral populations often bear differ-
ent burdens of complex diseases, partially due to the ancestral discrepancies in causal alleles, allele frequencies, 
and effects. Within a chromosomal block harboring causal alleles, an affected admixed individual may have an 
increased probability of inheriting alleles from the ancestry population of higher disease prevalence12,42. Common 
variants with different ancestral frequencies are correlated to their ancestries43,44 which provide non-redundant 
association information12–15. We hypothesize that this argument holds for rare variants. Single rare variant associ-
ation testing has unacceptably limited power since only a small portion of study individuals carry the rare allele.

In this report, we will illustrate the utility of explicitly exploiting local ancestries and genotypes together for 
rare variant associations. For simplicity, we aim to identify stable ancestral blocks harboring rare variants. For 
each person, all the SNPs within such a block share an identical ancestry. We propose a heuristic local ancestry 
boosted sum test (LABST). In a stable ancestral block, our test statistic combines the sum of SNP wise numbers 
of rare mutations and the ancestry-gene interaction. We mathematically prove that the LABST statistic asymp-
totically follows a chi-square distribution with 1-df if the test block is not associated with the disease. In extensive 
simulations, our LABST appropriately controlled type I error rates at preset nominal levels, indicating the ideal 
accuracy of the asymptotic approximation. Under various multiple rare variant disease modes with a large range 
of relative risks, our LABST were uniformly more powerful than the benchmark CAST as well as the sophisti-
cated SDWSS and ORWSS. The LABST is a heuristic method designed for unrelated cases and controls. It can 
be extended to incorporate informative weights, to accommodate covariates and to allow for multiple groups of 
rare variants.

Methods
In an admixed population of two ancestral populations, let a test chromosomal block contain L rare variants, i.e., 
the minor allele frequencies (MAFs) < 2%45. For n unrelated individuals from the admixed population, let yi be 
disease status of individual i (yi = 1, if individual i is affected; =0, if unaffected), G1 = {i: yi = 1} and G0 = {i: yi = 0} 
be the index sets of affected and unaffected individuals, respectively. Let gij denote the number of minor alleles 
carried by individual i at SNP j, = ∑ =s g ,i j

L
ij1  and s = [s1, …, sn]. Let the test block be stable in terms of variant 

wise ancestries. In other words, we assume that each block wide haplotype of each individual is inherited entirely 
from one of the two ancestral populations without any ancestry crossover points. Under such an assumption, all 
the m SNPs within the block share identical ancestry. We define a = [a1, …, an], where ai denotes the number of 
ancestries on individual i inherited from the ancestral population of the higher disease prevalence (due to the 
larger risk haplotype frequency). Let α be the nominal significance level of a test for block-based associations.

The proposed LABST.  For each individual i, we define ui = (1 + ai)si to combine ancestry-gene interaction 
aisi with si. We define a Welch type t statistic
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2 are likewise defined using the u-scores of n0 
unaffected individuals. We use We

2 to measure the association between the test block and the disease status. Let 
n1/n0 converge to a finite positive constant τ when both n0 and n1 increase, e.g., τ = 1 if n1 = n0. If the test block is 
not associated with the disease status, then the statistic We

2 converges in distribution to ξ χ~ 1
2, the chi-square 

distribution with 1-df (see Appendix A for a mathematical proof). Thus, we compute the p-value of We
2 as 

ξ= >P WPr( )e
2def  and claim significance when P < α, the preset nominal significance level.

Existing methods.  Most existing rare variant association methods exploit genotypes without explicitly cap-
italizing on ancestry-gene interactions. In such methods, the genotypic score of individual i is defined as 

= ∑ =x w g ,i j
L

j ij1  where wj is a SNP wise weight. The simplest weight is wj ≡ 1 for all the L SNPs as in the CAST29. 
For this universal weight, xi collapses to si, and a benchmark 1-df statistic is constructed by replacing ui’s in our 
LABST with the si’s.

The SDWSS31 weighs a SNP using its minor allele frequency in unaffected individuals among whole-sample 
individuals. At the jth SNP, = −w nq q1/ (1 ) ,j j j

 where qj = (1 + mj)/(2 + 2n0), and mj is the number of minor 
alleles at the SNP over the n0 unaffected individuals. Whole-sample individuals are ranked according to the xi 
scores and a rank sum = ∑ ∈x xrank( )i G i1

 is defined. Let ⁎x1 , …, ⁎xk  be the rank sums based on k(=1,000) permu-
tations of disease status, µ̂ and σ̂, be their mean and standard deviation, respectively. The standardized score is 
defined as z = (x−µ̂)/σ̂ and the P value of z is computed according to the standard normal distribution.

The weighting scheme in the SDWSS favors the disease-associated mutations with very low frequencies. As 
acknowledged by its authors, however, this scheme may reduce the power to detect the disease-associated muta-
tions with higher frequencies. The SDWSS is based on the implicit assumption32 that ∝ −q qlog(OR ) 1/ (1 )j j j0 0

, 
where ORj is the odds ratio in the 2 × 2 table of disease status by the allele at SNP j, and q0j is the MAF in the 
controls. Thus, Feng et al.36 proposed the ORWSS to jointly analyze rare and common variants. This method keeps 
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all the steps of the SDWSS except for the weighting scheme. In the ORWSS, a SNP is weighted by the logarithm of 
the amended odds ratio46 in the 2 × 2 table of allele by disease status. The amended odds ratio proves a useful 
remedy for handling potential empty cells in SNP-wise tables.

Type I error rate inflation factor.  Often, a conservative method tends more likely to miss true associations 
whereas a liberal method tends more likely to claim false positives. A valid powerful method should accurately 
control the type I error rate at each preset nominal level. Herein, we propose and use type I error rate inflation 
factor (TIERIF) to measure how accurately a method controls type I error rate. For a given nominal level α, we 
define the TIERIF of a method as γα = τα/α, where τα is the probability that the method rejects the null hypothe-
sis. If γα = 1, then the method is able to controls type I error rate at the given nominal level α. If γα is substantially 
smaller than 1, then the method is overly conservative. If γα is substantially larger than 1, then the method is 
overly liberal.

Usually, it is intractable to mathematically formulate the TIERIF of a sophisticated method. In addition, it is 
hard to tell what a TIERIF is unacceptably ‘small’ or ‘large’. Herein, we propose an empirical method to estimate 
this quantity and tell how small (large) is too small (large). Specifically, we define γ τ α=α αˆ ˆ /  as an estimator of γα, 
where τα̂ is the frequency that the method claims significance over R simulation replications generated under the 
null hypothesis of no association. As R increases, γα̂ converges in probability to γα, and α γ γ α− −α αˆR ( )/ 1  
converges in distribution to a standard normal variable (see Appendix B for a mathematical proof). Therefore, if 
the method properly controls type I error rate at α, then γα̂ concentrates with probability 95% between

α α= − . −αLB R1 1 96 (1 )/( ) (2)

and

α α= + . − .αUB R1 1 96 (1 )/( ) (3)

Under the null of no genetic association, the concentration interval [LBα, UBα] is the shortest among all the inter-
vals [LB, UB] such that γ≤ ≤ = .α

→∞
ˆLB UBlim Pr ( ) 0 95

R
0  (Appendix B). A method is called to be overly conserv-

ative if γ <α αˆ LB . Likewise, a method is called to be overly liberal if γ >α αˆ UB .

Simulation Designs
For method comparisons, we simulated an admixture using the rare variants with the frequency-spectrums of 
two natural populations. In the simulated admixture, block-wide haplotypes were inherited from the two ancestry 
populations. Four disease genetic modes were considered, including the dominant, additive, recessive, and mul-
tiplicative modes. Under each disease genetic mode, the disease status of an admixed individual was determined 
by the penetrance conditioning on block-wide risk haplotypes other than individual risk alleles.

Admixture.  To simulate a two-way admixture, we downloaded the genotype data of region ENr113.4q26 
from the ENCODE project Consortium47. Applying the Beagle software48, we separately inferred 180 CEU 
(Centre d’Etude du Polymorphisme Humain in Utah, USA) and 180 YRI (Yoruban in Ibadan, Nigeria) haplotypes 
over the ENr113.4q26 region. Details on the haplotype deconvolution have been described previously36. Across 
the 360 inferred haplotypes, we observed 1,693 SNPs. At each of the region-wide SNPs, we chose the minor allele 
in the YRI haplotype data (fYRI ≤ 0.5) as the reference allele (Fig. 1a). In the CEU haplotype data, the reference 
alleles at 1,373 SNPs are of frequencies fCEU ≤ 0.5, whereas at the other 320 SNPs, fCEU > 0.5 (Fig. 1b). Based on 
our previous association study on African Americans43, we adopted ω = 0.8 vs. ϖ = 0.2 as YRI-CEU admixture 
weights. To ‘genotype’ one admixed individual in the ENr113.4q26 region, we randomly chose one and another 
haplotype from the YRI or CEU haplotypes with probabilities ω vs. ϖ. In this simulated admixture, the frequen-
cies of reference alleles at the 1,693 SNPs (fADX = ωfYRI + ϖfCEU) range from 0.0011 to 0.5722 (Fig. 1c), where 295 
SNPs are of fADX < 0.02, satisfying the conventional criterion of rare variants45.

Causal haplotypes and ancestries.  From the 254 SNPs with fADX < 0.015, we randomly selected 23 SNPs 
as deleterious allele carriers (Table 1). The minor alleles at these 23 SNPs served as deleterious alleles. The delete-
rious alleles appear at 32 YRI and 4 CEU haplotypes, respectively. These 36 haplotypes served as risk haplotypes. 
The proportions of risk haplotypes in YRI and CEU haplotype data sets are = ≈ .p 0 1778YRI

8
45

 and 
= ≈ .p 0 0222CEU

1
45

, respectively. Thus, the proportion of risk haplotypes in the simulated admixture is
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For each admixed individual, we let H be number of risk haplotypes and let a be the number of YRI haplotypes. 
Table 2 presents Pr(H, a), the joint probability mass of (H, a), where q(⋅) = 1 − p(⋅) for YRI, CEU and ADX, respec-
tively. In this simulated admixture, the coefficient of correlation between H and a is

ρ
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Figure 1.  Population wise distributions of the reference alleles at 1,693 SNPs in ENr113.4q26. (a) In the YRI 
haplotype data, all the reference alleles are of frequencies fYRI ≤ 0.5. (b) In the CEU haplotype data, the reference 
alleles at 1,373 SNPs are of frequencies fCEU ≤ 0.5. (c) In the simulated admixture, the reference alleles at 295 
SNPs are rare (0.001 < fADX < 0.02).

SNPs
Base pair 
positions

Reference 
alleles

Frequencies

fYRI fCEU fADX

rs10020425 118710926 C 1/180 0 0.004444444

rs4834616 118781194 G 1/90 1/180 0.01

rs17866922 118799469 T 1/180 0 0.004444444

rs17866231 118811782 G 1/180 0 0.004444444

rs17869437 118846471 A 1/90 0 0.008888889

rs17866969 118860941 T 1/60 0 0.013333333

rs17866219 118861303 G 1/180 0 0.004444444

rs11931936 118880832 A 1/60 0 0.013333333

rs17869443 118891959 G 1/180 0 0.004444444

rs13138706 118901935 A 1/90 0 0.008888889

rs17865249 118942421 A 1/180 0 0.004444444

rs17867496 118943543 G 1/180 1/60 0.007777778

rs17862037 118948929 C 1/180 1/60 0.007777778

rs17868674 118950202 C 1/180 0 0.004444444

rs17875131 118953676 C 1/180 1/60 0.007777778

rs11562912 118958053 C 1/60 0 0.013333333

rs17867082 118986061 C 1/60 0 0.013333333

rs11945465 119041637 C 1/90 0 0.008888889

rs11929977 119118756 C 1/180 0 0.004444444

rs17867208 119122424 A 1/60 0 0.013333333

rs17869338 119143264 T 1/180 0 0.004444444

rs17866812 119152274 T 1/60 0 0.013333333

rs17867083 119185964 T 1/90 0 0.008888889

Table 1.  The distribution of the frequencies of deleterious alleles.

a = 0 a = 1 a = 2 Pr(H)

H = 0 ϖqCEU
2 2 2qCEUqYRIϖω ωqYRI

2 2 qADX
2

H = 1 2pCEUqCEUϖ2 2 (qCEUpYRI + pCEUqYRI)ϖω 2pYRIqYRIω2 2pADXqADX

H = 2 ϖpCEU
2 2 2pCEUpYRIϖω ωpYRI

2 2 pADX
2

Pr(a) ϖ2 2ϖω ω2

Table 2.  Generic probability mass function of (H, a) in the simulated admixture.
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Modes of disease genetics.  Let y be the disease status of an admixed individual (=1, if affected; =0, if 
unaffected). Let fH = Pr(y = 1|H) be the penetrance for a given H value (=0, 1, or 2). Then the disease prevalence 
κ = Pr(y = 1) can be formulated as

∑κ = .f HPr( )
(6)H

H

Let RR = f2/f0 be relative risk. Then, = ⋅f f RR1 0  for dominant mode, = ⋅ +f f RR(1 )1
1
2 0  for additive mode, 

= ⋅f f RR1 0  for multiplicative mode, and f1 = f0 for recessive mode. Under each mode, | = |y a H y HPr( , ) Pr( ) 
a HPr( )| , namely, the disease status is independent of local ancestry a given haplotype H. It follows that

| =
|H a y H a y H

y
Pr( , )

Pr( , )Pr( )
Pr( ) (7)

for an arbitrary (H, a, y). Setting y = 0 in Eq. (7) yielding the joint probability mass of (H, a) in unaffected 
subpopulation:

κ
| = =

−

−
.H a y

H a f
Pr( , 0)

Pr( , )(1 )
1 (8)

H

Setting y = 1 in Eq. (7) yielding the joint probability mass of (H, a) in affected subpopulation:

κ
| = = .H a y

H a f
Pr( , 1)

Pr( , )
(9)

H

Eqs (8) and (9) and Table 2 are necessary and sufficient to mathematically formulate the Pearson coefficient of the 
correlation between H and a in the entire affected subpopulation ρ = | =H a ycorr( , 1)1

def  and that in the entire 
unaffected subpopulation ρ = | =H a ycorr( , 0)0

def .

Simulation configurations.  Using Table 3, we numerically computed ρ1 and ρ0 values for f0 = 0.1 and 
each RR under each of the four disease genetic modes (Fig. 2). Under all the four modes, ρ1 increases and ρ0 
decreases from 0.1759 as RR increases from 1 (no genetic association) to 3. The dominant mode shows the larg-
est ratio ρ1/ρ0, followed in turn by the additive mode, the multiplicative mode, and the recessive mode. Of note, 
f0 = f1 = f2 = κ under the null hypothesis of no genetic association. We acknowledge that prevalence (κ) varies 
for different diseases in an admixed population. For example, about 10% African Americans suffer from lifetime 
major depressive disorder49, whereas about 2.7% African American suffer from dementia50. In our simulations, 
we fixed f0 = 0.1 as a reference value to inspect the type I error rate and power patterns of different association 
methods with respect to different disease modes, relative risks, sample sizes, and nominal significance levels.

For each RR value under each mode, at each replication we simulated region wide genotypes and ancestries 
of n1 affected and n0 unaffected individuals from the admixed population. For each specific scenario, we adopted 
sample sizes n1 = n0 = 500 and then n1 = n0 = 2,000 to inspect the impacts of sample sizes on power levels and type 
I error rates of the methods under comparison. These sample sizes are realistic in that they reflect the scales of 
recent deep sequencing studies in African Americans. For example, 489 Alzheimer’s cases and 472 controls were 
sequenced a target sequencing study on Alzheimer’s disease51. The Jackson Heart Study52 has deeply sequenced 
more than 3400 African Americans.

To accurately evaluate the TIERIFs of the methods, we simulated 108 replications of genotypes and ancestries 
by setting RR = 1 under each of the four disease modes. This number of replications is sufficient and necessary 
for evaluating type I error rates of gene-based tests at nominal genome-wide significance level (2.5 × 10−6). For 
power comparisons, we generated 20,000 replications for each given RR value (>1) under each of the four disease 
modes. This number of replications would be sufficient for reliably inspecting power patterns.

The ORWSS was designed to accommodate both rare and common variants. Thus, for this method, we used 
all the region wide variants to compute the weighted-sum of genotypic scores. The SDWSS have been observed 
to reduce statistical power when more neutral common variants are included into the test statistic. Intuitively, 
the other two methods will also reduce statistical power if common neutral variants are included. In our power 
comparisons, therefore, we used the conventional threshold 0.02 to choose rare variants36 to perform the other 
three methods. In the simulated admixture, the reference alleles at 295 SNPs proved rare (fADX < 0.02). Hence, we 
used the numbers of minor alleles at these 295 SNPs to compute the sum scores in the CAST and our LABST as 
well as the weighted-sum score in the SDWSS.

a = 0 a = 1 a = 2 Pr(H)

H = 0 0.03824198 0.25726420 0.43267160 0.7281778

H = 1 0.00173827 0.0614716 0.1871012 0.2503111

H = 2 0.00000198 0.0012642 0.0202272 0.0215111

Pr(a) 0.04 0.32 0.64

Table 3.  Specific probabilities of (H, a) used in the simulation*. *Under this specific joint distribution of (H, a), 
the variance of (1 + a)H is Var[(1 + a)H] = 2.019955.
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Results
Type I error rates.  Figure 3 presents the TIERIFs of the four methods. For both sets of sample sizes, the 
CAST and our LABST well control type I error rates for various nominal levels across interval [10−6, 0.05]. They 
do not inflate or deflate type I error rates. Their TIERIF curves consistently concentrate around 1 and within 
the 95% concentration band (CB). The SDWSS appears overly liberal and the type I error rate inflation is quite 
robust to the increase in sample size. Its TIERIF curves clearly break the upper bound of the 95% CB for both the 
smaller and the larger sample size settings. These results would suggest that the SDWSS suffers a systematic bias in 
calibrating the tail probability of its test statistic. In contrast, the ORWSS appears overly conservative. Its TIERIF 
curves clearly break the lower bound of the 95% CB, especially for the smaller sample sizes. It becomes essentially 
less conservative for the larger sample sizes. These results would suggest that the ORWSS better calibrates the tail 
probability of its test statistic for larger sample sizes.

Figure 2.  The trends of correlation between the numbers of causal haplotypes and ancestries under four modes 
of disease genetics. The correlation curves in each panel were generated by fixing f0 = 0.1 and varying (f1, f2) 
according to the underlying genetic modes. Generically, as relative risk increases from 1 to 3, the coefficient 
of correlation between H and a in affected group corr(H, a|D = 1) increases from 0.1759, whereas that in 
unaffected group decreases from 0.1759. The dominant mode shows the largest ratio of corr(H, a|D = 1) to 
corr(H, a|D = 0), followed in turn by the additive, multiplicative and recessive modes.

Figure 3.  Empirical TIERIFs of the four methods based on different sample sizes and various nominal levels. 
In each panel, we generated 108 replications of region wide genotypes and ancestries of the specified numbers of 
affected and unaffected admixed to evaluate the TIERIF of each method at each nominal level. In the ORWSS, 
we used all the 1,693 variants to compute the individual weighted-sums of genotypic scores. In the other 
methods, we used the 295 variants of fADX < 0.02 to compute the individual sums/weighted-sums of genotypic 
scores. The LABST and the CAST accurately controlled the type I error rates. The SDWSS appeared overly 
liberal. The ORWSS appeared over conservative, particularly for the smaller samples.

https://doi.org/10.1038/s41598-019-41845-3
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Power comparisons.  Figure 4 presents the power comparisons under four disease genetic modes with 
sample sizes n0 = n1 = 500 and nominal level α = 0.05. Overall, each method performs the best at the dominant 
mode, followed in turn by the additive mode, multiplicative mode, and lastly, recessive mode. Under each disease 
genetic mode, our LABST performs the best for all relative risks, followed in turn by the CAST, the SDWSS, and 
the ORWSS. Exploiting an identical set of rare variants, the CAST uniformly outperforms the SDWSS. Since the 
SDWSS is robustly liberal, its power inferiority would be caused by the transformation of the weighted-sums of 
genotypic scores to ranks, which would lose information. For the moderate sample sizes, the ORWSS appears 
unacceptably conservative and lacks ability to effectively separate the true causal variants from the other variants.

Figure 5 presents the power comparisons when increasing sample size to n0 = n1 = 2,000 but keeping all the 
other parameters used in Fig. 4. All the methods show increased power across all the different disease genetic 
modes. The LABST keeps its uniform preference, followed by the CAST, which outperforms the SDWSS and the 
ORWSS. However, the ORWSS now outperforms the SDWSS for a wide range of relative risks under the domi-
nant, additive, and multiplicative modes. Under the recessive mode, the SDWSS slightly outperforms the ORWSS 
for all the relative risks. When increasing the sample size, the ORWSS becomes much less conservative and better 
scales the causal SNPs especially when RR becomes relatively large.

Figure 6 presents the power comparisons when reducing the nominal level to α = 10−6 but keeping all the 
other parameters in Fig. 5. At this significance level, the LABST still outperforms the other methods across all the 
scenarios. Under the recessive mode, all methods have very low or no power with respect to various relative risks. 
Under the other three modes, the CAST is more powerful than the SDWSS but becomes less powerful than the 
ORWSS, whereas the ORWSS become the second best among our compared methods for a wide range of relative 
risks.

Discussion
The primary objective of this report is to illustrate the utility of leveraging local ancestry for rare variant associ-
ation analysis. We present the LABST to combine local ancestry of a test block with the sum of genotypic scores 
of block-wide rare variants. Under the null of no genetic association, we mathematically prove that the LABST 
statistic asymptotically follows the chi-square distribution of one degree of freedom. This explicit asymptotic 
null distribution enables us analytically compute the significance of each ancestry block. Under our extensive 
simulations, the LABST properly controls type I error rates at various preset nominal levels. These results indicate 
that the null distribution of the LABST statistic can be accurately approximated by the 1-df chi-square distribu-
tion. Based on our results, the permutation-based evaluations of significance in the SDWSS and ORWSS are not 
accurate enough for genome-wide scans for samples from admixed populations. The SDWSS tends to inflate type 
I error rates and the inflation appears robust to the changes of sample sizes. In other words, the SDWSS would 
suffer a systematic bias in calibrating the tail probability of its test statistic. The ORWSS appears severely conserv-
ative when the numbers of affected and unaffected individuals are moderate. Its conservativeness becomes less 
significant when the sample sizes are essentially increased. The conservativeness of the ORWSS would stem from 
the unideal stability and effectiveness of its weighting scheme.

Figure 4.  Power comparisons under four disease modes with various relative risks: n0 = n1 = 500, nominal level 
α = 0.05. In the simulated admixture, all the 23 risk allele frequencies are less than 0.015, and the cumulative 
risk haplotype frequency is 0.1467. Under each mode, at each relative risk, we evaluated the power of each 
method based on 20,000 simulated replications. In the ORWSS, we used all the 1,693 variants to compute the 
individual weighted-sums of genotypic scores. In all the other methods, we used the 295 variants of fADX < 0.02 
to compute the individual sums/weighted-sums of genotypic scores.
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In our simulations for the power comparisons, we hypothesize that certain haplotypes of some rare alleles are 
direct causal factors. This assumption allows for diverse SNP wise MAFs but does not necessarily mean that alleles 
with smaller MAFs have larger effect sizes. Under four disease genetic modes, the LABST are uniformly more 
powerful than the CAST, SDWSS, and ORWSS across all relative risks, sample sizes, and nominal levels investi-
gated. Its power gain stems from explicit incorporation of the interaction between a gene and the local ancestry. 
The CAST is more powerful than the SDWSS uniformly across all our simulations, even though the SDWSS 

Figure 5.  Power comparisons under four disease modes with various relative risks: n0 = n1 = 2,000, nominal 
level α = 0.05. In the simulated admixture, all the 23 risk allele frequencies are less than 0.015, and the 
cumulative risk haplotype frequency is 0.1467. Under each mode, at each relative risk, we evaluated the power 
of each method based on 20,000 simulated replications. In the ORWSS, we used all the 1,693 variants to 
compute the individual weighted-sums of genotypic scores. In all the other methods, we used the 295 variants of 
fADX < 0.02 to compute the individual sums/weighted-sums of genotypic scores.

Figure 6.  Power comparisons under four disease modes with various relative risks: n0 = n1 = 2,000, nominal 
level α = 10−6. In the simulated admixture, all the 23 risk allele frequencies are less than 0.015, and the 
cumulative risk haplotype frequency is 0.1467. Under each mode, at each relative risk, we evaluated the power 
of each method based on 20,000 simulated replications. In the ORWSS, we used all the 1,693 variants to 
compute the individual weighted-sums of genotypic scores. In all the other methods, we used the 295 variants of 
fADX < 0.02 to compute the individual sums/weighted-sums of genotypic scores.

https://doi.org/10.1038/s41598-019-41845-3


9Scientific Reports |          (2019) 9:5458  | https://doi.org/10.1038/s41598-019-41845-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

is robustly liberal. The SDWSS loses portion of information when transforming the original weighted-sums of 
numerical genotypic scores to Wilcoxon rank-sum statistic. As pointed out by Wilcoxon himself, ranks are not 
sufficient statistics53 and hence rank-sum test would not be the most powerful test. The superiority of the ORWSS 
to the CAST and the SDWSS varied across different disease genetic modes, relative risks, sample sizes, and nom-
inal significance levels. Based on our results, the ORWSS would have limited utility for studies of small to mod-
erate samples, whereas it would be useful for studies with large samples from a homogeneous population. Based 
on our results, a liberal method is not necessarily more powerful uniformly than a conservative method. The 
preference of a method depends on how effectively it can aggregate the association information of rare variants. 
Although derived from simulations on a particular region, all the conclusions are generalizable for an arbitrary 
admixed population with different ancestry-haplotype correlations between cases and controls. Such differences 
often stem from the different ancestral frequencies of the risk haplotypes, disease modes, and/or relative risks.

Our LABST can be extended to Hotelling’s two-sample T-squared test54 to jointly analyze multiple groups of 
variants when desired. Following the LABST, we can define uij as the integrative score of individual i in group j. For 
d groups, we write ui = (ui1, …, uid)′ as the d × 1 vector of integrative scores, = ∑ ∈u u n/i G i0 00

, = ∑ ∈u u n/i G i1 11
, 

and V = (n−2)−1 ∑ − − ′ + ∑ − − ′ .∈ ∈u u u u u u u u[ ( )( ) ( )( ) ]i G i i i G i i1 1 0 01 0
 We define Hotelling’s statistic as 

= − −−u u V u uT n n n( / )( ) ( )2
0 1 1 0

1
1 0 . The covariance matrix V converges in probability to a positively definite 

matrix as long as the integrative scores are not in co-linearity. The statistic T 2 converges in distribution to the 
chi-square distribution with d degrees of freedom if group set is not associated with the disease. In addition, inform-
ative group wise weights, if available, can be readily incorporated into the Hotelling’s T 2 test.

In this investigation, individual local ancestries were assumed to be known. In practice, local ancestries can be 
inferred from available genomic data. Several software packages, such as SABER18, HAPAA55, HAPMIX56, 
MULTIMIX57, CSVs58, and ELAI59, have been established for inferring local ancestries. These packages utilize 
available marker-wise genotypes of a target individual and the haplotypes/genotypes from certain ancestral pan-
els. When dense SNPs are genotyped across the genome, the local ancestries can be highly accurately inferred. For 
each admixed individual, our LABST assumes that within a short block there is no ancestry crossover. This 
assumption is reasonable for haplotype blocks in ancestral populations60,61. Such haplotype blocks are of little 
evidence for historical recombination and much shorter than ALD regions. Gene based rare variant associations 
often fall in such blocks. In practice, it would be important to accommodate covariates (e.g., population structure 
variables, environmental factors). Let zi = [1, zi1, …, zic]′ contain the covariates of individual i and let Z = [z1, …, 
zn]′ be the whole sample covariates matrix. To adjust for the covariates, let = − ′ ′ ′−e u z Z Z Z u( )i i i

1  for each indi-
vidual i, where u = [u1, …, un]′. It is clear that the vector of residuals e = [e1, …, en]′ is orthogonal to Z, that is, 
e′Z = 0. Replacing ui’s in the statistic We (Eq. 1) with ei’s is one way to adjust for covariates.

Like many existing methods, our LABST assumes that individuals are randomly recruited from a target 
admixed population. It will be instructive to develop particular integrative methods for other sampling schemes 
that enrich rare variants. For example, the individuals with extreme values of a quantitative trait are often 
recruited for sequencing studies. Under such a trait-oriented sampling scheme, the LABST is valid but its power 
would be improved by combining local ancestry with a direct quantitative association analysis that incorporates 
the sampling scheme. In addition, individuals can be selected according to a secondary sampling trait, which is 
conveniently and economically measured. Only for the recruited individuals, the values of the primary study trait 
are measured. For such a sampling scheme, we will develop novel effective methods to combine block wise ances-
tries and genotypes with multiple phenotypes for identifying pleiotropic genes. Currently, the LABST only works 
for a recent (several-generations) admixture of two ancestral populations with different genetic architectures, i.e., 
distinct causal allele frequencies and/or effects. One typical example is the current African American population, 
which suffers from disproportionately heavier burdens of multiple diseases1–7 than European Americans. The 
LABST can be extended to allow for multi-way admixtures such as Hispanic and Latino Americans. For example, 
it can be extended to a (d + 1)-way admixture by using Hotelling’s two-sample T-squared test with d degrees of 
freedom, which is similar to the above extension to combine multiple groups of variants.
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