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Distinct endophytes are used by 
diverse plants for adaptation to 
karst regions
Fei Li1, Xiaohong He1, Yuanyuan sun1, Ximin Zhang2, Xiaoxin tang2, Yuke Li1 & Yin Yi  3

the present study aimed at systematically investigating the endophytic communities of dominant 
plants in the karst ecosystem. Soil and plant materials were collected and after sequencing of the 16 s 
RNA, the diversity and abundance of the endophytic community structures in leaves were examined. 
our results showed that abundant and diverse endogenous bacteria were associated with the leaves 
of common dominant plants living in the karst ecological environment. Notably, common traits and 
significant differences in the endophytic community structures were recorded among different plant 
species with different leaf grown in soils with different calcium contents. These observations implied 
that plants may adopt different strategies to adapt to the karst ecological environment. In addition, 
the endophytic bacteria associated with the leaves may be involved in different physiological strategies 
used by the plants to adapt to the karst ecological environment. These findings provide new avenues for 
developing microbial agents that could be suitable for the karst ecological environment and will provide 
sustainable solutions for improving the ability of plants to adapt to karst special adversities, and thus 
for karst geomorphological environmental protection and agricultural development.

Karst is a fragile and unique ecological environment and the primary rock of the karst topography is mainly com-
posed of limestone, dolomite and other soluble carbonate rocks, covering the neutral to slightly alkaline soils rich 
in calcium and magnesium. The karst region is characterized by high calcium content (up to 1–3%), the average 
of which is several times higher than that of the non-karst regions. In addition, the ability of soils in karst regions 
for water conservation is extremely poor, which makes the soil surface very dry and cause serious water shortage 
in these regions. Another feature of the karst areas is that the nutritional potential of the soil is extremely poor due 
to the scarcity of nitrogen and phosphorus elements which are necessary for plant growth1,2.

The intake of calcium by plants is directly related to the exchangeable calcium content in the soil. The high cal-
cium content of the soil causes the plant to absorb more calcium than normal, which leads to a number of serious 
consequences including hardening of the cell wall of the plant, inhibition of cell growth, disturbance of phosphoric 
acid-based energy metabolism, damage to the plant cell membrane structure and reduction of photosynthetic and 
transpiration rates, leading to leaf senescence3,4. Therefore, the plants that grow in the karst environment must 
have unique physiological and ecological adaptation mechanisms. Previous studies on the vegetation in the karst 
area showed that there are obligated calciferous plants that grow only in limestone areas5. Other researchers 
determined the calcium content and the exchangeable calcium content of the above ground and underground 
parts of common plants in various karst regions and found that 14 dominant species of karst ecosystem could 
be classified based on their aboveground and underground calcium content into high-calcium, low-calcium, 
and medium-calcium content plants6,7. High-calcium plants have a strong calcium-enrichment ability, and their 
above-ground parts can maintain high calcium content even in relatively low-calcium soils. The low-calcium 
plants have relatively low calcium content in their above-ground parts even in soils with high-calcium content. 
The medium-calcium content plants are case-dependent plants and their content in calcium is mainly affected by 
the exchangeable calcium content of the soil. These observations indicate that dominant plants living in the karst 
region adopt different ways to adapt to the high-calcium of the soil in these environments.
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Endophytes plays important functions in the adaptation and evolution of plants to their environment. After 
400 million years of evolution, there is a complete mechanism for the perception, signaling and response to exter-
nal stress in the plant genome. However, most plants still cannot survive in highly hostile environments such as 
beaches and karst rocky desertification areas. Sufficient experimental evidence has proven that plants that grow 
in unfavorable environments such as salty, dry, hot and heavy metals-rich environments may develop different 
adaptation capacities to adversity and this may be partially due to symbiotic microorganisms8–19. All plants have 
been found to cohabit with endogenous microorganisms including bacteria, fungi, viruses, and microalgae11–13. 
These microorganisms are present in all plant organs including roots, stems, leaves, flowers, fruits and seeds, and 
are located in intercellular, xylem conduits and the intracellular parts of the plant cells14,20. Some scientists have 
even demonstrated that the phenotype of plants in nature is a product of the plant genome and their extensive 
interactions with microbial communities in the rhizosphere or in vivo14. Both greenhouse and field experiments 
have also confirmed that the removal of key endophytes can lead to the loss of resistance and adaptation abilities 
of some plants, which, for this reason, can no longer adapt to the unfavorable environment in which they orig-
inally used to live8. However, in the karst ecological environment, there has been no relevant study focused on 
the community structures and ecological functions of endophytic communities associated with dominant plants.

The dominant plants in the karst ecological environment include both gymnosperms and angiosperms which 
can physiologically adapt to high calcium and drought through a panoply of strategies. However, the similarities 
and differences in the endogenous microbial community structures of dominant plants in karst regions as well 
as the similarities and differences in the endogenous flora of the leaves of different plant species that adapt to the 
karst ecosystem with different mechanisms are unknown and needs an in-depth investigation.

In this study, we collected dominant plants and soil samples from several karst regions in Guizhou Province 
(China) to detect the endophytic bacterial community structures of the leaves of these dominant plants and 
identified bacterial communities common or specific to these plants that adapted to the karst ecosystem with 
different strategies. This work is the first systematic comparative study on the endophytic community structures 
associated with dominant plants in the karst ecological environment. Our findings will provide an avenue for the 
development of microbial agents that could be suitable for applications in the karst ecological environment and 
will provide sustainable solutions for improving the ability of plants to adapt to karst particular adversity and, 
thus, for the protection of karst topography and the development of agriculture in this kind of regions.

Materials and Methods
Collection of soils and plant materials. Samples were collected from karst regions in Guizhou Province 
from August to October 2017. According to different degrees of rocky desertification, Puding, Huajiang, Libo and 
Luodian regions located in the limestone mountain area of Xiaba Village, Maguan Town, Puding County, and the 
north plate of the Huaqiao Grand Canyon Iron Cable Bridge Scenic Area, 3 km south of Huajiang Town, Guanling 
County Jiangnan bank, Maobo karst forest nature reserve and LuodianQiandaohu wharf area were selected for 
the study. The degree of rocky desertification in the sampling sites in Puding and Huajiang was heavier, and the 
degree of rocky desertification in the sampling sites in Libo and Luodian was relatively light. The latitude and 
longitude of the sampling sites were as shown in Table 1. The collected samples were limited to small shrubs and 
herbaceous plants because small shrubs and herbaceous plants are the pioneer and dominant species in karst 
rocky desertification regions, and their use for research on the mechanism of plant adaptation to high calcium 
environment is representative and operational. Herbs and shrubs were collected in the local area as dominant or 
common species, and 3 plants were selected for normal growth. When collecting soil samples, the top soil, middle 
soil, and bottom soil distributed in the roots were collected and mixed in equal amounts.

Determination of total calcium content. For the determination of calcium content in plant leaves, 1.00 g 
of plant samples were digested with a concentrated H2SO4-H2O2 and filtrated. Then, 5 mL of filtrate was taken 
and added with 2 mL of 10% La(NO3)3 and diluted to 50 mL before determination of caclcium content by atomic 
absorption spectrophotometry.

For the determination of the exchangeable calcium content in soil samples, 10.00 g of air-dried soil were added 
with 50 mL of 1 mol·L−1 CH3COONH4 solution (pH 7.0) and shakeed at room temperature for 30 min. After 
filtering, 5 mL of filtrate was taken and added with 2 mL of 10% La(NO3)3. The content of exchangeable calcium 
was determined by atomic absorption spectrophotometry with a capacity of 50 mL.

DNA extraction. To eliminate epiphytic microorganisms, the collected leaves of dominant plants were 
imbibed for 40 s in ethanol (75% vol/vol) and for 4 min in 1% sodium hypochlorite (vol/vol). Next, the leaves 
were washed thrice using sterile distilled water. The sterilization efficiency was confirmed by plating and culturing 
the sterile water used for rinsing (collected after the last washing) on LB medium. Subsequent experimental steps 

Sample number Location Latitude and longitude Collection date Altitude (m)
Soil calcium 
content (mg/kg)

1 Puding County 26°14.726′ N,105°45.507′ E 2017.08.06 1252 4289.89 ± 331.22

2 Guanling Yi and Miao 
Autonomous County 25°41.633′ N,105°36.746′ E 2017.08.08 950 3795.71 ± 250.91

3 Libo County 25°26.223′ N,108°7.117′ E 2017.08.10 550 3232.82 ± 146.04

4 Luodian County 25°25.441′ N,106°50.276′ E 2017.08.12 867 2547.53 ± 259.11

Table 1. Data about the sample collection sites.
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were followed only if no bacterial colony had grown on the LB medium, which was indicative of successful steri-
lization of the surface of the leaves. After sterilization, the leaves were soaked for 5 min in the DNA Away solution 
(DNA Away Surface Decontaminant; Thermo Fisher Scientific Inc, Waltham, MA, USA) to decontaminate leave 
surface from unwanted DNA and washed thrice using sterile water. After grinding of the leaves in presence of 
liquid nitrogen in frozen sterilized mortars with pestles, an aliquot of 100 mg leaf samples was taken for DNA 
extraction which was performed by using the CTAB method.

16S rDNA amplification and sequencing. For bacterial community analysis, the 16S rRNA gene 
sequencing was performed using the Illumina MiSeq sequencing platform. The primers used for the amplifi-
cation of V4 region of the 16S rRNA gene were 799 F (5′-AAC AGG ATT AGA TAC CCT G-3′) and 1492 R 
(5′-GGT TAC CTT GTT ACG ACT T-3′) as forward and reverse primers, respectively. This primer pair features 
several mismatches with plant chloroplast 16S rRNA gene sequence, which prevent plant chloroplast from being 
sequenced (Wang et al. 2009). The first 10 cycles of PCR amplification were performed and the amplified products 
were then purified using AgencourtAmpure XP (Beckman Coulter, Inc., CA, USA). These amplification products 
were subsequently used as a template for the second PCR amplification using the same primers for 30 cycles. The 
thermocycler conditions were as follows: 94 °C 3 minutes, 94 °C 45 seconds, 50 °C 60 seconds, 72 °C 90 seconds, 
72 °C 10 minutes and 4 °C holding. The PCR products were detected on a 1% agarose gel, and a negative con-
trol was used to confirm the absence of contamination. Positive amplicons were quantified using the PicoGreen 
dsDNA Assay Kit (Invitrogen, CA, USA), combined in equal amounts and then gel purified. The DNA library was 
sequenced using the Illumina MiSeq platform according to the manufacturer’s instructions17.

Analysis of the sequencing data. The sequencing data was analyzed using the QIIME software package18 
and UPARSE pipeline19. QIIME software was used for quality filtering of reads and processing with the default 
parameter settings for Illumina processing in QIIME (r = 3, p = 0.75 total read length; q = 3 and n = 0; herein, 
p is the minimum number of consecutive high-quality base reads to read, r the maximum allowed consecutive 
low-quality bases, in the maximum number of unrecognized (N) bases allowed in a sequence and q the con-
sidered as low-quality mass fraction). After assembling the sequences, UPARSE pipelines was used to obtain 
operational taxonomy units (OTUs). All sequences were assigned to OTUs with a similarity of 97%. We selected 
representative sequences for each OTU and used the Ribosomal Database Project (RDP) classifier20 to assign 
classification data to each representative sequence.

statistics and analysis. The following analyses were further performed on each sample 16S rRNA dataset 
obtained in the previous step: (i) Comparison of α-diversity (Chao value and Shannon index) and β-diversity 
(bray curtis algorithm) (ii) Significant test based on unpaired Student’s t-test and Wilcoxon Ranked test were 
performed to determine any differences between two variables and the significance of the differences was assessed 
using the FDR (false discovery rate). All of the above statistical analyses were performed using the R packages 
vegan and ggplot.

Results
Plants exhibit different mechanisms for adaptation to the karst environment. Four karst typical 
regions and six species of dominant plants growing in the karst ecological environment were selected and the 
calcium content in the leaves of these plants and the soils on which they live was evaluated. The data concern-
ing the sampling sites and their locations are shown in Table 1. The measurement results were summarized in 
Table 2. The results showed that the calcium content of leaves from different dominant plants species and their 
corresponding rhizosphere soil displayed three different types of relationships that could be used for classify-
ing the studied plants as low calcium, high calcium and environment-dependent plants. The low calcium plants 
were Cyrtomiumfortunei and Pteris vittata. The correlation coefficients between leaf calcium content and soil 
exchangeable calcium content were 0.1237 and −0.4067, respectively. Both of these plants, even in the high-cal-
cium soil environment, maintained their leaf calcium content at a relatively low level (about 1% or less). High 
calcium plants comprised Cayratia japonica and Ixerispolycephala. The correlation coefficients of leaf calcium 
content and exchangeable calcium content in rhizosphere soil for these two plants were −0.5649 and −0.5327, 
respectively. Even in karst soils where the calcium content was relatively low, the calcium content of the leaves of 
these two plants remained at a high level (more than 2%). The dominant environment-dependent plants of the 
karst regions included the sweet potato Ficustikoua and Bidenspilosavar.radiate. In both plants, the leaf calcium 
content was closely correlated with the rhizosphere soil calcium content, and the correlation coefficients were 
0.8388 and 0.9178, respectively.

the overall characteristics of endophyte community structure in leaves of dominant plants 
growing in karst regions. Leaf endophytes play an important role in host adaptation to the environment. 
Thus, we aimed to investigate the similarities and differences in the community structure of endophytic bacteria 
in plants that adapt to different karst ecological environments. We selected two karst ecological environments 
with the highest and the lowest calcium levels (Puding County and Luodian County, Guizhou Province) and 
collected the above-mentioned six dominant plants species in these two karst regions. The characteristics of 
endogenous bacterial community structure in leaves were compared between these two regions, between differ-
ent plant species and between different karst adaptation strategies. From all of the samples, we obtained a total 
of 1,025,220 high-quality sequences (read average length = 250 bp) with a minimum of 84,887 sequences per 
sample (Additional Table S1). Of the total number of sequences, 1,023,736 (99.85%) could be divided into 183 
unique bacterial operational units (OTUs) at a sequence similarity level of 97%, averaging 46 OTUs per sample 
(Additional Table S2). All the OTUs obtained from all of the samples could be divided into 8 different bacterial 
phyla (Fig. 1a). The most abundant phylum was cyanobacteria, followed by proteobacteria. In all samples, the 
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OTUs of these two bacterial phyla accounted for more than 90% of the bacterial community structure (Fig. 1a). 
The barplot of leaf bacterial species obtained from all of the samples was reported in Fig. 1b. The vast majority of 
the species were found as unclassified microorganisms (Fig. 1b). Among the classified species, Diplazium pycno-
carpon, Luteibacter rhizovicinus and Pseudomonas fragi were the most representative species. The proportion of 
the other classified species was lesser than 0.5%. D. Pycnocarpon was more abundant in environment-dependent 
plant leaves compared to low calcium plant leaves (Fig. 1b).

Different endophytic community structures are associated with plants that adapt to the karst 
environment. We calculated the relative abundance of each OTU in each sample based on the abundance 
data of OTUs in each sample and used this abundance information to carry out principal component analysis 

Plant name
Growing Environment Soil 
Calcium Content (mg/kg)

Leaf calcium 
content (%)

Pearson Correlation 
coefficient Adaptation type

Cyrtomium fortunei

4074.54 ± 524.40 0.734 ± 0.178

0.1237

Low calcium type (even though the 
soil calcium content is high, the leaves 
always maintain a low calcium content)

3804.28 ± 331.77 1.053 ± 0.355

3150.17 ± 554.38 0.667 ± 0.284

2548.70 ± 600.35 0.857 ± 0.362

Pteris vittata

4582.52 ± 470.33 0.387 ± 0.135

−0.4067
3724.80 ± 482.50 0.346 ± 0.082

3244.53 ± 380.23 0.656 ± 0.447

2743.76 ± 442.57 0.432 ± 0.155

Cayratia japonica

4196.92 ± 447.29 2.882 ± 0.854

−0.5649

High calcium type (even though the soil 
calcium content is low, the leaves always 
maintain a high calcium content)

4057.38 ± 265.74 3.484 ± 1.056

3319.54 ± 674.89 4.057 ± 1.135

2288.42 ± 573.48 3.653 ± 0.948

Ixeris polycephala

3958.67 ± 624.40 1.838 ± 0.479

−0.5327
3544.80 ± 479.85 2.353 ± 0.769

3086.78 ± 772.84 2.664 ± 1.022

2548.64 ± 824.75 2.247 ± 0.862

Ficus tikoua

4408.79 ± 580.46 2.342 ± 0.398

0.8388

Environment-dependent type 
(environmentally determined, leaf 
calcium content changes with soil 
calcium content).

3816.49 ± 531.77 2.228 ± 0.482

3304.15 ± 910.27 2.265 ± 0.568

2586.75 ± 748.66 0.946 ± 0.435

Bidens pilosa var.radiate

4517.88 ± 624.40 3.184 ± 0.637

0.9178
3826.53 ± 472.33 3.048 ± 0.652

3291.73 ± 875.49 2.062 ± 0.486

2568.92 ± 776.28 1.953 ± 0.506

Table 2. The relationship between soil and leaf calcium content.

Figure 1. Endogenous bacterial community structure characteristics associated with each leaf sample.  
(a) Relative abundance of bacterial community at the phylum level. (b) Relative abundance of bacterial 
community at the species level. Ed: environment-dependent, Hc: high calcium, Lc: Low calcium, numbers 
infront of each samples indicate the sample number and replicate number.
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(PCA) of the OTUs to identify the affected samples and the main factors for differences in bacterial commu-
nity structure. We found that different adaptation strategies to the karst high-calcium environment were the 
main factors affecting the bacterial community structure (PC1) (Fig. 2a). In low calcium plants, the bacterial 
community structure was greatly affected by the calcium content of the soil (PC2). High calcium plants and 
environment-dependent plants had little differences in bacterial community structures. The species richness of 
the 12 samples was not significantly different, but the shannon index and simpson index (reflecting species diver-
sity, including species richness and species evenness) showed that low calcium plants (Cyrtomium fortunei and 
Pteris vittata), high calcium plants (Cayratia japonica and Ixeris polycephala) and environment-dependent plants 
(Ficus tikoua and Bidens ferulifolia) had higher endogenous bacterial community diversity (Fig. 2b). Using the 
Bray–Curtis algorithm (Fig. 2c), the samples were subjected to cluster analysis and the distance between sam-
ples was calculated to determine the similarity of the species composition of each sample. Bacterial community 
showed a great difference between low calcium and environment-dependent plants while there was relatively 
little difference in endophytic bacterial community between high calcium and environment-dependent plants 
(Fig. 2c).

In order to identify the differences in bacteria between the endogenous bacterial communities of the leaves, 
we used statistical methods to examine the differences in the abundance of microbial communities between the 
samples and assessed the significance of the differences using the FDR (false discovery rate). From the test results, 
species that led to differences in sample composition could be screened. The genus Diplazium belonging to the 
Alphaproteobacteria was the most abundant in the low calcium plants (Cyrtomium fortunei and Pteris vittata) 
and the high calcium plants (Cayratia japonica and Ixeris polycephala) but its presence was extremely low in the 
leaves of environment-dependent plants (Ficus tikoua and Bidens Pilosa var.radiate) (Fig. 3).

Differences in Plant Bacterial community Owing to Different Strategies Used for Adapting to 
Karst eco-environment. We use GLMM (general linear mixed model) to analyze all samples and identify 
the differential OTUs between samples. There were 61 OTUs common to karst dominant plant leaves (Fig. 4). 
Thirty-nine OTUs specifically appeared in the endophytic community of leaves of low calcium plants (Additional 
Table S3). The abundance of OTUs in endophytic bacterial communities of low calcium plants was higher than 
that in high calcium and environment-dependent plants (Fig. 4a, Additional Table S3). In addition, 6 OTUs 
appeared in the leaves of high calcium and environment-dependent plants and were absent from the leaves of the 
low calcium plants (Fig. 4a, Additional Table S3). We further analyzed the classification of these differential OTUs 
(Fig. 4b–d). The OTUs specific to the leaves of low calcium plant were different from those specific to the leaves 
of high calcium and environment-dependent plants. In soils with different calcium levels, the differential OTUs 
included specific bacteria. The above observations indicated that the effect of calcium content on the bacterial 
community structures was relatively weak.

Figure 2. Different endophytic community structures are associated with plants that adapt to the karst 
environment. (a) Principal component analysis indicating the difference between samples based on the 
abundance of OTU. (b) Shannon and Simpson diversity analysis. (c) Bray Curtis similarity analysis of samples 
based on the OTU abundance. Ed: environment-dependent, Hc: high calcium, Lc: Low calcium, numbers 
infront of each samples indicate the sample number and replicate number.
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Figure 3. Heatmap showing the differences in bacteria between the endogenous bacterial communities of 
the leaves. Ed: environment-dependent, Hc: high calcium, Lc: Low calcium, numbers infront of each samples 
indicate the sample number and replicate number.

Figure 4. Diversity of endophytes associated with the leaves of the different dominant plants in the karst 
regions. (a) Venn diagram showing the abundance of OTUs associated with each type of leaves and the number 
of OTUs shared among them. (b) Heatmap showing the OTUs abundant in low calcium plant leaves. (c) 
Heatmap showing the OTUs abundant in high calcium plant leaves. (d) Heatmap showing the OTUs abundant 
in environment-dependent plant leaves. Ed: environment-dependent, Hc: high calcium, Lc: Low calcium, 
numbers infront of each samples indicate the sample number and replicate number.
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Discussion
Because of its high calcium content, drought and poor content in nutritional elements, the karst ecological envi-
ronment is extremely fragile. Once the ground vegetation is destroyed, it will cause water and soil loss, resulting in 
surface rocky desertification and the regional environment will no longer be suitable for human survival, and the 
environmental recovery will become extremely difficult. This feature of the karst ecological environment can also 
cause countless problems to the local economic development. In order to preserve the soil as much as possible and 
avoid soil erosion, local farmers must spend enormous manpower and material resources to transform the slopes 
into terraced fields. Comparatively to plain areas, agricultural production in terraced fields is arduous due to the 
difficulty to use large machineries, the extremely high cost of cultivation and the lower yield.

There are some common dominant plants in the karst ecological environment. Some scholars have classified 
plants on karst topography according to their dependence on limestone soils. They are roughly divided into: 1) 
Calciphiles which are distributed only on limestone soils; 2) Calcioles which can grow normally on high-calcium 
soil while a few of them can grow on acid soil; 3) Calcifuges, which are only distributed on acidic soils and cannot 
grow normally on limestone soils; 4) Calcium-indifferent plants, which are distributed in limestone and acid soils, 
are insensitive to soil calcium content5. This classification reveals the distribution of plants in the karst ecological 
environment but does not reflect the adaptation mechanism of plants to high-calcium karst environments. In cor-
roboration with previous studies, our findings indicated significant differences in the calcium content and distri-
bution of different types of plants, suggesting different patterns of calcium absorption and utilization by different 
plant species. The calcium content of leaves of some plants was significantly correlated with the soil exchangeable 
calcium content, but calcium content of leaves of other plants had no correlation with the soil exchangeable 
calcium content (Table 2), indicating that the adaptation of karst plants to high calcium environment were not 
similar. Thus, plants may adopt a diversity of mechanisms to adapt to high calcium environments. Plant leaves 
are the main site of plant physiological activities; thus, the calcium content of plant leaves reflects the amount of 
calcium required for plant physiological activities. In this study, based on the correlation between the calcium 
content of the plant and its correlation with the soil calcium content, the analysis of strategies used for plant adap-
tation to high calcium environment was conducted. The dominant plants in the karst region could be classified 
into low calcium, high calcium and environment-dependent plants (Table 2). The different correlations between 
leaf calcium content and soil calcium content suggested that these three types of plants adapted to karst regions 
using different strategies. The leaf and soil calcium contents also affected the endogenous bacterial community 
structures of the leaves. Since microbial communities play important roles in plant physiological and metabolic 
processes, we anticipated that these endophytes may be involved in the adaptation strategies adopted by plant 
growing in the karst ecosystems. This provided a basis for further exploration of the mechanisms used by plants 
to adapt to high calcium content in karst regions.

Endophytes are important determinants of host plant resistance to stress8. Endogenous bacteria have a short 
reproductive cycle and a rapid evolution, which can help the host plant adapt to new environments in a quick 
manner21. Compared to transformation of functional gene to improve plant tolerance, inoculation with beneficial 
microorganism presents significant advantages. First of all, growth-promoting microorganisms can be conven-
iently transferred to diverse kinds of plants to improve the stress resistance of inoculated plants22,23. Secondly, 
beneficial microorganisms often confer to the host the ability to cope with multiple adversities24,25. Compared 
with transgenic pathways that can only improve the traits of plants, beneficial microbial infection pathways 
endow significant production and ecological applications, especially for the complex high calcium karst envi-
ronment. The present work is the first systematic study on the endophyte community structures associated with 
plants in the karst ecological environment. The results showed that there were abundant and diverse endogenous 
bacteria in the leaves of common dominant plants living in the karst ecological environment. There was some 
notable similarities and differences in the endophytic bacterial community structures among different plant spe-
cies with different calcium content and among different plant species with different adaption strategies to the karst 
ecological environment.

The important role of endogenous bacteria in host plant adaptation to local environment has received 
growing attention and the endogenous bacterial communities of model plants and important crops have been 
already studied. These studies have shown that important factors influencing plant endophytic bacterial com-
munity structures include soil physicochemical properties, host plant species and plant organs26,27. In the present 
study, the endophytic community structures of leaves were studied based on the physiological characteristics of 
plants, microbial species or soil properties. We found that in the dominant plants living in karst regions, distinct 
microbial community structures were associated with plant leaves. Previous studies demonstrated that bacterial 
community structures play important roles in plant growth, resistance to diseases and different environmental 
stresses28–31. Based on these studies, we suggest that, in karst regions, soil calcium content influences the bacterial 
communities and that different bacterial communities may participate in physiological strategies used by the 
plants to adapt to the karst ecological environment. These findings provide a new perspective for examining the 
ecological roles of endophytic bacterial community structures and the influencing factors.

The differential OTUs and the corresponding bacteria may exert some effects on host plants. Different phys-
iological strategies used by plants to adapt to the karst ecological environment, the endogenous bacteria that 
exist in the leaves, the specific mechanism of the physiological processes of the plant will be the focus of our next 
research. This study will open an avenue for the development of microbial agents that are suitable for the ecolog-
ical environment of karst regions and will provide sustainable solutions for improving the plant ability to adapt 
to karst particular adversity, and thus for the protection of karst topography and the development of agriculture.

Data Availability
All data generated or analysed during this study are included in this published article.
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