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Using a Novel Transfer Learning 
Method for Designing Thin Film 
Solar Cells with Enhanced Quantum 
Efficiencies
Mine Kaya    & Shima Hajimirza   

In this study a new method for design optimization is proposed that is based on “transfer learning”. The 
proposed framework improves the accuracy and efficiency of surrogate-based optimization. A surrogate 
model is an approximation to a costly black-box function that can be used for more efficient search of 
optimal points. When design specifications change, the objective function changes too. Therefore, there 
is a need for a new surrogate model. However, the concept of transfer learning can be applied to refit 
the new surrogate more efficiently. In other words insights from previous experiences can be applied to 
learning and optimizing the new function. We use the proposed method in a particular problem pertaining 
to the design of “thin film multilayer solar cells”, where the goal is to maximize the external quantum 
efficiency of photoelectric conversion. The results show that the accuracy of the surrogate model is 
improved by 2–3 times using the transfer learning approach, using only half as many training data 
points as the original model. In addition, by transferring the design knowledge from one particular set of 
materials to another similar set of materials in the thin film structure, the surrogate-based optimization is 
improved, and is it obtained with far less computational time.

Machine learning has empowered important technological developments in the last decades benefiting many 
engineering applications. Machine learning algorithms resemble human learning by collecting data for the task in 
hand and establishing reasonable connections between inputs and outputs. However, the conventional methods 
of machine learning start learning from scratch for every new task, unlike the way human brain normally func-
tions. The ability of human brain to transfer knowledge among tasks can lend itself to smarter machine learning 
algorithms. This is officically known as transfer learning which has proven to be a promising concept in data 
science.

Transfer learning has received attention of data scientists as a methodology for taking advantage of available 
training data/models from related tasks and applying them to the problem in hand1. The technique has been 
useful in many engineering applications where learning tasks can take a variety of forms including classifica-
tion, regression and statistical inference. Example of classification tasks that has benefited from transfer learning 
include image2,3, web document4,5, brain-computer interface6,7, music8 and emotion9 classification. Regression 
transfer has received less attention compared to transfer classification10. Nonetheless, there are several studies on 
transfer learning in regression problems such as configurable software performance prediction11, shape model 
matching in medical applications12 and visual tracking13.

Artificial neural networks (ANN) are one of the regression methods with significantly generalizable learning 
capabilities14–16. The advance of computation and parallel processing in training large ANNs have led to the very 
popular domain of deep learning. The multilayer structure of neural networks provides a suitable framework for 
knowledge transfer in both regression and classification tasks. Specifically, some of the neurons/layers (e.g., the 
hidden layers) of the structure can be shared among tasks while the remaining neurons/layers (e.g., the output 
layer) determine task specific behaviors. The former layer is generally called the general layer which represents 
similarities between different tasks and the latter is the specific layer17. This flexibility has resulted in many suc-
cessful implementations of transfer learning in (deep) neural networks for applications such as wind speed pre-
diction18,19, remote sensing20, text classification21 and image classification22.
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Despite the above-mentioned applications, transfer learning in optimization problems has not been evaluated 
thoroughly except a few fields. There are reports of the use of transfer learning in automatic hyper-parameter 
tuning problems23–26 to increase training speed and improve prediction accuracy. Transfer learning is also suitable 
for the iterative nature of the engineering design where surrogate-based optimization is utilized due to the com-
plexity of the objective function. Li et al.27 proposed a transfer learning based design space exploration method 
for microprocessor design. Min et al.28 investigated the use of transfer learning in aircraft design problems and 
demonstrated the effectiveness of the proposed algorithms. Gupta et al.1 reviewed the recent progress in trans-
fer learning in optimization problems and categorized them as sequential, multitasking and multiform transfer 
optimizations. Neural networks are ideal tools for surrogate model building in complex tasks particularly for 
knowledge transfer, due to excellent prediction performance and the ability to handle high dimensional and 
highly nonlinear data14.

Another area where transfer learning can be useful is the optimization of different but similar black-box 
functions with high computational cost. This is often the case in many physical or industrial design optimization 
problems. Suppose one would like to determine the optimal parameters of a time-consuming function. Because 
the evaluation of the function is intense, the practical approach to optimization is to use past funtcion samples 
to approximate the function behavior and generate smarter search points. Most heuristic particle based search 
algorithms (e.g. Genetic algorithm, particle swarm optimization, etc.) and the well-known Bayesian optimization 
implicitly use a similar surface learning concept. The approximate model is called a surrogate model, and this 
approach to optimization is called surrogate-based optimization. The surrogate model is essentially a regression/
machine learning tool. Now suppose that one is dealing with optimization of the same physical objective function 
but in multiple different settings. The settings can be different boundary or initial conditions, different sets of 
physical characteristics, different environments or materials, or any other practical variation. The functions can 
naturally be assumed to have similar surface patterns with unique features. As a few concrete examples, imagine 
designing an airfoil with optimal aerodynamic properties under different settings of speed, altitude, allowable 
material types, etc. Every design problem is unique, but the objective functions are correlated as they pertain 
to the same underlying physical function (e.g. sheer stress, drag, etc.). These correlations can be captured and 
used across various settings. Therefore, once a surrogate model is fit and learned for one objective function, it is 
expected that the knowledge can be transfered to more accurately or more efficiently fit a surrogate model for 
another similar function. If the process improves the efficiancy and accuracy of surrogate model fitting, then it 
is expected that the black-box optimization is improved in general. In other words: more optimal values can be 
found with less computation time.

An area where the transfer learning surrogate-based optimization can be advantageous is material design 
problems. High fidelity simulations are computationally costly and there are many material choices for the 
individual parts, resulting in different settings. In particular, we are interested in a material design problem at 
nano-scale related to multilayer thin film solar cells. For a fixed set of materials, the objective is to choose the 
dimensions of the layers. These dimensions affect the photo-electric properties of the solar cell in complex ways 
that are hard to analytically express or anticipate29,30. Therefore intense computational FDTD simulations must 
be used for function evalaution, and hence the design is a time consuming global optimization31–33. Recently, we 
have shown that surrogate-based optimization methods can be used to solve optimization problems of this sort, 
and we have established their efficacy in several thin film design problems34–36. Consequently, the computational 
costs for completing optimizations were significantly reduced compared to traditional search methods. In the 
present study, we aim to further demonstrate that by using transfer learning both accuracy and speed of optimi-
zations can be additionally improved.

In this study, a novel neural-network transfer learning based optimization framework is proposed. We demon-
strate that the proposed framework can expedite and improve the design of multi-layered thin film structure. We 
assume that at least one optimization has taken place (base case). The aim is to repeat the optimization for struc-
tures with different material choices (transfer cases). The knowledge gained from the base case is transferred to 
the new problem by means of neural network layers. Improvement in the prediction performance due to transfer 
learning is studied using the out-sample mean squared error metric. The work has therefore two novelties: 1) 
proposing a neural network transfer learning based optimization framework for solving complex optimization 
problems and, 2) using the proposed method to design a multi-layer thin film solar cell structure. The organiza-
tion of this paper is as follows: first the neural network based transfer optimization method is described. Then, 
the thin film solar cell design is explained in section 3. The training and optimization results are presented and 
discussed for base case and transfer cases in section 4.

Description of the Method
The present method enables knowledge transfer between two optimization problems using transfer learning. The 
method consists of a base surrogate model to be used in surrogate-based optimization, and a transfer learning 
framework to share the gained knowledge. Surrogates (metamodels) are regression tools to map the input space 
  to the output space   using low fidelity models. The response of the surrogate model can be expressed as:

ε= +F x y( ) , (1)t

where ∈yt  is the real output, F(x) is the objective function approximation at ∈x   and ε is the error between 
the real and the predicted outputs. F is obtained by an iterative training procedure where a training dataset of 
input-output pairs are fed to the regressor. As a result of the training, coefficients of the predefined metamodel (in 
this case the weight and biases for multilayer neural networks) are obtained.

Depending on the similarity between the input-output spaces, the knowledge can be transferred from one 
domain (source) to another (target). This transfer can be achieved in many ways depending on the used 
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metamodel. Knowledge transfer using Gaussian Processes for instance can be achieved by learning a joint prob-
ability distribution and defining a common response surface1. Knowledge transfer in neural networks was previ-
ously recommended via shared layers18. In this study, we assume that we already have at least one previously 
trained surrogate model from a previous optimization problem. The knowledge is then transferred from this 
model to a new optimization problem. We propose to use a transfer learning assisted surrogate based optimiza-
tion via multilayer neural networks. The aim of the present method is to improve the accuracy of the surrogate 
model with the same or fewer number of function evaluations. To do so, one hidden layer of the previously 
trained network can be borrowed as an intermediate layer. The dimensions of the new hidden layer then becomes 

×R R1
0

1
1 where superscripts 0 and 1 refer to the base case and the first transfer learning sequence. Therefore the 

input space is transformed to another space through the previously gained knowledge. This method is shown in 
Fig. 1. The dimensions of the input and output spaces can be same or different. In the case of different dimensions, 
knowledge is transferred between the matching features and the rest is treated as usual. Thus the method reduces 
to a dimensionality reduction approach and the accuracy of the new predictions is expected to be improved due 
to the similarity between the subspaces in the two different input spaces.

The output of a two layer feed forward neural network is calculated from:

= =y F f W f Wx x( ) ( ( )), (2)
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where W1
0 and W2

0 are the coefficient matrices of the base case NN found from iterative training. ⋅f ( )j  is the func-
tional operation at the jth layer, such as sigmoid and linear function14. The knowledge transfer is then accom-
plished by transferring the hidden layer of the base case to the new case, expressed as:

= =y F f W f W f Wx x( ) ( ( ( ))), (3)
1

2
1

2
1

1
1

1
1

1
0

1
0

where W1
0 is transferred from the base case. Training of the new case is done to find W1

1 and W2
1. When another 

case is to be optimized in the same manner, the same procedure can be repeated or the trained layer of the new 
case can be transferred. One drawback of the proposed method is the increase in the number of coefficients of the 
neural network if >R R1

0
0
1 the new number of coefficients to train increases from +R R( 1)1

1
0
1  to +R R( 1)1

1
1
0 , 

which may result in overfitting37.
The surrogate based optimization procedure starts with the design of experiment (sampling)38. Then, the 

outputs of the forward problem are evaluated at the sampled points using the simulation tool. The input/output 
pairs constitute the training set which is then fed to the NN trainer. All of the data is not used at once for train-
ing. Rather, it is split into training and validation. The validation error is monitored to estimate the out-sample 
performance of the model. The neural network is trained using one of the most widely used training algorithms, 
called the Levenberg-Marquardt (LM) method with Gauss-Newton approximation for Hessian14. For optimiza-
tion, simulated annealing39 is used to optimize the surrogate objective function. The details of these methods can 
be found in the Supporting Information.

The performance of a predictive model can be quantified considering the validation set. The most common 
performance metric is the mean squared error defined as:

∑ε=
=

MSE
N
1 ,

(4)j i

N

i
1

2
j

Figure 1.  Schematic of neural network with transfer learning for a single output.

https://doi.org/10.1038/s41598-019-41316-9


4Scientific Reports |          (2019) 9:5034  | https://doi.org/10.1038/s41598-019-41316-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

where N is the number of data, j = T, V for training and validation sets respectively. εi is the error between real 
and approximate output for ith instance (see equation (1)).

Multi-Layer Thin Film Solar Cell Optimization
We can use the explained methodology in a design optimization for multi-layer thin film solar cells. For this 
purpose, a simple multilayer solar cell structure is used consisting of an absorber, an antireflective coating, a 
back-reflector metal layer and interlayers stacked together as shown in Fig. 2. A solar cell functions on the pho-
tovoltaic principle where an electron-hole pair inside a semiconductor is created due to photon absorption. 
Completing the electrical circuit, the electron generates photocurrent. The interaction between the incoming light 
and the multilayer structure of solar cell is explained by the Maxwell’s electromagnetic theory since the character-
istic length of thin film solar cells and the operation wavelengths are at the same order of magnitude (0.1−1 μm). 
Light-matter interaction in the near field region provides unique properties which strongly depend on the dimen-
sions of the thin film structures. Therefore a careful optimization of the thin film geometry is required to maxi-
mize the solar cell efficiency.

In addition to the dimensions, the choice of materials used in the solar cell layers greatly affects the opti-
cal and electrical properties. On the other hand, when the material choices are included as a design variable, 
the optimization problem becomes a mixed-integer programming which is known to be computationally costly. 
Furthermore, for the present problem where the optimizations are done one by one, the optimization study 
should be repeated (m1×m2× … ×md) times for all possible material combinations where d is the input space 
dimension and mj (1 ≤ j ≤ d) is the number of choices for the jth input. In this case, knowledge transfer between 
different material combination tasks is worthwhile, as similar geometries with different material combinations 
can have similar opto-electrical responses. In general, the initial assumption is that source and target domains are 
similar27. Although, sometimes the false similarity assumption can case negative transfer and hurt the learning40. 
Therefore the similarity assumption must be monitored and evaluated carefully.

An efficient solar cell must provide desirable optical and electrical properties which can be quantified by the 
external quantum efficiency (EQE). EQE is defined as the ratio of number of generated electrons to the number 
of incident photons on the solar cell. Previously, a probabilistic expression for EQE was developed as follows36:

η = − −
N
N

L
t

t L2 (1 exp( /2 ))
(5)e

p

i

D

A
A D

where Np and Niare the number of photons absorbed and incident respectively, tA is the absorber layer thickness 
and LD is the diffusion length of the semiconductor material used as the absorber (LD ≈ 100 nm). The proposed 
EQE model (equation (5)) was validated with experiment results29. The EQE of a Ag/ZnO:Al/a-Si/ITO solar cell 
was measured and absorbed power in the active layer was calculated using FDTD method. The same absorption 
profile is used to calculate EQE using equation (5) for tA = 100 nm and LD = 100 nm. The comparison of experi-
ments and present calculations based on absorptivity is given in Fig. 3. FDTD simulations are performed using a 
commercial software by Lumerical Inc.41 Note that the model matches closely with the experiments for most of 
the relevant spectrum. The details of this probabilistic model can be found in the previous study of the authors36.

Figure 2.  Multilayer solar cell.
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After doing necessary replacements, EQE becomes:

∫η λα λ λ λ=
− −

Λ

L
hcN

t L
t

I dx x( ) 2 1 exp( /2 ) ( , ) ( )
(6)e

D

i

A D

A

where λ is wavelength, Λ is the relevant spectrum, α(x, λ) is absorptivity, I(λ) is AM1.5 standard spectrum and 
= t t t t tx [ , , , , ]ARC IL A IL M

T
1 2  is the geometry vector.

The optimization problem then becomes:

η xmax ( ),ex

< < .x x x (7)L U

The surrogate objective function can be calculated using the surrogate model of absorptivity, f(x, λ) ≈ α(x, λ)  
instead of EQE, since EQE can be calculated using the spectral absorptivity (see equation (6)). Therefore, the 
computational cost is further reduced by considering the wavelength as an input variable of the surrogate model 
and calculating EQE accordingly.

Once an optimization study was carried out for a base case, the present method can be used to optimize a 
solar cell structure with the same geometry but different materials. For example, once we optimize an ITO/ZnO/
P3HT:PCBM/MoO3/Al solar cell structure as a base case, less effort should be necessary for the optimization of 
a five layer solar cell consisting of different materials. For this purpose, a base case and transfer cases are selected 
as follows:
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These materials are widely used in thin film solar cells. TL-1 case was previously designed and optimized by 
the authors36,42 using surrogate based and direct optimization methods. TL-2 is optimized for the first time.

As shown in Fig. 1, the base case is optimized by using traditional surrogate-based optimization methods. 
Then the hidden layer of the trained model is transferred to other cases. In the next section, the results are pre-
sented for the base case and transfer cases with emphasis on the training and validation performances (mean 
squared error). We will also discuss computational cost as the required number of simulation iterations.

Results and Discussion
Base Case.  The training of the base case is done using 1000 data points with 750 of them used as the training 
set and the rest for validation. The number of neurons in the hidden layer is determined based on the principle of 
minimum validation error as follows: The in-sample and out-sample errors are recorded as the number of neu-
rons in the hidden layer is increased and the network configuration providing the minimum out-sample error is 
selected to be used in the optimization. This procedure is repeated 10 times to eliminate the possibility of training 
algorithm being trapped in local optima. Optimization is also repeated 10 times using all NN models obtained. 
This results in 10 possible optimal points. These points are run throught the high-fidelity (FDTD) model, and 
the highest function value is selected accordingly. The number of neurons in the hidden layer for the base case is 
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Figure 3.  Comparison of measured and calculated EQE and simulated absorptivity profile for Ag/ZnO:Al/a-Si/
ITO solar cell.
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selected as 12 based on the results in Fig. 4a. Then the optimization is done using the NN models with 12 neurons 
using all the generated models. Full-fidelity optimization is also done using the software in order to validate the 
results (See Table 1). The optimized values are in a good agreement with a maximum 5% error. The evolution of 
EQE during surrogate-based optimization iterations is presented in Fig. 4b. Note that the best reported EQE in 
Table 1 is obtained using simulations so discrepancies between this value and that of Fig. 4b are expected.

Transfer Cases.  In order to demonstrate the proposed approach, two material sets different from the base 
case are considered. These sets are represented by vectors xTL−1 and xTL−2. First, the same steps as in the base case 
are followed without the transfer learning framework as a comparison. In these cases, 1000 data points are used 
where 750 of them are used as the training set and the rest is used for validation. Then training is repeated for the 
transfer learning cases using equation 3 with 500 new data points where 375 of them are used as the training set 
and the rest is used for validation. The prediction performances using transfer learning are presented and com-
pared with the traditional method in Fig. 5a,b.

Figure 5 shows the effectiveness of the transfer learning method. The smallest out-sample MSE of no TL case 
in TL-1 is more than 3 times larger than the largest out-sample MSE w/TL case even though the number of data is 
half of the no TL case. Furthermore, although the improvement in TL-2 case is not as significant as in TL-1, using 
the transfer layer reduces error to almost half of the TL-2 (no TL). The reason of this less significant improve-
ment is that the validation error of TL-2 case without transfer layer is similar to that of the base case. On the 
other hand, the validation error of TL-1 (no TL) case is ~5 times larger than that of the base case. As can be seen 
from Fig. 5b, the most significant improvement in validation error is obtained when 3 neurons is used where the 
largest deviation between errors of TL-2 and base cases is observed. Therefore the relation between the deviation 
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Figure 4.  (a) Variation of mean squared error for training and validation data sets with respect to the number 
of neurons in the hidden layer of NN for base case, (b) Evolution of EQE during the optimization for the base 
case.
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between errors of transfer and base cases suggest that the more accurate the base case is, the more the validation 
error is reduced. Furthermore, if the base case is less accurate than the transfer cases, prediction performance can 
even become worse. This is known as negative transfer which is an undesirable phenomenon in transfer learning 
applications.

Case Name
Nsims
[−]

tARC
[nm]

tIL1
[nm]

tA
[nm]

tIL2
[nm]

tM
[nm]

EQE
[−]

Base – NN-based 1,000 76 19 79 12 100 0.370

Base - Direct 6,900 77 20 80 10 95 0.371

TL-1 – NN-based – w/TL 500 31 20 65 20 102 0.371

TL-1 – NN-based – no TL 1,000 29 19 65 20 101 0.370

TL-1 – Direct 9,200 30 19 65 20 103 0.372

TL-1 – Reference42 4,600 30 16 62 20 50 0.361

TL-2 – NN-based – w/TL 500 40 5 98 5 95 0.355

TL-2 – NN-based – no TL 1,000 38 7 95 5 100 0.352

TL-2 – Direct 5,520 42 5 100 5 97 0.360

Table 1.  Optimization results for Base, TL-1 and TL-2 cases.
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Figure 5.  Results for (a) TL-1 (ITO-SiO2-aSi-Al2O3-Al) and (b) TL-2 (Si3N4-PEDOT:PSS-PCDTBT:PCBM-
Al2O3-Al) without the transfer layer (no TL, dashed lines) using 1000 data points and with transfer layer (w/TL, 
solid lines) using 500 data points.
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The effect of negative transfer on prediction accuracy is illustrated in Fig. 6 by switching the base 
and TL-1 cases where the hidden layer of TL-1 (ITO-SiO2-aSi-Al2O3-Al) is transferred to the base case 
(ITO-ZnO-P3HT:PCBM-MoO3-Al). As seen from Fig. 6, the training MSE does not change as expected; how-
ever, the validation error significantly increases since the transferred layer is adopted from a less accurate model.
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Figure 6.  Negative Transfer: Comparison of MSE of no TL Base case (dashed) and w/TL from TL-1 (solid).

Figure 7.  Evolution of EQE during optimization for (a) TL-1, w/out TL, (b) TL-1 w/TL, (c) TL-2 w/out TL (b) 
TL-2 w/TL.
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In TL-1 case, 12 and 9 neurons are selected for no TL and w/TL respectively for optimization. The results are 
compared with the previous optimization studies for the same 5-layer a-Si solar cell36,42. Similarly, in TL-2 case, 
15 and 12 neurons are selected for no TL and w/TL respectively for optimization.

The results obtained using transfer learning are in a good agreement with the direct optimization results for 
both cases. The optimized geometry in TL-1 case is also very close to the results from the previous study36. In the 
other study42, a regression-tree based optimizer is used as well as simulated annealing on direct FDTD simula-
tions to find the optimal solution. However, since the objective function in this study42 is slightly different than 
the present objective function, a deviation between the results of these two studies is expected. The present study 
achieved a slightly higher EQE than that the previous result42. The optimization results are presented in Table 1 
and evolutions of EQE are presented in Fig. 7.

Results show that equivalent EQEs can be obtained from an amorphous silicon and an organic P3HT:PCBM 
solar cell. EQE of PCDTBT:PCBM solar cell is lower than the others because the longer wavelengths where 
PCDTBT:PCBM can absorb more than a-Si and P3HT:PCBM are ignored in EQE calculation. EQE is calculated 
between λ = 300–750 nm for all cases for consistency.

Conclusion
In this paper, a novel methodology of multilayer neural network based transfer optimization for design problems 
was presented. The proposed method was applied to a case study where a multilayer thin film solar cell was to 
be optimized for the best external quantum efficiency. The results showed that the prediction accuracy can be 
improved using transfer learning. Furthermore, the number of high fidelity function evaluations during surrogate 
based optimization can be decreased without sacrificing the accuracy.

Data Availability
The datasets generated during the current study are available from the corresponding author on reasonable  
request.
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