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Novel Data Transformations for 
RNA-seq Differential Expression 
Analysis
Zeyu Zhang1, Danyang Yu2, Minseok Seo3, Craig P. Hersh3, Scott T. Weiss3 & Weiliang Qiu   3

We propose eight data transformations (r, r2, rv, rv2, l, l2, lv, and lv2) for RNA-seq data analysis 
aiming to make the transformed sample mean to be representative of the distribution center since 
it is not always possible to transform count data to satisfy the normality assumption. Simulation 
studies showed that for data sets with small (e.g., nCases = nControls = 3) or large sample size (e.g., 
nCases = nControls = 100) limma based on data from the l, l2, and r2 transformations performed 
better than limma based on data from the voom transformation in term of accuracy, FDR, and FNR. For 
datasets with moderate sample size (e.g., nCases = nControls = 30 or 50), limma with the rv and rv2 
transformations performed similarly to limma with the voom transformation. Real data analysis results 
are consistent with simulation analysis results: limma with the r, l, r2, and l2 transformation performed 
better than limma with the voom transformation when sample sizes are small or large; limma with the 
rv and rv2 transformations performed similarly to limma with the voom transformation when sample 
sizes are moderate. We also observed from our data analyses that for datasets with large sample size, 
the gene-selection via the Wilcoxon rank sum test (a non-parametric two sample test method) based on 
the raw data outperformed limma based on the transformed data.

With the rapid development of next-generation high throughput RNA sequencing technologies in recent 
years, genomics studies have seen tremendous advancement. RNA-seq technology is a type of next generation 
sequencing technology to estimate the expression levels of genes in whole-genome scale studies and has become 
the standard technology for the study of genomics1,2. RNA-seq technology can help identify new genes, with 
high-sensitivity, high signal-to-noise ratio and small sample requirements. Also, RNA-seq technology can meas-
ure read counts at exons, genes, or gene units. Therefore, RNA-seq sequencing technology has been widely used 
in many different research fields3,4.

RNA-seq data are usually represented by a matrix of counts showing the expression levels of mRNAs (rows) 
for a set of samples (columns) after processes such as adapter remove step, alignment step, and quantification step. 
For each sample, millions of reads can be measured by the RNA-seq technique5. According to the gene annota-
tion and genome build, numbers of features might be different. Different pipelines, such as Cufflink pipeline, 
Hisat2-StringTie pipeline, and Star-FeatureCount pipeline could result in different properties of the count matrix. 
Two common properties are sparsity and skewness. Sparsity means that many counts in the count matrix are 
zero. Skewness means that the histogram of all counts in the count matrix is usually skewed. Skewness indicates 
that data transformation is required before applying linear regression analysis, which assumes data from normal 
distributions. Sparsity indicates that the log2 transformation, which is commonly used in gene microarray data, 
could not be directly applied to RNA-seq data analysis since log2(0) does not exist. It is still expensive to collect 
RNA-seq data for large sample size. Hence, existing RNA-seq datasets usually have small sample size. To address 
these two common properties, count distributions, such as Poisson, negative binomial, and inflated Poisson dis-
tributions, have been proposed to fit RNA-seq data6,7. Commonly used R Bioconductor packages that fit RNA-seq 
data using count distributions include edgeR8,9, DESeq10, and DESeq211. These methods could borrow infor-
mation across genes to increase the power of the tests for detecting genes differentially expressed between two 
conditions (e.g., cases versus controls).
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The distributions of counts are not as statistical tractable as normal distributions12. Moreover, there are much 
fewer analytic tools for count distributions than there are for normal distributions in statistical analysis. Law et al.12  
proposed the voom transformation to transform the count distribution to a distribution close to the normal dis-
tribution in RNA-seq data analysis and demonstrated that using limma13 with the voom-transformed count data 
performed comparable to count-based RNA-seq analysis methods, such as edgeR8,9, DESeq10, baySeq14 and DSS15.

The voom transformation is a sample-specific transformation, defined as log-counts per million (log-cpm):
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where rgi is the count of the g-th mRNA transcript for the i-th sample, Ri is the total counts (Ri = r1i + r2i+ … 
+rGi) for the i-th sample, g = 1, …, G, i = 1, …, n, G is the number of mRNA transcripts, and n is the number of 
samples.

The goal of the voom transformation is to make the empirical distribution of transformed RNA-seq data closer 
to a normal distribution so that the moderate t tests (limma) could be used. However, it is not always possible to 
transform count data to have a distribution closer to a normal distribution in real data analysis16. For example, for 
the SEQC data that was analyzed in real data analyses part of12, the empirical distribution (i.e., histogram) of the 
voom transformed data is still far from a normal distribution (Fig. 1). The histogram is based on the pooled data 
Ygi, g = 1, …, 92, i = 1, …, 8.

In this article, we proposed to relax the normality requirement for a data transformation. Most statistical 
models, such as two-sample t-test, focus on comparing the centers of the two distributions to check if two distri-
butions are same or not. Sample means are usually used to represent distribution centers. However, for skewed 
distributions, sample means are not good to characterize the distribution centers. Instead, sample medians are 
usually used to characterize the centers of skewed distributions. However, sample medians do not have as tracta-
ble properties as sample means. For instance, it is hard to derive the distribution of sample median. In this article, 
we aim to transform the RNA-seq count data by minimizing the difference between sample mean and sample 
median so that the sample mean would be a good representative to the center of the transformed distribution. 
Hence, most existing statistical models based on sample means, e.g., limma, can be directly applied to analyze 
transformed RNA-seq data.

Results
Results for simulation studies.  In this article, we proposed 8 data transformation methods to improve 
the voom transformation. Four proposed transformations (r, rv, r2, and rv2) are based on root transformations. 
The other 4 proposed transformations (l, lv, l2, and lv2) are based on log transformations. The transformations 
r, rv, l, and lv do the same transformation to each read count, while the transformations r2, rv2, l2, and lv2 are 
sample-specific (i.e., each sample has its own transformation, like voom). To evaluate the effects of sample size on 
the performances of limma with data transformed by each of the 8 proposed data transformations and to compare 
them with the performance of limma with data transformed by the voom transformation, we performed eight 
simulation studies based on the simulation scheme in12. Since real datasets seldom have equal library size, we only 
consider to simulate datasets with un-equal library sizes in our simulation studies.

In addition, we would like to evaluate if using non-parametric approaches would have better performance than 
using parametric approaches in analyzing RNA-seq data, the distribution of which is non-normal. Specifically, we 
applied the Wilcoxon rank sum test (denoted it as Wilcoxon) for each gene transcript based on the untransformed 
counts. We then adjusted p-values to control false discovery rate < 0.05.

Figure 1.  Histogram of the pooled SEQC RNA-seq data after the voom transformation. The histogram 
showed that the empirical distribution after the TMM scale normalization, quantile normalization and voom-
transformation could still be far from a normal distribution.

https://doi.org/10.1038/s41598-019-41315-w


3Scientific Reports |          (2019) 9:4820  | https://doi.org/10.1038/s41598-019-41315-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

Figure 2 and Supplementary Fig. 1 show that for data sets with small (e.g., nCases = nControls = 3) or large 
sample size (e.g., nCases = nControls = 100) limma based on datasets from the l, l2, and r2 transformations 
performed better than limma based on datasets from the voom transformation in term of accuracy, false dis-
covery rate (FDR), and false discovery rate (FNR). For datasets with moderate sample sizes (e.g., nCases = nCon-
trols = 30 or 50), limma with the rv and rv2 transformations performed similarly to limma with the voom 
transformation. The accuracy is measured by the Jaccard index, which is defined as the ratio d/(b + c + d), where d 

Figure 2.  Results based on the 100 simulated datasets with unequal library size. Upper horizontal panel: 
nCases = nControls = 3; Second horizonal panel: nCases = nControls = 30; Third horizontal panel: 
nCases = nControls = 50; Bottom horizontal panel: nCases = nControls = 100. Left column: Jaccard index; 
Middle column: FDR; Right column: FNR.
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is the number of truly differentially expressed (DE) gene transcripts having been detected as DE gene transcripts, 
b is the number of truly DE gene transcripts having been detected as non-DE gene transcripts, c is the number of 
truly non-DE gene transcripts having been detected as DE gene transcripts. The Jaccard index is a better meas-
urement than commonly-used accuracy measurement acc = (a + d)/(a + b + c + d), where a is the number of 
truly non-DE gene transcripts having detected as non-DE gene transcripts, for datasets with highly imbalanced 
proportions (i.e., a is much larger than d) of truly DE gene transcripts and truly non-DE gene transcripts. When 
a is much larger than d, then a will dominate in the calculation of acc. Hence, acc tends to close to one, which is 
misleading. FDR is the proportion of truly non-DE gene transcripts among detected DE gene transcripts. FNR 
is the proportion of detected non-DE gene transcripts among truly DE gene transcripts. A gene transcript is 
detected as a DE gene transcript if its FDR adjusted p-value is <0.05; it is detected as a non-DE gene transcript if 
its FDR adjusted p-value ≥0.05.

Surprisingly, the Wilcoxon test without data transformation performed best in terms of accuracy when the sam-
ple size was large and samples had unequal library sizes in our simulation studies, in which we used Law et al.’s12  
simulation setting. Wilcoxon also had the lowest FDR and low FNR. However, Wilcoxon had significant higher 
FNR than limma with voom, rv, lv, rv2, or lv2, indicating that Wilcoxon had lower power than limma with voom, 
rv, lv, rv2, or lv2.

Overall, the Wilcoxon test without data transformation can be used to detect differentially expressed gene tran-
scripts for RNA-seq data when sample size is large and sample library sizes are unequal. If data transformation is 
preferred, then limma with voom, l, r2, or lv2 can be used in this scenario.

Supplementary Fig. 2 showed the boxplots of the estimated model parameters for the 100 simulated datasets 
for each of the 4 sample-size scenarios. For small-sample-size scenarios (nCases = nControls = 3), the estimated 
parameters are much larger and variable than scenarios with larger sample sizes, in which the median parameter 
estimates are almost unchanged as sample size increases. Also, the variabilities of the parameter estimates are 
similar for scenarios with sample size ≥ 60. For the 4 proposed root transformations, the medians of the estimated 
η are similar and are ranged from around 5.7 to 9.5. For the 4 proposed log transformations, the medians of the 
estimated δ are similar and are ranged from around 0.08 to 0.32.

As we mentioned in the Background section, we aimed to transform the RNA-seq count data so that the sam-
ple mean would be representative of the center of the transformed empirical distribution. Hence, the difference 
between sample mean and sample median after transformation is an important judging criterion of RNA-seq 
transformation methods. We used the difference between sample mean and sample median based on the pooled 
expression levels of all gene transcripts and all samples to check if sample mean is close to the sample median 
(Fig. 3). The smaller the difference, the closer the sample mean is to the distribution center. Figure 3 showed 
that r, l, rv, lv, rv2, and lv2 had the mean-median difference close to zero. However, r2 and l2 had much larger 
mean-median difference than zero. This is as what we expected since r2 and l2 aims to minimize the sum of 
sample-specific squared difference between sample mean and sample median, not to minimize the squared dif-
ference between sample mean and sample median of the pooled data. While l2 had smaller difference than voom, 
the r2 transformation had much larger mean-median difference than voom. Supplementary Fig. 3 showed the 
boxplots of the sum of sample-wise squared differences between sample mean and sample median after data 
transformation in our simulation studies. r2 and l2 transformations had much smaller mean-median difference 
than r and l transformations.

Real data analysis.  The first two of our real data analysis datasets were based on the SEQC datasets17. We 
applied the Wilcoxon test, limma after the TMM scale normalization18, quantile normalization, and the voom 
transformation (We still denoted the method as limma with voom), and limma after the 8 proposed transfor-
mations to the SEQC RNA-seq dataset. The information about which gene transcripts are truly differentially 
expressed between two groups were determined based on qRT-PCR (Quantitative Real-Time PCR) experimental 
data. Figure 4 showed that limma with r, l, rv, r2, l2, rv2 had higher accuracy than limma with voom and showed 
that limma with lv and lv2 had equal accuracies to limma with voom. We noticed that Wilcoxon, a non-parametric 
method, failed to detect any true positives, although Wilcoxon had slighly higher accuracy to limma with voom. 
Since we know the true DE status of each gene transcript in SEQC dataset, we calculated the FDR and FNR values 
for the 10 methods (Supplementary Table 1). For SEQC dataset (nCases = nControls = 4), rv and rv2 transforma-
tions had lower FDR and FNR than voom.

The analysis of the ERCC dataset is consistent with the SEQC analysis. The information about which 
gene transcripts are truly differentially expressed between two groups were determined based on concentrations 
of mixes (see Method Section). Figure 5 showed that limma with the r, l, rv, r2, l2, and rv2 transformations had 
better accuracies than limma with voom and showed that limma with the lv and lv2 transformations had equal 
accuracies to limma with voom. Specifically, limma with r, l, rv, r2, l2, and rv2 had more true positives than limma 
with voom, indicating good testing powers. As in the analysis in the SEQC data, the Wilcoxon test failed to detect 
any true positives and had the lowest accuracy, which is consistent with the results of the simulation studies, 
indicating the Wilcoxon test has poor performance in datasets with small sample sizes. Since we know the true 
DE status of each gene transcript in ERCC dataset, we calculated the FDR and FNR values for the 10 methods 
(Supplementary Table 2). For ERCC dataset (nCases = nControls = 4), rv and rv2 transformations had lower FDR 
and FNR than voom.

GSE95640 is an RNA-seq dataset from a study investigating adipose tissue during low-caloric diet (LCD) that 
has relatively large sample size (n = 382) with 53343 gene transcripts. We used all 382 samples (191 samples from 
after 8-week LCD (with 800–1000 kcal/d) and 191 samples from 6-month after LCD) and conducted 100 random 
partitions of the 382 samples. In each random partition, we randomly split the 382 samples into roughly 2 equal 
sets: discovery set and validation set. We then calculated the proportion of validated DE gene transcripts for each 
of the 10 methods. Figure 6 showed that limma with r, l, r2, and l2 had higher median validation proportion than 
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Figure 3.  The difference (y-axis) between sample mean and sample median of the pooled expression levels 
of all gene transcripts and all samples after data transformation in our simulation studies. Top left panel: 
nCases = nControls = 3. Top right panel: nCases = nControls = 30; Bottom left panel: nCases = nControls = 50; 
Bottom right panel: nCases = nControls = 100.

Figure 4.  Accuracy for the SEQC dataset. The accuracy (acc) is plotted for each method and is split into true 
positive rate and true negative rate. Limma with the r and r2 transformations had the highest accuracy (0.6836).
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Wilcoxon and limma with other transformations in two analyses. Note that GSE95640 dataset is from a paired 
design. There are 191 subjects. Each subject has two observations (after 8 weeks and after 6 months). Within 
a subject, the two observations are dependent. However, GSE95640 dataset does not provide subject id info. 
Hence, we ignored the within-subject correlations in this real data analysis. As a consequence, less numbers of 
DE gene transcripts would be detected than the analyses in which subject id info is known and statistical tests for 
paired data are applied.

GSE95587 is an RNA-seq dataset from a study investigating Alzheimer’s disease that has relatively large sam-
ple size (n = 117). We used all 117 samples (84 Alzheimer samples and 33 age-matched normal controls) and 
conducted 100 random partitions of the 117 samples. In each random partition, we randomly split the 117 sam-
ples into roughly 2 equal sets: discovery set and validation set. We then calculated the proportion of validated DE 

Figure 5.  Accuracies obtained based on the SEQC spike-in data. The accuracy (=true positives + true 
negatives) is plotted for each of the 10 methods. Limma with the l2 and l transformations had the highest 
accuracies (0.53).

Figure 6.  Parallel boxplots of the proportion of validated gene transcripts in the analysis of GSE95640. We did 
100 randomly splits the 382 samples. In each split, we randomly split the 382 samples into roughly equal two 
parts: discovery set and validation set. The proportion of the significant DE gene transcripts detected in the 
discovery set and validated in the validation set was recorded for each split. Each boxplot is the summary of the 
proportions of validated gene transcripts for the 100 pairs of discovery sets and validation sets. The higher the 
proportion, the better the performance.
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gene transcripts for each of the 10 methods. Figure 7 showed that all 10 methods had similar validation propor-
tion, with l and l2 had slightly higher median proportion of validation than voom.

Discussion
In this article, we proposed 8 new RNA-seq data transformations to improve the voom transformation for 
RNA-seq data analysis. The simulation results showed that for data sets with small (e.g., nCases = nControls = 3) 
or large sample size (e.g., nCases = nControls = 100) limma based on data from the l, l2, and r2 transformations 
performed better than limma based on data from the voom transformation in term of accuracy, FDR, and FNR. 
For datasets with moderate sample size (e.g., nCases = nControls = 30 or 50), limma with the rv and rv2 transfor-
mations performed similarly to limma with the voom transformation.

Having sample mean close to sample median for pooled data could not guarantee that for each gene tran-
script, the sample mean is close to the sample median for cases and for controls, respectively. Also, the empirical 
distribution of the pooled data after data transformation might still be skewed even if the sample mean is very 
close to sample median. Hence, robust linear regression might improve the performance of limma after data 
transformation.

The voom transformation was proposed by12 and has been implemented in the limma package. Law et al.12 
focused on small sample size (nCases = nControls = 3) because RNA-seq data were expensive to obtain at that 
time. Since then the cost of RNA sequencing become lower and lower. Hence, we evaluated the performances of 
limma with voom and limma with the 8 new transformations in scenarios where sample sizes are relatively large 
(nCases = nControls = 100). We also applied the Wilcoxon test to the raw count data to check if data transforma-
tion could perform better than the non-parametric test. Interestingly, the Wilcoxon test without data transforma-
tion performed better than the limma analysis based on the 9 data transformations in simulation studies when 
sample sizes are not too small and sample library sizes are unequal. The analysis of the GSE95640 dataset also 
demonstrated this finding. Further investigation is warranted.

In this article, we did not compare limma with count-based methods, such as edgeR and DESeq since Law 
et al.12 did the comparison and showed the good performance of the data transformation approach. However, 
Law et al.12 did the comparisons based on datasets with small sample sizes. Moreover, new count-based meth-
ods, such as DESeq2, have been proposed since 2014. Hence, it would be a future research to compare the data 
transformation approach with all available count-based methods using datasets with large sample sizes (e.g., 
nCases = nControls = 1000).

We also did not compare the two useful RNAseq analysis tools: NOIseq19 and sleuth20 since this article focuses 
on comparing count transformation methods in RNAseq analysis, while NOIseq and sleuth provide methods for 
differential expression analysis. NOIseq R package provides useful tools for quantifying gene expression, assess-
ing the quality of the expression data, choosing appropriate normalization or filtering methods according to the 
biases detected, performing non-parametric differential expression analysis, and visualizing the results. Sleuth 
utilizes kallisto quantification21 and bootstrapping and response error linear modeling to detect differentially 
expressed genes. It would be an interesting future research topic to compare NOIseq, Sleuth, and limma com-
bined with different count transformation methods.

We observed that none of the 8 transformations could dominate each other, although they performed better 
than voom in most scenarios (Fig. 2 and Supplementary Table 1). For example, limma with the r2 transformation 
performed best when sample size is large (nCases = nControls = 100), but could not beat limma with rv when 

Figure 7.  Parallel boxplots of the proportion of validated genes in the analysis of GSE95587. We did 100 
randomly splits the 117 samples. In each split, we randomly split the 117 samples into roughly equal two 
parts: discovery set and validation set. The proportion of the significant DE gene transcripts detected in the 
discovery set and validated in the validation set was recorded for each split. Each boxplot is the summary of the 
proportions of the 100 proportions. The higher the proportion, the better the performance.
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sample size is moderate (e.g., nCases = nControls = 30 or 50). Another limitation of our study is that in our real 
data analyses, no independent cohorts are available to do validation. However, we did 100 times of random splits. 
In each split, we had discovery set and validation set. In future, we will do validation studies when independent 
validation sets are available. The third limitation of this study is that the 8 proposed data transformations aim 
to make the sample mean closer to the distribution center after data transformation. However, the transformed 
distribution might not be close to a normal distribution. Hence, robust linear regression models are needed since 
ordinary linear regression requires the normality assumption. Future research is warranted on this subject as well.

In the simulation studies, we considered the scenario with small sample size (nCases = nControls = 3), which 
could not have adequate power. The main reasons why we consider this scenario are (1) Law et al. (2014) inves-
tigated this scenario; and (2) pilot studies usually have small sample sizes. We also considered the scenario with 
large sample size (nCases = nControls = 100), which are rare in real applications due to the high expenses to 
obtain RNA-seq data. The main reasons why we consider this scenario are (1) it would be interesting to know the 
performances of different methods for datasets with large sample size; and (2) in some real application, sample 
sizes are large, e.g., GSE95640 (nCases = nControls = 191).

We observed from both simulation and real data analyses that when sample size is moderate (e.g., the 
Alzheimer’s disease dataset GSE95587), all the 8 proposed data transformation methods could not beat voom 
transformation. Further investigation is warranted.

Conclusions
In simulation and real data studies, limma with the l, l2, and r2 transformations performed better than limma 
with the voom transformation for data with small (nCases = nControls = 3) or large sample size (nCases = nCon-
trols = 100). For moderate sample size (nCases = nControls = 30 or 50), limma with the rv and rv2 transforma-
tion performed better than limma with the voom transformation. We hope these novel data transformations 
could provide investigators more powerful differentially expression analysis using RNA-seq data.

Materials and Methods
Eight new data transformations.  We proposed 8 new data transformations based on the Box-Cox trans-
formation22: 4 root transformations (denoted as r, rv, r2 and rv2, respectively) and 4 log transformations (denoted 
as l, lv, l2 and lv2, respectively). The following two properties of the root transformation motivate us to use root 
transformations: (1) root transformation of zero exists; (2) root transformation could stabilize the variance of 
count data.

The r transformation (root transformation) is defined as:

η
=

η

y
x
(1/ )gi
gi

(1/ )

where xgi is the count of the g-th gene transcript for the i-th sample. The optimal value for the parameter η is to 
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That is, we do the root transformation for the sample-specific counts per million. The optimal value for the 
parameter η is to minimize the squared difference between the sample mean and the sample median of the pooled 
data. That is, for a given η, we perform the rv transformation to each normalized count tgi, i = 1, …, n, g = 1, …, G. 
We then can obtain the squared difference − y y( )2, where = ∑ ∑= =y y nG/( )i

n
g
G

gi1 1  is the sample mean and y  is 
the sample median of the pool data ygi, i = 1, …, n, g = 1, …, G. Finally, we choose the value of η having minimum 
squared difference.

The r2 transformation (root transformation minimizing sum of sample-specific squared difference) has the 
same form as the r transformation:

η
=

η

y
x
(1/ )gi
gi

(1/ )

However, the criterion to estimate the optimal value of η is different from the r and rv transformations. The 
optimal value for the parameter η is to minimize the sum of the squared difference between the sample mean and 
the sample median across n samples:
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gi1  is the sample mean expression level for the i-th sample and 
yi  is the sample median 

expression level of the i-th sample.
The rv2 transformation (root and voom transformation minimizing sum of sample-specific squared differ-

ence) is a combination of the rv transformation and the r2 transformation, defined as:
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where tgi is the sample-specific counts per million. The optimal value for the parameter η is to minimize the sum 
of the squared difference between the sample mean and the sample median across n samples.

The l transformation (log transformation) is defined as:
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The optimal value for the parameter δ is to minimize the squared difference between the sample mean and the 
sample median of the pooled data:
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gi1 1  is the sample mean and y  is the sample median of the pool data ygi, i = 1, …, n, 
g = 1, …, G.

The lv transformation (log and voom transformation) is defined as:
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where tgi is the sample-specific counts per million. The optimal value for the parameter δ is to minimize the 
squared difference between the sample mean and the sample median of the pooled data.

The l2 transformation (log transformation minimizing sum of sample-specific squared difference) has the 
same form as the l transformation:
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However, the criterion to estimate the optimal value of δ is different from the l and lv transformations. The 
optimal value for the parameter δ is to minimize the sum of the squared difference between the sample mean and 
the sample median across n samples:
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gi1  is the sample mean expression level for the i-th sample and 
yi  is the sample median 

expression level of the i-th sample.
The lv2 transformation (log and voom transformation minimizing sum of sample-specific squared difference) 

is a combination of the lv transformation and the l2 transformation, defined as:
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where tgi is the sample-specific counts per million. The optimal value for the parameter δ is to minimize the sum 
of the squared difference between the sample mean and the sample median across n samples.

Simulation studies.  In each simulation study, we generated 100 datasets. Each dataset contains 10,000 
genes, among which 200 genes are differentially expressed between nCases cases and nControls controls. An 
inverse chi-square distribution with 40 degrees of freedom was used to generate a modest amount of gene-wise 
biological variation12. We set the number of cases equal to the number of controls (i.e., nCases = nControls).

After data transformation, we used Bioconductor package limma to detect differentially expressed genes. We 
also compared the results based on transformed data with the results of the Wilcoxon rank sum test based on the 
original counts.

Since almost all real RNAseq datasets have unequal library sizes, we applied Law et al.’s12 simulation settings 
to generate the RNA-seq counts of 10,000 genes for samples with un-equal library sizes. In our simulation stud-
ies, we evaluated the effects of sample size on the performances of the 10 methods (Wilcoxon, limma + voom, 
limma + r, limma + l, limma + r2, limma + l2, limma+rv, limma+lv, limma+rv2, limma+lv2) in detecting differ-
entially expressed genes. We tried four different sample sizes (nCases = nControls = 3, nCases = nControls = 30, 
nCases = nControls = 50 and nCases = nControls = 100) with un-equal library size, respectively.
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The criteria to evaluate performance are accuracy (Jaccard index), false negative rate (FNR), false discovery 
rate (FDR), and the difference (DIFF) between the sample mean and the sample median of the pooled expression 
levels for all samples and all genes. The accuracy is measured by the Jaccard index, which is defined as the ratio d/
(b + c + d), where d is the number of truly differentially expressed (DE) genes having been detected as DE genes, 
b is the number of truly DE genes having been detected as non-DE genes, c is the number of truly non-DE genes 
having been detected as DE genes. FNR is the percentage of detected non-differentially expressed (non-DE) genes 
among truly differentially expressed (DE) genes. FDR is the percentage of truly non-DE genes among detected DE 
genes. Large accuracy and small FNR, FDR, and DIFF indicate good performance.

Real data analyses.  SEQC data.  Sequencing Quality Control (SEQC) is the third phase of the MAQC 
project (MAQC-III), aimed at assessing the technical performance of next-generation sequencing platforms by 
generating benchmark datasets with reference samples17,23. This project provided 6 RNA samples, each sample 
has 4 replicates, samples A and B were obtained from two well-characterized reference human RNA samples 
UHR (Universal Human Reference RNA) and HBR (Human Brain Reference RNA). A small amount of Ambion 
ERCC (External RNA Control Consortium) Spike-in Mix was added into both Sample A and Sample B. Samples 
C and D were constructed by mixing Samples A and B to known ratios, 3:1 and 1:3, respectively. The pure ERCC 
Spike-in Mix 1 and 2 were used as Samples E and F. Gene expression levels of Samples A, B, C and D were ana-
lyzed by using TaqMan RT-PCR technology.

Our first analysis is based on Samples A (UHR) and B (HBR). The dataset GSE56457 on Gene Expression 
Omnibus (GEO) website (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE56457) provides details 
about the qRT-PCR data for the SEQC project. We regarded the expression levels of these genes measured by 
qRT-PCR as the true expression levels. If a gene has mean log2 fold-change (LFC) greater than 2 between two 
RNA samples in GSE56457, we claimed it as a truly differentially expressed gene. If a gene has mean LFC less 
than 0.004, we claimed it as a truly non-differentially expressed gene24. Based on this criterion, there were 390 
DE genes and 457 non-DE genes. We evaluated the performance of the 9 data transformations using SEQC data 
based on these 847 genes. We applied limma to detect differentially expressed genes after data transformation. We 
also applied the Wilcoxon test to detect DE genes based on the raw count data. A gene was estimated as a DE gene 
if it had FDR-adjusted p-value < 0.05. We then calculated the proportion of agreement (i.e., accuracy) between 
the true gene significance of the 847 genes and the estimated gene significance.

SEQC spike-in (ERCC).  We downloaded ERCC data from http://bioinf.wehi.edu.au/voom/ and did similar 
analysis based on Samples E and F, which are the ERCC RNA Spike-In Mixes, providing a set of external RNA 
controls that enable performance assessment of a variety of technology platforms used for gene expression exper-
iments. These 8 samples (4 from Samples E and 4 from Samples F) are pre-formulated sets of 92 poly adenylated 
genes from the ERCC plasmid reference library, three quarters of the genes were truly DE and the remaining 
quarter were not. The genes are traceable through the manufacturing process to the NIST plasmid reference mate-
rial. This dataset provided concentrations of the two mixes, the log2 fold change of concentration can be used for 
determining if a gene is DE. The analysis procedure of spike-in data is consistent with SEQC data. We calculated 
the accuracy to compare the transformation methods performance.

Low-caloric diet (LCD) RNA samples.  GSE95640 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?ac-
c=GSE95640) is an RNA-seq dataset to evaluate transcriptome alterations in adipose tissue (AT) during LCD 
based on 191 obese, non-diabetic patients. This RNA-seq dataset is sequenced on Illumina HiSeq 2000 platform. 
We downloaded the RNA-seq raw data and annotations from Gene Expression Omnibus (GEO, https://www.
ncbi.nlm.nih.gov/geo). The dataset contains 382 samples with 53343 gene transcripts, 191 of which are from the 
transcriptome after 8-week LCD (with 800–1000 kcal/d) (CID1) and 191 of which are from the transcriptome 
6-month after LCD (CID2). We randomly split the 392 samples into two roughly equal parts: a discovery set 
and a validation set. We then applied limma after data transformations to the discovery set and the validation set 
to detect differentially expressed (DE) genes. For the discovery set, we claimed a gene is DE if its FDR-adjusted 
p-value < 0.05. For the validation set, we claimed a gene is validated DE if it had a raw p-value < 0.05 in the val-
idation set and it had FDR-adjusted p-value < 0.05 in the discovery set. We repeated the above split-validation 
procedure 100 times. For each of the 10 methods, we calculated the proportion of the validated DE genes among 
the DE genes detected in the discovery set. The higher the proportion is, the better performance, the method is.

Neurodegenerative disease RNA samples.  GSE95587 (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE95587) is an RNA-seq dataset obtained from fusiform gyrus tissue sections of autopsy-confirmed 
Alzheimer’s cases and neurologically age-matched normal controls. The matching information was not provided 
in GSE95587. We downloaded the RNA-seq raw data and annotations from Gene Expression Omnibus (GEO, 
https://www.ncbi.nlm.nih.gov/geo). The dataset contains 117 samples, 84 of which are from Alzheimer’s cases 
(ADs) and 33 of which are controls (CONs). We randomly split the 117 samples into two roughly equal parts: 
a discovery set and a validation set. The discovery set has 42 ADs and 17 CONs. The validation set has 42 ADs 
and 16 CONs. We then applied limma after data transformations to the discovery set and the validation set to 
detect differentially expressed (DE) genes. For the discovery set, we claimed a gene is DE if its FDR-adjusted 
p-value < 0.05. For the validation set, we claimed a gene is validated DE if it had a raw p-value < 0.05 in the val-
idation set and it had FDR-adjusted p-value < 0.05 in the discovery set. We repeated the above split-validation 
procedure 100 times. For each of the 10 methods, we calculated the proportion of the validated DE genes among 
the DE genes detected in the discovery set. The higher the proportion is, the better performance, the method is.

For the voom transformation in all real data analyses in this article, we followed Law et al.12 by first applying 
TMM scale-normalization18 and quantile normalization before applying for the voom transformation.

https://doi.org/10.1038/s41598-019-41315-w
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE56457
http://bioinf.wehi.edu.au/voom/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE95640
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE95640
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE95587
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE95587
https://www.ncbi.nlm.nih.gov/geo


1 1Scientific Reports |          (2019) 9:4820  | https://doi.org/10.1038/s41598-019-41315-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

Data Availability
The SEQC data can be downloaded from Gene Expression Omnibus (GEO) with accession number GSE56457 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE56457). The SEQC spike-in (ERCC) data can be 
downloaded from http://bioinf.wehi.edu.au/voom/. The LCD data can be downloaded from GEO with accession 
number GSE95640 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE95640). The neurodegenerative 
disease data can be downloaded from GEO with accession number GSE95587 (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE95587). We developed the R package countTransformers, which can be downloaded 
from CRAN website https://CRAN.R-project.org/package=countTransformers.
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