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Numerical and experimental 
Investigation into LWIR 
transmission performance 
of Complementary silicon 
Subwavelength Antireflection 
Grating (sWARG) structures
Ramazan Cetin1 & tayfun Akin1,2

this paper presents a detailed comparison between the long wave infrared (LWIR) transmission 
performances of binary, silicon based, structurally complementary pillar and groove type antireflective 
gratings that can be used for wafer level vacuum packaging (WLVp) of uncooled microbolometer 
detectors. Both pillar and groove type gratings are designed with various topological configurations 
changing in various period sizes (Λ) from 1.0 μm to 2.0 μm, various heights/depths (h) from 0.8 μm 
to 1.8 μm, and various pillar/groove width-to-period (w/Λ) ratios from 0.6 to 1.0. The transmission 
performance of gratings is simulated with a hybrid simulation technique based on the modification 
of the reflection term within the Fresnel transmission equation, which combines both numerical 
and analytical approaches in a unique way for the first time in literature. Simulation results are 
experimentally verified with 19 different fabricated structures where a spectral agreement is achieved 
with an absolute root-mean-square (RMS) error less than 5.4% within the subwavelength (SW) regime, 
proving the effectiveness of the proposed hybrid technique. These results show first time in the 
literature that both pillar and groove type silicon based gratings present similar spectral IR transmission 
characteristics, and they are also structurally complementary when optimum configurations are 
employed to maximize the transmission.

Advances in uncooled infrared (IR) technology have been decreasing the cost of long wave infrared (LWIR) 
detector arrays, allowing their use in wide range of applications; however, the cost of their vacuum packaging 
using ceramic or metal is still a bottleneck for their use in low cost applications, such as security, autonomous 
driving, IoT, and consumer applications. A solution for low cost vacuum packaging is to use wafer level vacuum 
packaging (WLVP) techniques, i.e., attaching a silicon cap wafer on the detector wafer to achieve a vacuum 
condition for the microbolometer detector in the die level, in which case the IR transmission performance of the 
silicon cap wafer becomes a critical issue1–3. A double side polished (DSP) mono-crystalline silicon (Si) based cap 
wafer typically transmits around 50% within the LWIR (8–12 µm) wavelength range; nevertheless, this can be 
increased above 85% with antireflective (AR) coating of stacked layers on both sides of the cap wafer4,5. However, 
the use of AR stack layers is not trivial, requiring a costly, complex technology development for achieving a high 
transmission performance in the wide bandwidth while avoiding delamination and performance degradation 
issues especially at high temperatures necessary for WLVP steps6,7. In order to reduce temperature exposures 
below 300 °C, gold-based eutectic bonding techniques in WLVP are needed; however, the use of gold is not only 
expensive but also a contaminant approach for CMOS foundries.
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An alternative to AR coating of stacked layers for increasing the transmission is the utilization of subwave-
length (SW) antireflective gratings (SWARGs), which is achieved by patterning pillar-like (also referred as 
moth-eye) or groove-like (also referred as inverse moth-eye) structures with a high enough spatial frequency 
through micromachining on the surface of the substrate6,8. Inspired by biomimetics, these grating based AR 
structures eliminate the need for AR coating of stacked layers by providing the substrate itself, which is the silicon 
cap wafer within the scope, with antireflective characteristics. Although there are many studies examining these 
structures, there is still no study in the literature with conclusive results comparing relative performances of both 
grooves and pillars one to another.

The most widely used approaches for simulation and modelling of SW grating structures are the effective 
medium approach (EMA) and the rigorous couple wave analysis (RCWA) algorithm6,8–11. Nonetheless, this study 
presents a novel hybrid simulation technique combining the efficient 3D modelling capability of packaged pro-
grams, such as HFSS or Lumerical with the incoherent analysis capability of Fresnel transmission equations to 
handle the electrically thick nature of the substrate. The proposed method is based on modifying the reflection 
term of the Fresnel equation through the 3D electromagnetic (EM) analysis of the gratings. However, the pro-
posed method is only valid within SW regime, and thus it can be seen as an alternative approach for RCWA and 
EMA techniques while handling EM modelling of subwavelength structures. Still, it is observed that the proposed 
hybrid simulation technique presents conclusive results while predicting the spectral IR transmission of both 
grooves and pillars. The spectral responses of both structures are examined through various topological config-
urations changing in period sizes (Λ), heights/depths (h), and width-to-period (w/Λ) ratios, for all of which an 
excellent spectral agreement between the measurements and simulations is obtained. This technique is used to 
demonstrate first time in the literature that binary type pillars and grooves present similar spectral IR transmis-
sion performance when optimum configurations are employed to maximize the transmission, and they also turn 
out to be structurally complementary, which is also verified through measurements and explained through an 
analytical model.

Results
Design, Simulation and Optimization. Design of pillar and groove type antireflective gratings is 
achieved with utilization of the quarter wave index matching (QWIM) technique, in the same way that it is uti-
lized for the design of the AR coating of stacked layers, where the silicon transmission is enhanced with the min-
imization of reflection through destructive interference6,10,12. However, unlike the stacked layer case where a bulk 
refractive index is looked for, an effective refractive index (neff) is searched for index-matching of silicon (nsi) to 
the air (nair), such as neff = (nair × nsi)0.5, with the employment of SWARGs since the volume composed of SW grat-
ings is considered as a composite layer, which is partially air and partially silicon. Within the scope of this study, 
optical constants of silicon, i.e., the refractive index (nsi) and the extinction coefficient (κsi), are extracted from 
the literature13. As known, there are mainly two types of Si wafers in the market, namely the Float Zone (FZ) and 
the Czochralski (CZ) type wafers, which mainly differ in their production techniques and LWIR range extinction 
coefficients14. Although an FZ type wafer has a higher LWIR transmission since it does not have an absorption 
peak at 9 µm in contrast to a CZ type, it is more expensive than the CZ type due to its production technique; thus, 
the CZ type wafer is employed within the scope of this study due to cost issues14,15. The extinction coefficient of 
CZ type wafer is recalculated from the IR transmission of a plain DSP wafer instead of using the literature data in 
order to have a better matching between simulations and measurements6. Figure 1 shows the optical constants of 
CZ type wafer employed within the scope.

Figure 2a,c show the binary type, complementary pillar and groove topologies under investigation within the 
scope, where the width-to-period (w/Λ) ratio of gratings is optimized for tuning the effective refractive index 
(neff) of the grating based composite layer, and the height/depth (h) of gratings is optimized for tuning the oper-
ation wavelength (λop) in accordance with the QWIM. The placement period (Λ) of gratings is subwavelength 
in size; i.e., it is smaller than the operation wavelength (Λ ≪ λop), so that gratings are ensured to enhance the 
transmission while eliminating diffraction and scattering mechanisms. This issue raises the cut-off wavelength 
(λc) concept as a design parameter; i.e., the period should be chosen to be smaller than the cut-off limit (Λ ≪ λc)  
in order to guarantee the SW nature of the gratings. In literature, the cut-off limit is mostly associated with 
the index of the substrate material and the period of the gratings, such as λc = Λ/nsi

6,16–18. Thus the upper limit 
for the period is determined as Λ < 2.3 μm by using the lower limit of the LWIR range as the cut-off, which is 
8.0 µm. Although there is no theoretical lower bound for the period, it is still limited by the resolution limit of the 
lithography infrastructure, which is determined to be 1.0 μm for the designed configurations in this study. The 
other design parameters can also be roughly determined by using simple analytical equations in the literature, 
without resorting to any detailed analytical and numerical calculations6. Thus, the optimum neff is determined 
to be around 1.85, the depth/height to be around 1.35 μm, and the pillar width-to-period ratio (w/Λ) to be 
around 0.64. After obtaining these rough values, optimization ranges for the design parameters are determined 
by centring around these values, such as period sizes (Λ) with the values of 1.0 μm, 1.5 μm, and 2.0 μm; heights/
depths (h) within a range from 0.8 μm to 1.8 μm, and pillar/groove w/Λ ratios within a range from 0.6 to 1.0. All 
variations correspond to a total of 19 different configurations, which allows a detailed analysis and verification of 
the proposed simulation technique and its findings. After determining the ranges, 2D optimizations over various 
depth/height values and various width-to-period ratios are performed through the proposed simulation tech-
nique, maximizing the average LWIR transmission for binary type pillars and grooves with square cross-section. 
The proposed simulation technique basically combines the efficient 3D complex geometry handling capability 
of the packaged programs with the efficient solution capability of Fresnel equations for electrically large prob-
lems. The reflection calculated through packaged programs is embedded into Fresnel equations to obtain the 
transmission through the patterned wafer, the details of which can be found in Methods section. Figure 2b,d 
show their LWIR optimization results, assuming a periodic placement of Λ = 1.0 µm. Through optimizations, it 
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Figure 1. Optical constants of Czochralski (CZ) type Si wafer. The refractive index (nsi) is extracted directly 
from the literature data (a), while the extinction coefficient (κsi) is recalculated through IR transmission 
measurement of a plain DSP wafer (b).

Figure 2. 3D schematics illustrating the SWARG unit cells and 2D optimization results for maximum LWIR 
transmission. Topological parameters and the 3D patterning for both groove (a) and pillar (c) type SWARGs 
are illustrated. 2D optimization results show that both grooves (b) and pillars (d) not only present a similar 
maximum LWIR transmission around 90% but also the same optimum dimensions for maximum transmission, 
assuming double side patterning with a period of Λ = 1.0 µm.
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is observed that similar maximum average LWIR transmissions are obtained for both pillars and grooves, nearly 
90% for the double side patterning and 64% for the single side patterning. Moreover, both the depth/height and 
the width-to-period ratios, which are optimized to 1.3 µm and 0.8 respectively, are also determined to be the same 
for both grating types. These optimum points are perturbed slightly with other periods under investigation, which 
are Λ = 1.5 µm and Λ = 2.0 µm. It is also observed that if the cross-section of the gratings is changed from square 
to circle, a similar maximum LWIR transmission around 90% with the same optimum height/depth of 1.3 µm is 
obtained. For the circular cross-section, the optimum grating width-to-period ratio, which is parametrized as 
diameter-to-period ratio (D/Λ) due to geometry, is determined to be 0.9. The difference between the optimum 
w/Λ and D/Λ is not surprising, considering the EMA since the volumetric ratio of the silicon becomes the same 
with these different values, which is found to be around 64%. These results show that the circular cross-section 
should not be preferred over the square one since the optimum D/Λ is closer to 1.0, which makes this type of 
gratings more sensitive to the fabrication related variations.

The similarity observed within optimum design parameters for both types of SWARGs is analysed further 
over an extended LWIR range (2.5–20 µm), as opposed to previously obtained average LWIR results, in order 
to clarify the origin of this observation. Hence a spectral analysis over the extended LWIR range is performed 
with a period size lower than 0.7 μm, considering the previously defined cut-off limit expression (λc = Λ/nsi) and 
the minimum operation wavelength of the extended LWIR range, which is 2.5 µm. However, it is observed that 
if the entire extended spectral response is monitored as the Λ is decreased, while w/Λ and h are set to optimum 
points and kept constant, the spectral response starts to converge to the same characteristics when λc < Λ/10 
is satisfied, which is a stricter limit than the previously defined λc = Λ/nsi. The convergence assumes an abso-
lute root-mean-square (RMS) error less than 0.5% between the extended LWIR responses of Λ = 0.2 μm and 
Λ = 0.25 μm cases. The absolute RMS error is calculated by taking the RMS of the difference between the two 
spectral responses through the relevant spectral range without any normalization applied. This stricter condition 
is referred as the deep SW limit with the rest of this study and also employed through the first simulation trails 
of spectral transmission responses, which is summarized in Figure 3. While examining the extended spectral 
responses, the material loss is disregarded without loss of generality since the loss is too high considering the 
thickness of an 8-inch wafer (around 700 µm), and the loss is shadowing the characteristic behaviour of the 
spectral transmission. Figure 3a shows the shadowing effect of the loss on the characteristic spectral response of 
a groove type SWARG. Figure 3b shows that changing the depth/height of SWARGs shifts only the centre wave-
length of the maximum transmission without affecting the magnitude of the maximum while w/Λ ratio is kept 
constant. On the other hand, Figure 3c shows that changing the w/Λ ratio both shifts the centre of the wavelength 
and changes the magnitude of the maximum simultaneously while h value is kept constant. A similar observation 
is also made for the pillar type SWARGs. These observations are as expected since the varying w/Λ ratio is directly 
affecting the effective refractive index of the composite structure and varying the height/depth is directly related 
to the quarter wavelength condition. Figure 3d–f proves that the entire extended spectral responses of pillars 
and grooves shift in adverse directions, i.e., from lower wavelength to higher or vice versa while the w/Λ ratio 
is swept around the optimum point, and the h value is kept constant, which can be attributed to the topological 
complementary nature and also to the subwavelength behaviour of binary pillar and groove type gratings. As the 
core result of this study, it is observed that these two spectral responses match exactly at a very specific w/Λ ratio 
of 0.8, which is also the optimum point for the maximum average LWIR transmission for both type SWARGs.

The matching spectral responses of complementary SWARGs is further investigated through the effective 
index extraction technique, which is mostly employed for metamaterials to monitor the optical behaviour of the 
composite layer19. It should be noted that these grating structures can also be considered as metamaterials since 
periods of the SWARGs are in SW regime. Figure 4a shows the effective refractive indices (neff) calculated at an 
operation wavelength of λop = 10 µm with varying w/Λ ratios for both pillars and grooves, assuming a period of 
Λ = 0.2 µm. The crossing-over point at w/Λ = 0.8 and neff = 1.85 confirms the observation regarding the similar 
transmission responses for the complementary structures. At the crossing-over point, both pillars and grooves 
have the same w/Λ ratio, which suggests that they are structurally complementary. They also have the same neff 
around (nsi)0.5 at this point, which suggests that they are optically indistinguishable, and present the optimum 
refractive index maximizing the transmission with the right choice of depth/height. These observations are also 
examined through an analytical approach to enhance the physical insight, which is based on a field-equivalent 
circuit model, i.e., the effective capacitance method, derived for the analysis of SW regime all-dielectric meta-
materials (ADMs)20. Equation (1) shows the analytically derived formula for a normal incidence case, where an 
ADM composite material is created by embedding 2D array of square pillars of width w and of refractive index 
n2 into a continuous media of n1 with a placement period smaller than the operation wavelength (Λ << λop). The 
complementary counterpart of this topology is obtained by replacing n1 with n2 and vice versa. Figure 4a also 
shows the effectiveness of the analytical model for the calculation of neff, which is compared with the numerical 
extraction technique, as they both accurately predict the same crossing-over points.
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EMA suggests that while w/Λ ratio is swept from 0.0 to 1.0, the neff of a pillar should vary from nair to nsi since 
the composite layer will evolve from air to silicon, and the neff of a groove should vary from nsi to nair since it will 
evolve vice versa. Hence it is obvious that there should be a complementary case where both pillars and grooves 
have the same effective refractive index; i.e., they are optically indistinguishable. However, this approach does 
not explain for neff to be around nsi

0.5 = 1.85. On the other hand, if Equation (1) is examined, which is based 
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on a field-equivalent approach, it suggests that when both grooves and pillars have the same neff, they both are 
approximately index-matched to air (neff ≈ nsi

0.5) and are also structurally complementary, which explains for the 
observation for pillars and grooves turning out to be complementary when they are separately index-matched 
to air. Figure 4b shows the numerically extracted spectral variation of indices for both grooves and pillars with 
changing w/Λ ratios within the entire extended LWIR spectrum instead of a single wavelength. It is observed that 
grooves and pillars are optically indistinguishable through the entire extended LWIR range around w/Λ = 0.8, not 
just for one specific wavelength, which also explains for the spectral matching through the entire extended range.

Simulation vs. Measurement. IR transmission measurements are performed with the reflection/transmis-
sion (R/T) module of an IR-VASE ellipsometer. Figure 5a–i show a comparison between simulations and meas-
urements for some of the configurations, which are changing in period sizes, width-to-period ratios, or SWARG 
types. For a fair comparison, the designed topological parameters are updated with the measured ones since it 
is observed that the designed and measured topological parameters might differ by a value of up to 23% for the 
depth/height and 17% for the w/Λ ratio. Throughout these comparisons, firstly the cut-off limits are observed for 
all configurations since fabricated period sizes are larger than the cut-off limit for the extended LWIR range, and 
since the proposed simulation technique is only valid within the SW regime. Figure 5g–i show that the cut-off 
limits are determined for various period sizes, such as λc = 6.9 µm for Λ = 2.0 µm, λc = 5.2 µm for Λ = 1.5 µm, 
and λc = 3.5 µm for Λ = 1.0 µm by spotting the data point where the simulations and the measurements start to 
diverge, all verifying the classical limit of λc/Λ ≈ nsi. Secondly, employing the actual period sizes proves to be 
more successful with the matching of simulations and measurements of spectral transmission responses espe-
cially nearby the cut-off when compared to the period sizes determined with the classical or deep SW cut-off 
limits. This is also an expected result since the transition nearby the cut-off, which is from SW regime (Λ << λop) 
to near wavelength regime (Λ ≈ λop), is also accounted for with the utilization of the actual period sizes. Lastly, 
an excellent spectral agreement between the measured and the simulated data is achieved for all configurations 

Figure 3. Simulation results for spectral IR transmission of double side patterned Si wafer. These simulations 
examine the effect of material loss (a), the variation in depth/height (h) (b) and width-to-period ratio (w/Λ) (c) 
for groove type SWARGs on the spectral IR transmission of the double side patterned silicon wafer, which are 
as predicted in accordance with the QWIM. It is also observed that as the w/Λ ratio is swept while the depth/
height is kept constant around h = 1.3 µm, the spectral responses of the complementary pillar and groove 
structures shift in a symmetric way around a centre w/Λ ratio that is also the optimized point for the maximum 
average LWIR transmission (d–f). These results are obtained under true SW assumption (Λ = 0.2 µm).
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within the SW regime, as already mentioned previously, with an absolute root-mean-square (RMS) error less than 
5.4% within the spectral range up to the cut-off wavelength.

Figure 6a shows the measurement results proving the gradual increase within the extended LWIR range with 
increasing w/Λ ratios from 0.65 to 0.8, also including the reference measurement obtained before the patterning, 
for a groove type SWARG with a period size of 2.0 µm and a depth of 1.3 µm, which is as predicted by the sim-
ulations. A similar gradual increase is also observed for other configurations, and Figure 6b presents a refined 
representation of these results, i.e., the gradual increase within the average LWIR transmission with increasing 
w/Λ ratio for all configurations, which is also as predicted through simulations (see Figure 2b,d). The decreasing 
trend within the range from 0.8 to 1.0 with the increasing w/Λ ratio is not observed through measurements due to 
lithographic limitations. Nevertheless, it is safe to claim that 0.8 is the optimum w/Λ ratio maximizing the average 
LWIR transmission, considering the great agreement between simulations and the measurements. According to 
simulations, the increasing trend of average LWIR transmission with increasing w/Λ ratio up to 0.8 is expected 
to be different for pillars and grooves; however, it should be similar for the same type of gratings with different 
periods. Although there is a great resemblance between them, there is still a discrepancy, which is mainly due to 
fabrication errors and due to the fact that variations in depth/height of gratings are not included in Figure 6b. It 
is also observed that a maximum average LWIR transmission of 87% is achieved with double side patterning of 
the wafer, and the loss by 13% is mostly due to the material loss of Si, the narrow resonance characteristic of the 
QWIM technique, and partially due to fabrication errors.

Finally, Figure 7 shows the matching transmission spectra for pillar and groove type SWARGs through meas-
urements when the optimum topological configurations are employed, and the optimized structures are almost 
structurally complementary as the core result of this study. The minor discrepancy is due to the fabrication errors 
regarding the variations in height/depth, the width-to-period ratios observed on both sides of the wafer (h1, 
h2, (w/Λ)1, (w/ Λ)2) and due to the fact that the actual period (Λ) is larger than the deep SW limit; i.e., the SW 
assumption is disturbed slightly. The gradual shift with varying w/Λ ratios for the entire spectral response of 
pillars and grooves (see Figure 3d–f) is not clearly observed since the material loss shadows this characteristic 
behaviour, which is also as predicted by the simulations.

Discussion
A detailed spectral analysis is performed comparing the IR transmission of complementary, binary type pillars 
and grooves that are fabricated on an 8-inch DSP Si cap wafer with various topological configurations by using 
both simulations and measurements. A unique hybrid simulation technique is proposed for the analysis, which 
proves to be effective, considering the great agreement between the simulations and the measurements. Both 
simulations and measurements suggest that when optimum topological configurations for pillar and groove type 
SWARGs are examined to maximize the IR transmission through the silicon wafer, the optimum grating struc-
tures should present a similar spectral IR transmission and should be topologically complementary. This observa-
tion is also examined and confirmed through EMA and through an analytical model based on a field-equivalent 
circuit model. Thus, the same maximum average LWIR transmission is predicted to be around 90% with the 
simulations and verified to be around 87% with the measurements for both pillars and grooves employing the 
similar optimum topological parameters. Focusing on the optimum w/Λ ratio, which is found to be around 
0.8, although the volumetric silicon-to-air ratio is different with the pillars and grooves, 64% and 36% respec-
tively, both type SWARGs exhibit similar spectral IR transmission. It is also observed that the optimum design 
parameters obtained with the proposed method are not that different from the ones obtained through the rough 

Figure 4. Effective indices of both grooves and pillars. The effective indices are calculated with changing w/Λ 
ratios at a single wavelength of 10 µm both numerically and analytically (a) and within extended LWIR spectral 
range numerically (b) under true SW assumption (Λ = 0.2 µm). Both numerical and analytical effective index 
extraction techniques confirm the matching spectral responses of grooves and pillars at a very specific width-to-
period ratio of 0.8, where the neff is predicted to be around 1.85.
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analytical calculations. And it is verified that the deviation from the SW regime at the cut-off limit within the 
measured spectrum can be easily predicted by a simple equation as already highlighted in the literature, λc/Λ ≈ 
nsi. Finally, these findings are justified not only through measurements with an exhaustive testing executed with 
the above mentioned 19 different configurations but also through numerical simulations and an analytical model.

Methods
simulation technique. The proposed simulation technique is based on modifying the reflection (R) term of 
analytical, incoherent Fresnel equations for the normal transmission through a thick dielectric slab to account for 
the existence of gratings. In other words, the transmission through a double side patterned Si wafer is simplified 
into a transmission through a thick, plain dielectric slab with a modified surface reflection term. Equation (2) 
shows the simple formula that is used to calculate the reflection from an interface separating the air from the plain 
silicon wafer before the patterning. For the plain case, the transmission is obtained by embedding the Equation (2)  
into the Fresnel formula, shown in Equation (3). However, the existence of gratings prevents the utilization of this 
simple formula of Equation (2) since the Si surface is no longer plain. Thus, a modified version of the reflection 

Figure 5. A comparison between the measured and the simulated IR transmission of both grooves and pillars. 
The comparison is done through various period sizes and various w/Λ ratios for both pillar and groove type 
SWARGs, assuming double side patterning (a–i). A good spectral agreement between the measured and the 
simulated data is observed for all cases within the SW regime with an absolute RMS error less than 5.4% The 
classical relation between the period size and the SW cut-off limit (λc/Λ ≈ nsi) is also observed (g,h,i).
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term is needed to account for the gratings, which can be obtained through 3D numerical EM simulations with 
suitable boundary conditions (BCs) applied.
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Double side patterned silicon wafer is spatially decomposed into two shallow regions consisting of SWARGs 
and one thick wafer with modified reflection term embedded in accordance with the proposed simulation 

Figure 7. A comparison between the measured spectral IR transmission of complementary pillar and 
groove with a width-to-period ratio of w/Λ = 0.8 and for the same period of Λ = 2.0 µm. A spectral matching 
is observed with the measured transmission responses of both type SWARGs up to the cut-off wavelength 
(λc = 6.9 µm) as predicted by the simulations, which employs the optimum configurations for the maximum 
average LWIR transmission and assumes double side patterning. The minute discrepancy is mostly due to 
fabrication errors.

Figure 6. The measured spectral and average IR transmission for both pillars and grooves with changing w/Λ 
ratios. The gradual increase within the spectral IR transmission for a groove type SWARG with increasing w/Λ 
ratio for a period of Λ = 2.0 µm is observed experimentally (a). The increasing trend for the average LWIR 
transmission with the increasing w/Λ ratio up to 0.8 for both SWARG types with periods of 1.5 µm and 2.0 µm is 
proven experimentally (b), all assuming a double side patterning.
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technique. Figure 8 presents the 2D schematic of the spatial decomposition, where the thick Si slab region (II, 
tw ≫ λop) is sandwiched between the two shallow regions (I and III, h ≈ λop) composed of gratings. 3D numeri-
cal EM simulation setup is employed to extract the modified reflection term due to gratings in shallow regions. 
Within the scope of this study, HFSS is employed to form the 3D numerical EM setup, which is based on finite ele-
ment method. The modified reflection term is embedded into the incoherent Fresnel equation to handle the EM 
interaction through the thick Si slab of region II. Figure 8 also shows the 2D schematic of the unit cell definition 
for gratings with a period of Λ and height/depth of h, which is employed through 3D simulations. The applica-
tion of suitable BCs for the 3D EM modelling is vital for having an accurate and precise measure of the modified 
reflection data. Accordingly, periodic boundary conditions (PBCs) are used to decrease the simulation volume 
since these structures are placed in the form of arrays. A perfect matched layer (PML) BC is defined on the oppo-
site side of the surface that consists of gratings to emulate a semi-infinite medium. The semi-infinite consideration 
is an important point with the proposed simulation technique, where the need is clarified as the reflection term 
of the Fresnel equation is examined carefully. Equation (2) suggests that the reflection (R) term corresponds to 
the reflection from a semi-infinite dielectric slab; and thus, the setup to extract the modified reflection data is 
also expected to mimic this semi-infinite scenario for the modified reflection to be utilized within the Fresnel 
equations directly. Another important point is the use of the handle thickness (th) within the unit cell, which 
enables the quarter wave interaction to take place. The handle thickness is determined to be around 0.5 μm with a 

Figure 8. 2D schematic of the structural decomposition of double side patterned silicon wafer through the 
proposed simulation technique. Since gratings have a depth around a few micrometres due to quarter wave 
condition, the region I and III containing these structures are modelled with coherent interaction, and the 
modified reflection data is extracted through numerical simulation programs, such as HFSS, Lumerical, etc. The 
region II containing the thicker Si part is modelled through incoherent Fresnel equation, which incorporates the 
extracted modified reflection data to account for the gratings.

Figure 9. SEM images of various SWARG configurations patterned on the DSP Si wafer. Both grooves (a) 
and pillars (b,c) with various period sizes, cross-sectional profiles (circular or square-like), and w/Λ ratios are 
fabricated successfully by patterning through reactive ion etching (RIE) with a one-mask process.
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simple field based convergence test. Through the region II, the interaction of the EM wave with the thick Si wafer 
is handled by embedding the modified R term and the wafer thickness (tw) into the Fresnel equation. The EM 
interaction through the region II is modelled incoherently since the phase coherency is lost as the wave propa-
gates throughout the thick wafer, which has a thickness of 720 µm for an 8-inch wafer in this scenario, and which 
justifies the need for incoherent Fresnel equations.

Fabrication. Gratings are fabricated through a one-mask process with a reticle design where various con-
figurations are placed with changing period sizes and width-to-period ratios. Both the dark field and clear field 
concepts are utilized simultaneously within the same reticle to be able to make a differential comparison between 
the grooves and pillars. For the process, first, the lithography is performed through an ultraviolet (UV) exposure 
on a photoresist (PR), which is deposited on the optical grade, DSP silicon wafer. After developing the PR, the 
wafer is exposed to the reactive ion etching (RIE) to engrave the pillars and grooves. Then the residual of the PR 
layer is stripped away, leaving the pillar and groove formations on one side of the wafer. The same procedure is 
repeated for the other side of the wafer; thus, the double side patterning is achieved. Figure 9 shows the scanning 
electron microscope (SEM) images for some of the fabricated pillar and groove type gratings. All configurations, 
19 in total, are fabricated successfully with tolerable deviations from the designed ones regarding the dimensions.

Measurement. IR measurements are performed with the reflection/transmission (R/T) module of J.A. 
Woollam IR Ellipsometer, with a resolution of 8 cm−1, a bandwidth of 0.04 μm, and scans/spectrum of 50, which 
are the settings of the measurement device.

Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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