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Reconstructing foot-and-mouth 
disease outbreaks: a methods 
comparison of transmission 
network models
simon M. Firestone  1, Yoko Hayama2, Richard Bradhurst3, takehisa Yamamoto  2, 
toshiyuki tsutsui2 & Mark A. stevenson  1

A number of transmission network models are available that combine genomic and epidemiological 
data to reconstruct networks of who infected whom during infectious disease outbreaks. For such 
models to reliably inform decision-making they must be transparently validated, robust, and capable 
of producing accurate predictions within the short data collection and inference timeframes typical 
of outbreak responses. A lack of transparent multi-model comparisons reduces confidence in the 
accuracy of transmission network model outputs, negatively impacting on their more widespread use 
as decision-support tools. We undertook a formal comparison of the performance of nine published 
transmission network models based on a set of foot-and-mouth disease outbreaks simulated in 
a previously free country, with corresponding simulated phylogenies and genomic samples from 
animals on infected premises. of the transmission network models tested, Lau’s systematic Bayesian 
integration framework was found to be the most accurate for inferring the transmission network 
and timing of exposures, correctly identifying the source of 73% of the infected premises (with 91% 
accuracy for sources with model support >0.80). The Structured COalescent Transmission Tree Inference 
provided the most accurate inference of molecular clock rates. this validation study points to which 
models might be reliably used to reconstruct similar future outbreaks and how to interpret the outputs 
to inform control. Further research could involve extending the best-performing models to explicitly 
represent within-host diversity so they can handle next-generation sequencing data, incorporating 
additional animal and farm-level covariates and combining predictions using ensemble methods and 
other approaches.

Modelling the transmission network of infectious disease outbreaks is a very active research area important for 
informing control of transboundary and emerging infectious diseases such as Ebola haemorrhagic fever (in 
humans) and foot-and-mouth disease (in livestock populations). A number of dynamic models have recently 
been published that combine genomic and epidemiological data to reconstruct the network of who infected 
whom in outbreaks1–11. For such models to reliably inform decision-making they must be transparently vali-
dated, robust, and capable of producing accurate predictions within short data collection to inference timeframes 
typical of outbreak responses. Several such models have recently been assessed based on outbreak datasets sim-
ulated using very similar methods to the inferential frameworks of the models themselves3–11, and/or model 
cross-comparisons of predicted transmission networks for small clusters of infected individuals (or ‘infected 
premises’ in veterinary examples) such as the foot-and-mouth disease ‘Darlington cluster’ in the 2001 outbreak 
in the United Kingdom7,9,10,12. These two approaches, however, only provide a low level of ‘pseudo-validation’. 
The first approach is not a robust estimate of predictive performance for outbreaks arising from stochastic pro-
cesses that differ from those underpinning the models themselves. The second approach does not provide a 
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‘gold standard’ as the true transmission network of the ‘Darlington cluster’ remains unknown, with conflicting 
genomic and epidemiological data. The predictive accuracy of the transmission network models thus remains 
unclear, particularly because it is common for different models to predict distinctly different transmission net-
works for the same outbreak.

Foot-and-mouth disease (FMD) is a highly contagious, acute, vesicular disease of cloven-hoofed animals 
(including cattle, pigs, sheep, goats and buffalo)13. FMD, caused by an RNA virus of the family Picornaviridae, is 
endemic in large areas of Africa, Asia and South America, and periodically causes outbreaks in previously free 
countries and regions. FMD is extremely resource-intensive to control due to its wide host range, contagiousness, 
multiple modes of transmission (direct contact, airborne and via fomites), diminished clinical signs in some 
species dependent on serotype (sheep and goats), and the potential for long-term carrier status in ruminants. 
Outbreaks in previously free countries cause severe and widespread socio-economic impacts related to the clo-
sure of international markets in livestock and animal produce on top of the direct and indirect impacts of disease 
control measures14. FMD-free countries therefore have stringent biosecurity measures in place to prevent incur-
sions and investigate outbreaks very thoroughly.

In non FMD-endemic countries, a critical component of any outbreak response is a process known as back-
ward and forward tracing, essentially working out who an infected individual has had contact with during their 
infectious period15. Early in the response to large-scale outbreaks, when contact-tracing is just getting underway, 
the implementation of appropriate interventions is time-critical16. At this early stage in an outbreak, when appro-
priate interventions can have the most impact, laboratory and field resources are often pushed to their limit17. 
Important decisions must be made under considerable uncertainty and in conditions that are continually evolv-
ing. Central questions for the outbreak investigation team are ‘who infected whom?’, ‘who will be infected next?’ 
and ‘how and where should we intervene?’18. Answering these questions in time to inform decision-makers can 
lead to large potential savings through better targeting who to investigate and which farms to quarantine, and/or 
depopulate or vaccinate.

Traditional epidemiological approaches to identifying transmission networks (contact-tracing, interviewing, 
laboratory sampling, typing and phylogeny of isolates), may reveal sources, points of control and provide insights 
into the future scale and course of an outbreak. However, obtaining detailed and accurate contact-tracing and 
surveillance data is not a trivial exercise early in a large outbreak. Delays in accessing data from the field and 
the quality of the data impact on the ability to develop meaningful predictions of disease transmission. Field 
investigations are resource intensive and involve a high degree of uncertainty in sources of infection and timings 
of unobserved events19. The genomics revolution has provided new tools and opportunities for tackling infec-
tious diseases. The application of whole genome sequencing has streamlined pathogen identification in disease 
emergences20. Highly discriminatory laboratory techniques are now available for characterising the relation-
ship between samples collected during an outbreak within appropriate timeframes and costs. Next-generation 
sequencing has advanced the identification of traceable differences in pathogen genomes and thereby the reso-
lution of our understanding of disease transmission, in some cases down to the host-to-host scale18. This tech-
nology is now available for real-time application during outbreak responses. In this setting it is essential that 
epidemiological tools to guide infectious disease outbreak response are adapted to keep pace with the advances in 
genomics and rapid pathogen identification.

Phylogenetic trees may be topologically dissimilar to transmission trees, especially under high density sam-
pling as would be the intention early in an incursion of an exotic animal disease or the emergence of a new 
infectious disease21. Interpreting phylogenetic proximity as epidemiological linkage can be dangerously mislead-
ing22. Bayesian transmission network models are the only tool presently capable of identifying the pathways of 
infectious disease transmission to a level of resolution required to pin-point sources. A variety of methods are 
available, many claiming to be a theoretical improvement on others available depending on context. A paucity 
of transparent multi-model comparisons unfortunately leaves it unclear how accurate they are in practice, thus 
reducing confidence in their interpretation and restricting their potential application in decision-support dur-
ing future outbreaks. The aim of this study was to undertake a structured comparison of the performance of 
published transmission network models based on a set of simulated foot-and-mouth disease outbreaks so as to 
provide clear guidance on the application of such models to future outbreaks.

Results
Characteristics of the simulated outbreaks. To benchmark the performance of each transmission net-
work modelling algorithm, a set of 100 foot-and-mouth disease outbreaks were simulated using the Australian 
Animal Disease Spread (AADIS) hybrid model23 with corresponding genomic sequences24 and phylogenetic trees 
nested within the given transmission networks25. The median number of infected premises (IPs) per simulation 
run was 92 (range: 24, 853) and the median outbreak duration was 83 days (range: 49, 323). From these model 
runs, six were selected for further analyses (with n = 42, 70, 98, 100, 156 and 298 IPs, respectively, referred to 
hereafter as runs 1 to 6). These outbreak datasets, including their genomic data and tables summarising the epide-
miological variables that were available for analysis, are provided as Supplementary Materials (S1). Cattle farms 
were the most frequently affected with large numbers of sheep infected on smaller numbers of properties. Local 
spread was the predominant mode of transmission, direct animal contacts and movements through saleyards 
were important for disseminating infection across large areas (two to three Australian States) with infrequent 
airborne spread over distances >3 km.

Comparative analyses of accuracy of inferences of transmission network models. Based on a 
review of the published literature, nine algorithms for integrating genomic and epidemiological data were selected 
for comparison1,5–10,26,27. We also included our own modification to the frequentist approach of Cottam et al.1 
to incorporate spatial and contact-tracing data. Key attributes of these models are summarised in Table 1. Most 
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of the modelling methods selected for comparison account for delays in sampling and tree uncertainty, make 
use of phylogenies, allow for unobserved hosts, and infer mutation rates and infection times for those sampled. 
Five of the models (‘Outbreaker’, ‘Outbreaker2’, Lau’s model, the Structured COalescent Transmission Tree 
Inference, ‘SCOTTI’ and ‘Phybreak’) can handle observed cases (infected premises) that have missing genomic 
data, a very common situation in large-scale foot-and-mouth disease outbreaks where field investigation and 
laboratory resources are typically severely constrained. Only four of the previously published models incorporate 
within-host dynamics, only two allow for multiple samples per case and only Outbreaker2 utilises contact-tracing 
data. The models differ in underlying likelihood estimation and the outputs returned and were only broadly 
comparable in terms of their accuracy of inferences of the transmission network, mutation rates and timing of 
first exposure. Most of the models selected for this comparison have been previously applied to infer transmission 
networks for foot-and-mouth disease outbreaks, with the exceptions being: ‘Sampled Ancestors’ implemented on 
data from a UK cluster of HIV-1 human patients, ‘BeastLier’ demonstrated through inference of a H7N7 avian 
influenza outbreak in the Netherlands and ‘TransPhylo’ applied on an outbreak of tuberculosis in Germany.

The ten modelling methods differed markedly in their ability to accurately infer the underlying transmission 
network (Table 2, Fig. 1). When genomic data was assumed to be available for all known infected premises Lau’s 
systematic Bayesian integration framework performed best with 73% of source farms correctly identified. This 
increased to 82% accuracy for the 83% of infected premises for which there was consensus support for a single 
proposed source, and increased again to 91% for the 60% of infected premises for which model confidence in 
their source was >0.8. The accuracy of Lau’s model was consistent across runs comprised of different numbers of 
infected premises (see Supplementary Materials, S3). An example of the accuracy of the inference of this model 
compared to the known (simulated) underlying transmission network is presented in Fig. 2. The ‘Phybreak’ 
model10 had comparable accuracy to Lau’s model for sources with high levels of model confidence, however, only 
16% of infected premises had single sources with model support >0.80 from Phybreak. De Maio’s SCOTTI and 
the modification to Cottam’s frequentist approach were also highly accurate at inferring sources when model 
support was >0.80. Lau’s model identified >2.8 times as many sources with such high levels of support (Fig. 1), 
so overall it was the most accurate method of the ten models that were tested.

Highly informative outputs from Cottam’s approach are presented in Fig. 3, demonstrating the estimated 
timing of exposure and infectious periods for infected premises, and the estimated likelihood of each possi-
ble infection source for each infected premises. Modifying Cottam’s approach to incorporate typically available 
spatial and contact-tracing data improved accuracy of source identification for infected premises where model 

Method

Included 
in this 
study

Designed 
for 
outbreak 
trans-
mission 
network 
inference

Package 
publicly 
available

Uses 
multiple 
samples 
per host

Uses 
exposure 
data

Uses 
sampling 
times

Uses 
phylo-
genetic 
structure

Allows 
non-
observed 
hosts

Explicitly 
models 
observed 
hosts 
missing 
genomic 
data

Uses host 
distance 
data

Uses 
contact-
tracing 
data

Models 
within-
host 
evolution

Allows 
mixed 
infections

Models 
partial 
trans-
mission 
bottle-
necks

Allows 
compart-
menta-
lization 
model

Infers 
mutation 
rates

Infers 
infection 
times

Cottam et al.1 + + + − + + + − − − − − − − − − +

Cottam et al. 
(modified) + + + − + + + − − + + − − − − − +

Aldrin et al.2 − − − − + − − − − + − − − − − − +

Morelli et al.3 − + − − + + + − − + − − − − − −a +

Mollentze 
et al.4 − ±b − − + + − + − + − − − − − + +

Gavryushkina 
et al.5 (SA) + + + − − + + + − − − − − − − + −

Jombart et al.6 
(Outbreaker) + + + − − + − + + ±c − − − − − + +

Lau et al.7 + + + − + + + + + + − − − − + + +

Hall et al.8 
(BeastLier) + + + + + + + − − + − + − − − + +

De Maio  
et al.9 
(SCOTTI)

+ + + + + + + + + − − + + − − + −

Klinkenberg 
et al.10 
(Phybreak)

+ + + − − + + − − − − + − − − + +

Didelot et al.26 
(TransPhylo) + + + − + + + + − − − + − − + − +

Campbell 
et al.27 
(Outbreaker2)

+ + + − − + − + + − + − − − − + +

Table 1. Comparison of the features of approaches to outbreak transmission network inference from genetic 
and epidemiological data. Table based on that in9, updated and ordered chronologically. SA = Sampled 
Ancestors. aThe substitution rate was fixed in3 with mention of how to infer it. bExtension of3 for an endemic 
rabies disease scenario, could be implemented on foot-and-mouth epidemics. cDocumentation mentions spatial 
model implementation is under development.
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confidence in the source was <80%, leading to accuracy that was overall similar to that of Phybreak and SCOTTI, 
and outperformed many of the highly complex Bayesian models for infected premises with lower levels of model 
confidence in their proposed source.

Under the more realistic scenario of genomic data only being available for 50% of observed infected premises, 
Lau’s model was again the most accurate of those analysed (see Table 2 and Supplementary Materials, S3). For 
those sources identified with high levels of model confidence, the Lau model’s inferences of the network of trans-
mission remained very accurate (73% accuracy amongst those with >0.80 model support), however the numbers 
of such sources attaining model confidence decreased from 58% to 20%. Accuracy was 60% for the 47% of sources 
with consensus support. Phybreak was again highly accurate in inferring sources, however only for the relatively 
small number of infected premises for which sources were identified with consensus support (only 50 of 764 
inferred sources had consensus support).

Of the seven studied models that infer mutation rates for the transmitted virus, SCOTTI consistently provided 
the most accurate inference of the simulated molecular clock rate (μ) of 2.078 mutations × 10−5 site−1 day−1 
(mean bias + 15%; 95% highest posterior density [HPD] −5%, +39%), see Fig. 4. Lau’s model consistently pro-
vided inferences of the clock rate close to and around the true value (mean bias −1%; 95% HPD: −12%, +12%). 
The Sampled Ancestors, Phybreak and BeastLier models all marginally overestimated the mutation rates (mean 
biases of +64%, +64% and +235%, respectively), whereas the Outbreaker and Outbreaker2 models markedly 
overestimated the mutation rate by means of 24-fold (95% HPD: 20.7, 17.1-fold) and 7-fold (95% HPD: 6.1, 8.5), 
respectively, across the 6 model runs. SCOTTI, Lau’s model and BeastLier all provided accurate and precise infer-
ence of the transition to transversion ratio (κ) (Fig. 4). Sampled Ancestors’s inference of κ was close to the true 
value of 15.22, however there was considerable uncertainty in the inference. Outbreaker underestimated κ by 55% 
(95% HPD: 35, 67%), largely due to underestimation of the rate of transitions (μ1). The Phybreak model assumes 
the Jukes-Cantor nucelotide substitution model under which only a single mutation rate is inferred, so the ratio 

Figure 1. Comparison of the accuracy of inferences of transmission network models for simulated outbreaks 
of foot-and-mouth disease in Australia. Summarised over six simulation runs, with box-and-whiskers 
plots representing distribution of model support for the proposed ancestors; distribution numbers present 
the proportion of proposed ancestors with >50% (i.e., consensus) and >80% model support, respectively. 
SCOTTI = Structured COalescent Transmission Tree Inference.
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of the rate of transitions (μ1) to the rate of transversions (μ2) is not a model output. The present implementation 
of Outbreaker2 only infers a single mutation rate (μ).

Of the Bayesian models that outputted inferred timing of exposure for each individual premises, Lau’s model 
provided the least biased inference of timing of exposure (Fig. 5) with overall coverage of 70% and median bias of 
+1 days (95% HPD: −8, +5 days); see Supplementary Materials S3 for detail on coverage and bias by model run. 
Klinkenberg’s Phybreak model had a higher overall coverage at 80% and highly comparable mean bias of +1 days 
(95% HPD −10, +16 days), however it had less certainty in the inference with inferred timings of infection later 
than actual dates at the start and end of the simulated epidemics (see Fig. 5). Outbreaker2 provided a relatively 
unbiased inference of timing of exposure over the whole set of infected premises with high overall coverage of 
87%, however this was confounded by the large uncertainty in the inferred timings of infection (median bias −2 
days; 95% HPD: −22, +1 days) and the inferred timings appeared mostly earlier than the simulated values on 
visual inspection. Beastlier had an overall coverage of only 24 and tended to provide marginally later inferences 
than the true values early in the simulated outbreaks, rapidly improving as the outbreaks progressed (LOWESS 
estimator in Fig. 5 departing above the reference line). Inference of timing of exposure by Jombart’s Outbreaker 
was consistently biased (overall median 11 days later than the true value; 95% HPD: −2, +29 days), irrespective 
of model run or time elapsed in the outbreak. Didelot et al.’s TransPhylo model was largely inaccurate in the infer-
ence of timing of infection with coverage of only 17%.

sensitivity analyses. In a ‘non-spatial’ comparison run (with the spatial coordinates of each infected prem-
ises randomised) accuracy of prediction of sources decreased for the modified Cottam approach and BeastLier, 
whereas the Lau model’s predictive accuracy was robust to the lack of a spatial signal in transmission. As expected, 
predictive accuracy for the seven models that do not include a spatial aspect in their inference were highly com-
parable to baseline in the ‘non-spatial’ comparison run (see Supplementary Materials, Table S3.3). In a ‘fast 
clock’ comparison run (with a 10-fold increased rate of nucleotide substitutions), the modified Cottam approach 
demonstrated improved predictive accuracy for sources with lower than consensus model support. The predictive 
accuracy of SCOTTI was markedly reduced in the ‘fast clock’ scenario. Predictive accuracy of sources proposed 

Figure 2. Comparison of Lau model inferred transmission network to the true network for a simulated 
outbreak of foot-and-mouth disease in Australia. Model support for the proposed ancestor represented by line 
width.
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by the Lau model were robust to the fast clock scenario, as were those of BeastLier, Phybreak, TransPhylo. Model 
support was higher for sources proposed by Outbreaker and Outbreaker2 under the ‘fast-clock’ scenario whilst 
predictive accuracy remained highly comparable to baseline.

Discussion
This analysis presents the first structured comparison of available transmission network modelling methods that 
attempt to infer ‘who infected whom’ in outbreaks. The strengths and limitations of nine publicly available mod-
els were identified based on inferences of a set of six independent simulations of a hypothetical foot-and-mouth 
disease outbreak in Australia. Each model has various strengths and weaknesses, and each provides different 
outputs tailored to the purpose for which it was developed. Many of the differences observed in model perfor-
mance may be explained by the amount of epidemiological data used and the entirely different approach each 
takes to infer the transmission network, including in each case highly sophisticated specifications of likelihood or 
pseudo-likelihood functions based on assumptions of the systems under inference.

The model developed by Lau and colleagues7 consistently outperformed all others in terms of accuracy of 
identifying the sources of infection for each infected premises, model support for each inferred source, and tim-
ing of first exposure of each infected premises. SCOTTI performed the best for inference of genomic substitu-
tion rates. In inferring the transmission tree, Lau’s model incorporates inferences of the genomes present on 
infected premises in the transmission network at multiple points in time, a flexible spatial transmission kernel 
representing the proximity of infected premises, and epidemiological parameters including the latent and infec-
tious periods (as sojourn times in the compartments of the susceptible-exposed-infected-recovered process). 
Genomes can be inferred with Lau’s model for known hosts that are unsampled, a common scenario in the highly 
resource-constrained environment of large infectious disease outbreak in a highly susceptible population. Lau’s 
model was understandably less accurate when run on outbreak simulations where genomic data was only availa-
ble for 50% of observed infected premises. Nevertheless, Lau’s model was 60% accurate for the 356 of 764 (46%) 
inferred sources that attained consensus support. In comparison, Phybreak had higher accuracy (72%) when 
considering only those sources with consensus support. A limitation of Phybreak’s inference is that only 50 of 764 
(6.5%) inferred sources considered attained consensus support. The three other models that also make transmis-
sion network inferences where there are unsampled cases (SCOTTI, Outbreaker and Outbreaker2) were all a lot 
less accurate.

Cottam’s original frequentist approach outperformed many of the more sophisticated Bayesian models, espe-
cially once modified to incorporate spatial relationships between infected premises and available contact-tracing 
data. The original formulation was able to accurately estimate a lot of the major structure of the transmission 
network and provides useful visualisation of the temporal epidemiological aspect of the outbreak under investi-
gation. Lower accuracy of inference for sources of infected premises with lower likelihood was partly overcome 
by incorporating spatial relationships and available contract-tracing data. In outbreaks of foot-and-mouth dis-
ease and other exotic, infectious animal diseases in previously free countries, considerable resources are invested 

Figure 3. Estimated transmission windows and likelihood matrix of who infected whom based on Cottam’s 
frequentist approach for a simulated outbreak of foot-and-mouth disease in Australia. Black lines in temporal 
risk windows represent most likely period of the earliest infection of an animal on each infected premises (IP), 
grey lines represent estimated duration of infectiousness at the premises level, tapering as culling commences. 
During the most likely period when IP2 was infected, only IPs 1 to 11 were possibly infectious. Based on the 
likelihood transmission matrix IP2 was most likely to have been infected by IP1, and IP2 was more likely to have 
been infected by IP1 than vice versa. During the period when IP16 was most likely infected there were many 
potential sources. These likelihoods are used to rank ambiguities in the genomic parsimony network1.

https://doi.org/10.1038/s41598-019-41103-6


7Scientific RepoRts |          (2019) 9:4809  | https://doi.org/10.1038/s41598-019-41103-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

in accurately collecting such data within timeframes that can inform further field investigations and response 
activities. Such data are often imperfect, as represented in the present analysis by ‘true’ and ‘false traces’ that were 
considered in terms of likelihood based on other available epidemiological data, particularly estimated timing of 
onset of clinical signs and infectious period on the farms sending and receiving potentially infected animals. The 
method required extensive coding in R to automate the process of transcribing and capturing the considerable 
inherent ambiguities in the genomic parsimony tree exported from the TCS program28. Cottam’s method proved 
more difficult to implement than those presently available in BEAST29,30 (i.e., SCOTTI, Sampled Ancestors, 
BeastLIER) and the R statistical package31 (i.e., Phybreak, Outbreaker, Outbreaker2 and TransPhyloR), and only 
seems feasible for relatively small outbreak datasets. The Lau model is presently coded in C++ and although rela-
tively straightforward to compile and run it could be made more accessible by recoding it for use as an R package.

Each method provided imperfect inference of the transmission network. Therefore, when implemented on the 
same benchmark outbreak, each model produced markedly different inferences of the transmission network. On 
the surface, such differences hinder interpretation and application in decision-making. However, when model 
support for each proposed ancestor was considered each model demonstrated improving accuracy as support 
increased, with considerably different patterns in this correlation. This makes sense considering that the models 
gain support for their proposed sources based on different likelihood estimation algorithms. In practice, where 
the models agree on a proposed source and that it has a high level of model support, then confidence can be 
increased that this is the source of infection for a given node in the transmission tree. Differences in model out-
puts may also be useful. An area for further research is in the application of Ensemble methods, such as weighted 
Bayesian model-averaging, given these have often been shown to perform better than any single model32.

The findings of the present methods comparison are consistent with publications that first describe the models 
assessed. In a direct comparison SCOTTI demonstrated higher accuracy than Outbreaker in inferring the trans-
mission tree on simulated outbreak data9. Phybreak had similar accuracy as reported here at high levels of model 
support, including simulations with molecular clocks with rates comparable to those of the simulations in the 
present analysis10. Some methods do not use the available onset of clinical signs (‘exposure data’), i.e., Sampled 
Ancestors, Outbreaker and Phybreak, rather being based on generation time and sampling interval estimation. 
This can lead to discrepancy in inference of the timing of infection.

It is not possible for transmission network models to capture all of the inherent complexity of an outbreak such 
as a foot-and-mouth disease incursion into a previously naïve animal population. Many unobserved biological 
processes operate at the farm level, the individual animal level and within the individual host, including complex 
evolutionary processes such as transmission bottlenecks, recombination of genomic material, and reassortment 
(in the case of influenza viruses). None of the models presented here can explicitly represent all the organisational 
hierarchies and complexities present in real biological systems (i.e., multiple viral pseudo-species evolving in mul-
tiple animals per farm across a landscape). Understandably, capturing all such detail is unlikely to be necessary, 

Algorithm

Accuracya

Overall (%)
>50% 
support (%)

>80% 
support (%)

Genomic data available for all known infected premises

Cottam et al.1 373/758b (49) 231/369 (63) 115/158 (73)

Cottam et al. (modified) 507/758b (67) 288/369 (78) 126/158 (80)

Gavryushkina et al.5 (SA) 123/511c (24) 72/249 (29) 47/102 (46)

Jombart et al.6 (Outbreaker) 294/764 (38) 282/665 (42) 241/490 (49)

Lau et al.7 559/764 (73) 519/636 (82) 406/445 (91)

Hall et al.8 (BeastLier) 118/764 (15) 66/382 (17) 31/157 (20)

De Maio et al.9 (SCOTTI) 383/764 (50) 282/382 (74) 144/155 (93)

Klinkenberg et al.10 (Phybreak) 363/764 (48) 222/290 (77) 112/123 (91)

Didelot et al.26 (TransPhylo) 29/764 (4) 25/516 (5) 8/177 (5)

Campbell et al.27 (Outbreaker2) 269/764 (35) 214/470 (46) 140/276 (51)

Genomic data missing for 50% of known infected premises

Jombart et al.6 (Outbreaker) 55/764 (7) 41/214 (19) 32/119 (27)

Lau et al.7 319/764 (42) 212/356 (60) 112/154 (73)

De Maio et al.9 (SCOTTI) 93/382d (24) 73/193 (38) 37/78 (47)

Klinkenberg et al.10 (Phybreak) 132/764 (17) 36/50 (72) 5/7 (71)

Campbell et al.27 (Outbreaker2) 21/764 (3) 4/50 (8) 0/20 (0)

Table 2. Comparison of the accuracy of inferred transmission networks, summarised over six simulated 
outbreaks of foot-and-mouth disease in Australia, by transmission network model. IP = infected premises; 
SA = Sampled Ancestors. Detailed results per model run provided in Supplementary Materials (S3). aAccuracy 
was defined as the proportion of IPs for which the model-predicted most likely source (highest likelihood or 
most posterior support) was the true source. The denominator for accuracy at > 50% (i.e., consensus) and 
>80% support includes only those IPs for which the model-predicted most likely source attained that level of 
likelihood or posterior support. bIn each run, the root was fixed based on best guess. cNot all IPs detected as 
having sampled ancestors. dSCOTTI only outputs proposed ancestors for those IPs with genomic data available.
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especially in the two main settings where such tools are intended to be used to inform decision-support: in 
real-time early in unfolding outbreaks and retrospectively to provide comprehensive assessments of what tran-
spired to inform preparedness for future events.

The validity of this comparison study depends on the plausibility of the simulated outbreaks, genome 
sequences and phylogenies. The Australian Animal Disease Spread (AADIS) hybrid model23 is the most sophis-
ticated model available with the specific purpose of simulating outbreak scenarios like those developed here33,34. 
This model, and its predecessor AusSpread35, have been extensively tested in model comparison studies36–38 and 
is also presently being applied in disease preparedness scenario development for the Australian Department of 
Agriculture and Water Resources17,34,39,40. The comparison exercise reported in this paper was so resource inten-
sive that only six simulation runs could be inferred by each of the 10 modelling algorithms tested, a similar num-
ber to the only other comparable study25, although that comparison study had different objectives. The coalescent 
model represented the underlying within-host genomic diversity as a constant effective population size. This 
could favour the performance of models that happen to have a similar underlying nucleotide substitution models 
such as the Lau model, Outbreaker and Outbreaker2 over those that implement more complex genomic infer-
ences (such as SCOTTI, Phybreak, TransPhylo, BeastLier and Sampled Ancestors). Resource constraints limited 
the range of scenarios that could be tested. In a sensitivity analysis designed to test the influence of two aspects 
of the underlying simulations, predictive accuracy of the Lau model appeared robust to substantial changes in 
spatial signal underlying transmission and on clock rate. Predictive accuracy of the modified Cottam method 
appeared to depend on spatial parameterisation and clock rate, SCOTTI’s accuracy depended on clock rate, as did 
the level of model support outputted by Outbreaker and Outbreaker2. It is therefore not advised to generalise the 
findings of the present analysis with respect to these models too widely without further testing. Past comparisons 

Figure 4. Comparison of the accuracy of inferences of mutation rates for six simulated outbreaks of foot-and-
mouth disease (FMD) in Australia, by transmission network model. The red reference lines represent the true 
(simulated) value of each parameter. The Phybreak model assumes a Jukes-Cantor nucleotide substitution 
model under which the ratio of transitions to transversions (TrTv) is not inferred. Outbreaker2 also does not 
output TrTv. SampAnc = Sampled Ancestors model; SCOTTI = Structured COalescent Transmission Tree 
Inference.
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have largely relied on data simulated in similar frameworks to the models under investigation or been conducted 
on real data from outbreaks where it is impossible to truly know the transmission network and therefore not pos-
sible to objectively compare model performance. This analysis has advanced as far as practical the level of formal 
comparison of transmission network models by simulating outbreak data in a framework completely different to 
the Bayesian inferential frameworks evaluated.

Conclusions
The findings of this comparison study point to which models might reliably reconstruct future outbreaks and how 
to interpret the outputs to inform control. Each model assessed had its own strengths related to the purpose for 
which it was developed, and limitations related to its assumptions. These should be kept in mind when choosing 
a method, or methods, to implement based on a given context. The model developed by Lau and colleagues was 
consistently the most accurate in inference of the transmission tree. The Structured Coalescent Transmission 
Tree Inference (SCOTTI) provided a highly accurate inference of the molecular clock rates. Further research 
could involve extending the best-performing of these models to incorporate additional animal and farm-level 
covariates, represent within-host diversity so they can make most use of next-generation sequencing data, and to 
develop combined predictions using Ensemble methods and other approaches.

Materials and Methods
simulation of epidemic spread and genomic data. The Australian Animal Disease Spread (AADIS) 
hybrid model was used to simulate 100 foot-and-mouth disease outbreaks using the baseline configuration, 
described in detail by Bradhurst et al.23, with movement restrictions and a stamping out only policy (i.e., no 
vaccination) from the point of outbreak detection fixed at 21 days after seeding on a large pig farm in central 
Victoria (infected premises 1, IP1). From these model runs, five were randomly selected representing the range 
of total infected premises (IPs) for all of the simulated outbreaks. One further run was selected with close to the 
total number of infected premises in the 2010 outbreak of foot-and-mouth disease in Miyazaki Prefecture of 
Japan (with n = 298 IPs). These six simulated outbreaks were mapped and plotted in R version 3.4.131 using the 
contributed packages epiR41, statnet42 and sp43.

The origin of the outbreak was designated with the 7667 nucleotide whole genome consensus sequence (O/
JPN/2010-6/1 S) sampled from the first farm presumed to be infected in the 2010 outbreak of foot-and-mouth 
disease in Miyazaki Prefecture of Japan44. Based on AADIS model outputs (date of exposure, date of diagnosis and 
the edge-list of the known transmission network), we simulated a sequence to seed the primary infected premises 
(IP1) assumed to have been infected 30 days after sampling of the sequence O/JPN/2010-6/1 S, then forward 

Figure 5. Comparison of the accuracy of inferences of timing of exposure for infected premises in six simulated 
outbreaks of foot-and-mouth disease (FMD) in Australia, by transmission network model. Departures above 
the black reference line are premises with inferred day of exposure later than their true (simulated) day of 
exposure. LOESS smoothed line in blue with standard error of prediction.
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simulated sequences for each of the subsequent infected premises (IP2, …, IPn) based on the known transmission 
trees for these simulated outbreaks and these premises’ simulated days of exposure and sampling.

In densely sampled outbreaks, such as the context of this study (foot-and-mouth disease detected in a pre-
viously free country), coalescent times and transmission times can differ markedly, leading to important differ-
ences between the transmission network and the phylogenetic tree nested within it45. Following25, we simulated 
phylogenetic trees nested within the given transmission networks with VirusTreeSimulator (https://github.com/
PangeaHIV/VirusTreeSimulator; last accessed 3 December, 2018) then SeqGen version 1.3.324 for Monte Carlo 
simulation of molecular sequence evolution along the simulated phylogenetic trees. Based on empirical observa-
tions of model fit and parameters from the 2001 outbreak of FMD in the UK1,12 and the 2010 outbreak of FMD in 
Japan44, we assumed the HKY model46 with a rate of nucleotide substitutions of 2.168 × 10−5 changes per site per 
day, with a ratio of 7.61 transitions to transversions, empirically estimated nucleotide frequencies (of πA = 0.253, 
πC = 0.282, πG = 0.257, πT = 0.208), mutations assumed to occur independently along the sequence owing to little 
selective pressure, and no recombination, insertions or deletions within the short time-frames of the epidemics 
under consideration. Within-farm diversity was modelled with a within- and between-host neutral coalescent 
model assuming a constant effective population size of 100 and that the bottleneck at transmission was complete. 
This model is described in detail elsewhere11. Only a single sample was considered per IP, given that sequencing 
of virus from different animals from the same farm in the UK 2001 outbreak indicated very limited within-farm 
sequence variability12.

Simulated outbreak datasets including genomic data are provided as Supplementary Material (S1) along with 
epidemic curves, maps and tables of simulated variables available for each infected premises. Only those data 
considered likely to be available in near real-time in future outbreaks were used to infer transmission networks.

transmission network modelling algorithms. Based on a review of the published literature, nine mod-
els were selected for comparison in the present study1,5–10,26,27 on the basis of their having being developed specif-
ically for inferring the transmission network of outbreaks based on epidemiological and genomic data, and either 
their source code or executable packages being openly available for implementation. We also modified the only 
frequentist algorithm1 to include spatial and contact-tracing data. Detailed methods of their implementation 
in the present study are presented in Supplementary Materials (S2). Three other published models were iden-
tified and considered for inclusion in this study but were not used due to either executable packages or source 
code not being publicly available and/or they were not developed specifically for outbreak transmission network 
inference2–4.

Comparative analyses of accuracy of inferences. To compare the ‘accuracy’ of each benchmarked 
method, we estimated the proportion of IPs whose true source was correctly identified across all six model runs. 
For methods that provided estimates of the support (confidence or posterior probability) in the proposed source, 
this was based on the potential source with the highest level of support, and we separately calculated the accuracy 
of the most likely tree for each method considering only those sources with consensus and >0.80 support. For 
methods that estimated other parameters, such as mutation rates and timing of infection, estimates and coverage 
were compared to the true values.

In the context under consideration, an FMD outbreak occurring in a previously-free country, all IPs would be 
expected to be observed by the end of the outbreak, or in real-time application, methods could be implemented to 
infer undetected infections19. However, not all such premises would be expected to be sampled. For all methods 
that could handle missing sequence data from observed cases, the analysis was repeated assuming that a more 
realistic subset of only 50% of the IPs had whole genome sequences available. This sampling density reflects 
expected practice in future outbreaks considering that 104 sequences were available from 292 infected premises 
in the 2010 FMD disease outbreak in Miyazaki, Japan44.

sensitivity analyses. To test for the influence of key underlying simulation modelling assumptions on the 
accuracy comparison, and general applicability of this analysis, one of the moderately sized simulated outbreaks 
(run 3 with n = 98 IPs) was reparametrized in two ways. Firstly, a ‘non-spatial’ run was generated by randomising 
the spatial coordinates of each infected premises, thus eliminating the spatial signal in transmission. Then, sep-
arately, a ‘fast clock’ run was generated by increasing the rates of transitions and transversions by a factor of 10, 
leaving the generation time unchanged. All inferences were repeated on these two modified datasets and model 
outputs again compared.

Data Availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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