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Behavioral, electrophysiological 
and neuropathological 
characteristics of the occurrence of 
hypertension in pregnant rats
Leandro F. oliveira1, Daniel J. L. L. pinheiro1, Laís D. Rodrigues1, selvin Z. Reyes-Garcia  1,4, 
erika e. Nishi  2, Milene s. ormanji  3, Jean Faber1 & esper A. Cavalheiro1,5

Pre-eclampsia (PE) affects approximately 2 to 8% of pregnant women, causing blood pressure above 
140 × 90 mmHg and proteinuria, normally after the 20th gestation week. If unsuccessfully treated, PE 
can lead to self-limited seizures (eclampsia) that could eventually result in death of the mother and her 
fetus. The present study reports an experimental model of preeclampsia hypertension in pregnant (HP) 
and non-pregnant (H) Wistar rats by partially clamping one of their renal arteries. Pregnant (P) and non-
pregnant (C) controls were provided. Differently from controls (C and P), H and HP animals presented 
a steady rise in BP two weeks after renal artery clamping. Injection of pentylenetetrazol (PTZ) induced 
behavioral and electroencephalographic seizures in all groups, which were increased in number, 
duration, amplitude and power accompanied by decreased latency in HP animals (p < 0.05). Consistent 
results were obtained in in vitro experimentation. Immunohistochemistry of hippocampus tissue in HP 
animals showed decreased density of neurons nuclei in CA1, CA3 and Hilus and increased density of 
astrocytes in CA1, CA3 and gyrus (p < 0.05). The present findings show that the clamping of one renal 
arteries to 0.15 mm and PTZ administration were able to induce signs similar to human PE in pregnant 
Wistar rats.

The increase in blood pressure during pregnancy, without known etiology characterizes gestational hypertensive 
syndrome (GHS)1. Preeclampsia (PE), a pathologic condition frequently occurring in late pregnancy charac-
terized by edema, proteinuria and hypertension, is one of the hypertensive conditions classified as gestational 
hypertension syndromes1. It affects about 2 to 8% of pregnant women2 and epidemiological studies showed that 
approximately 76,000 pregnant women and 500,000 fetuses die due to PE annually2. Risk factors for PE include 
first gestation of a partner, multiple gestation pregnancy and pregnancy after 35 years old3. Risk factors involv-
ing comorbidity include chronic hypertension, chronic kidney diseases, diabetes mellitus and systemic lupus 
erythematosus4.

Preeclampsia is biochemically characterized by urinary protein levels equal to or above 300 mg/24 h and 
blood pressure (BP) equal to or above 140/90 mmHg with subsequent continual rise from a point around the 20th 
gestational week5–7. The fetus growth and amount of amniotic fluid may be reduced as compared with normal 
gestation8.

A number of particular findings are presents in preeclamptic condition, such as, decreased levels of vascular 
endothelial growth factor (VEGF) and placental growth factor (PLGF), and increased levels of tumor necrosis 
factor (TNF-α), interleukin beta1 (IL-1b) and soluble fms-like tyrosine quinase-1 (sFlt-1)9–11.

The risk of preeclampsia involves its progression to eclampsia, a self-limited seizure condition that can lead to 
coma and death of the pregnant woman and her fetus12–14.

Medical management of PE is fundamentally directed towards the critical conditions with emphasis on blood 
pressure control and seizure suppression15, which leaves a narrow margin, if any, to try alternative methods or 
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widening the understanding of this pregnancy disorder. Therefore, establishing a relevant animal model of preec-
lampsia could greatly help by shedding light on the mechanisms that can lead to PE.

Several PE models are suggested to mimic the major characteristic of preeclamptic condition, either by: (a) 
infusing either lipopolysaccharide16 (LPS) or interleukin beta 617 (IL-6), or administering TNF-α18. The first is an 
inflammation-causing toxin whereas the two others are preeclampsia findings that denounce ongoing inflamma-
tory process; (b) reducing blood flow to the placenta, as hypertension and reduced placental perfusion have been 
reported in preeclamptic condition; (c) infusing the anti-angiogenic factor, soluble fms-like tyrosine (sFlt-1), a 
variant protein present in the serum of preeclamptic women; (d) working on genetically engineered animals that 
develop hypertension19,20.

Some of these models require effort and time, while others involve a high degree of variability. But more 
importantly, they do not convincingly reproduce the key features of preeclampsia simultaneously and consist-
ently, i.e., high blood pressure and low threshold for sustained convulsions.

Here we present an alternative possibility of producing preeclamptic findings – high blood pressure, protein-
uria, increased TNF-α and reduced PLGF levels in the serum, reduced weight of offspring at birth, and increased 
seizure susceptibility in vivo and in vitro – achieved through the effects of reduced blood supply to the left (for 
convenience) kidney by means of the clipping of the left renal artery of female Wistar rats.

Results
Blood pressure and biochemical markers. The mean values of systolic blood pressure (SBP) were similar 
in all groups (C, P, H and HP) when assessed on day 3 or 8 after surgery (F = 1.736; p = 0.169; F = 0.254; p = 0.858, 
respectively). SBP on days 14 and 19, however, was significantly higher in animals submitted to clamping of 
the left renal artery (H and HP groups) when compared to those of the groups C and P (H = 27.63; p < 0.0001 
and H = 30.12; p < 0.0001, respectively). SBP levels in these groups remained high until the end of experiments 
(Fig. 1).

Mean value of albumin levels in urine on day 3 showed no significant difference among groups C, P, H and 
HP (F = 1.912; p = 0.185). On day 19, groups H and HP differed from groups C and P (F = 23.02; p < 0.0001) by 
displaying levels characteristic of proteinuria in human preeclampsia albumin levels in H and HP showed no 
statistically significant difference (Fig. 2A). On day 21, mean level of serum TNF-α was significantly increased in 
HP as compared with C group (H = 14.38; p = 0.0024), but no difference could not be ascertained among groups 
P, H and HP (Fig. 2B). Mean values of PLGF levels (determined on day 21) in the serum were not different among 
C, H and HP, but were found increased in P animals (F = 14.85; p = 0.0002) (Fig. 2C).

eeG seizure pattern. With the injection of PTZ, the first EEG signs of coming seizure start at about 46 sec-
onds in groups P, H and HP which showed no difference in their respective latency. Group C, however, had a sig-
nificantly increased latency (F = 20.55; p < 0.0001) of about as much as 50% as compared with their counterparts 
(Fig. 3D). On the other hand, the amplitude and duration of EEG signals in group HP were significantly increased 
(F = 9.56; p = 0.0017 and F = 152.7; p < 0.0001, respectively) as compared with the other groups which showed 
no differences among them (Fig. 3B,C). This findings were compatible with differences in behavior during seizure. 
All animals went through whisker trembling, sudden behavioral arrest, facial and neck jerking, clonic, tonic and 
tonic-clonic seizure. However, the higher stages in HP animals were dramatically more intense as compared with 
animals in the other groups with C animals experiencing seizure episodes only lightly.

Seizure power derived from EEG. Although mean rates of power density plotted along the frequency 
spectrum had similar shape for all groups, HP had a narrower confidence interval (CI) as compared with the 
remaining groups (Fig. 4).

Figure 1. Evolution of systolic blood pressure (SBP). Mean values in control (C, dark blue), pregnant (P, light 
brown), hypertensive (H, light blue) and pregnant-hypertensive (HP, green) animals. Notice the progressive 
increase in SBP in H and HP groups. Levels indicated on the graph showing (*) were found to have statistically 
significant difference. Statistics details in Supplementary Material Fig. 12.
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In vitro seizure-like events. Mean values of amplitude and power obtained from hippocampal slices were 
significantly increased in group HP as compared with those in C, P and H (F = 16.82; p < 0.0001 and H = 18.81; 
p = 0.0003, respectively) (Fig. 5G).

Duration was shorter in C animals as compared with those in groups P, H and HP (H = 19.94; p = 0.0002), 
among which no significant difference was found (Fig. 5G).

The mean number of seizure-like events in 30 minutes was not significantly different between groups HP and 
H whereas HP rate was increased as compared with those for P and C (H = 28.30; p < 0.0001). Furthermore, H 
rate was increased as compared with those in P (Fig. 5G).

Immunochemistry. NeuN immunohistochemistry showed that mean values of relative density of neurons 
nuclei in CA1, CA3 and Hilus in HP animals were decreased as compared with C, P and H (H = 42.38; p < 0.0001 
for CA1; H = 40.52; p < 0.0001 for CA2; and H = 43.32; p < 0.0001 for Hilus), but no difference was ascertained 
in Dentate Gyrus (GD) between groups C, P, H and HP (Fig. 6A,B).

GFAP immunohistochemistry showed that HP animals had increased relative density of astrocytes indicat-
ing harder neuronal scarring in CA1, CA3 and GD of these individuals as compared with densities in C, P and 
H (animals (F = 11.46; p < 0.0001 for CA1; F = 48.77; p < 0.0001 for CA3 and F = 30.01; p < 0.0001 for GD) 
(Fig. 7A,B).

Weight at birth. On delivery day, mean weight of HP offspring was significantly reduced as compared with 
that of P offspring (p < 0.0001). Differences in weight persisted during follow-up of 22 days after birth (Fig. 8).

Discussion
The possible causes of preeclampsia (PE) and their relationship to chronic kidney disease (CKD) are far from 
being established21. The difficulty in elucidating the puzzle apparently lies on the fact that the main markers for 
PE and CKD, such as increased blood pressure with proteinuria, increased levels of the soluble fms-like tyrosine 
kinase (sFlt1)22, increased levels of inflammatory markers23 and reduced levels of vascular endothelium growth 
factor, are present in both pathologies9,24.

Moreover, pregnant women aged 35 and above are not regularly tested for CKD, which could help to identify 
possible clues of underlying renal dysfunction. Conversely, studies show that some pregnant women with PE and 
clear renal dysfunction have the two conditions resolved within weeks after delivery without sequels25,26 whereas 

Figure 2. Biochemical markers. Urine albumin (A,B) and serum PLGF (C) and TNF-α (D) median levels with 
95% CI in control (C), pregnant (P), hypertensive (H) and pregnant-hypertensive animals (HP) determined 3, 
19 and 21 days after the clamping of the left renal artery. Levels indicated on the graph showing (*) were found 
to have statistically significant difference.
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others had their risk of developing kidney dysfunction increased4. Van Balen et al. found that from 775 primipa-
rous PE women without previous history of hypertension, diabetes or kidney diseases 13.7% had to be monitored 
for kidney dysfunction one year or more postpartum and 1.4% were classified as having higher risk for kidney 
function deterioration27.

The clinical management of preeclampsia involves strategies developed to prevent the occurrence of seizures 
that, unfortunately, are not routinely accompanied by electroencephalographic recordings. These could help in 
the recognition of cerebral rhythm fluctuations, the occurrence of isolated discharges, the more accurate location 
of these changes and the cerebral circuitry involved. One possible way to overcome these challenges depends 
on the use of animal models that reproduce, as faithfully as possible, the main characteristics of the human 
syndrome.

The literature presents mainly three ways of inducing PE models, that is, causing inflammation, mimicking the 
depletion of VEGF and PLGF or restricting blood flow to the placenta. Among the inflammatory models are those 
proposed by Faas et al.16 LaMarca et al.18 and Orshal and Khalil17, who infused lipopolysaccharides (LPS), TNF-α 
and interleukin-6 (IL-6), respectively. In their reports, however, arterial blood pressure levels (127–146 mm Hg) 
did not reach critical values compatible with those described for the human condition, which could be a good 

Figure 3. Electroencephalographic parameters in vivo. (A) One representative sampling of epileptiform activity 
in control (C), pregnant (P), hypertensive (H) and pregnant-hypertensive (HP) animals. EEGs coupled with 
graphs depicting seizure intensity throughout frequency spectrum with continuous wavelet transform using 
analytic Morse wavelet (hotter colors indicating higher intensities). Seizure duration (B), amplitude (C) and 
latency (D) in C, P, H and HP animals are represented with median. Levels indicated on the graph showing (*) 
were found to have statistically significant difference.
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indicator that the inflammatory process per se was not able to reproduce the preeclamptic picture. The VEGF and 
PLGF depletion PE model reported by Maynard et al.28 was obtained by injecting adenovirus expressing sFlt-1 in 
the tail vein of rats, a method expected to inactivate endogenous VEGF and PLGF impairing the placental growth. 
In these circumstances, these authors were able to detect the occurrence of proteinuria, glomerular endotheliosis 
and high diastolic blood pressure, adding important elements for the physiopathology of PE. To our knowledge, 
however, these authors did not report changes in seizures susceptibility in their model. The third way of inducing 
a PE model has been proposed by Fushima et al.29, who used three different possibilities to restrict the blood sup-
ply to the placenta by clipping: (a) both ovarian arteries, (b) both uterine arteries, (c) both ovarian arteries plus 
both uterine arteries. Regardless of the clipping alternatives, max BP achieved was 124 ± 5.5 mmHg in experi-
mental against 96.8 ± 1.9 mmHg in control animals, proteinuria was observed only when clipping uterine arteries, 
and no significant difference of serum sFlt-1 levels was obtained among the groups studied.

An interesting genetic engineering experiment in mouse achieved a SBP increase similar to that occurring in 
preeclamptic women at around the beginning of the sixth pregnancy month30. Takimoto et al. Mated transgenic 
males expressing renin to transgenic females expressing angiotensinogen, resulting in pregnant individuals that 
exhibited continuous rise in SBP from gestational day 14 until delivery with SBP rates reaching over 155 mmHg, 
which dropped to normal levels within 3 days after offspring birth30. It seems that the authors intended to mimic 
the deleterious influence of the placenta in PE with the entering of renin produced by the maturing fetus into the 
mother’s blood stream. The fetal renin working on maternal angiotensinogen causing a SBP rise that better repro-
duced the characteristic evolution of PE as compared with those achieved in the models previously described. 
Because the main focus of the authors was on gestational hypertension and its deleterious effect on the heart and 
kidney structures, no information on sFlt-1, PLGF, VEGF and TNF-α was reported30.

The 2K-1C model presently reported shows the characteristic preeclamptic SBP evolution combined with 
the additional markers of PE including proteinuria, increased TNF-α and reduced PLGF serum levels, reduced 
weight of offspring at birth and increased seizure susceptibility in regular Wistar rats without either employing 
genetic engineering, administration of any drugs or agents or surgical intervention after presumed gestational 
day one.

The condition more frequently reported to be associated with PE is glomerular kidney disease (GKD)25, whose 
hallmark is proteinuria thought to be the caused by an inflammatory condition5,7. In PE, it seems to be triggered 
by anti-angiogenic factors arising from mechanisms associated with a placenta that fails to develop properly31. In 
the present study, both H and HP groups showed increased levels of albumin in urine in late pregnancy (day 19).

Another finding common to chronic kidney disease (CKD) and PE is higher levels of soluble fms-like tyrosine 
kinase-1 (sFlt-1)9,22. In CKD studies, sFlt-1 is associated with endothelial disfunction and is believed to impair 
vascular regeneration by sequestrating VEGF22. Similarly in PE, sFlt-1 is reported to suppress free vascular growth 
factor (VEGF) and placental growth factor (PLGF) causing restricted fetal growth32,33. In the present study, hyper-
tensive animals (group HP) showed underdeveloped fetuses and lower serum concentrations of PLGF, consistent 
with higher levels of sFlt-1, findings absent in normotensive pregnant counterparts (group P).

Figure 4. Seizure intensity by frequency. Normalized mean values of seizure power density (spiked line in 
darker shade) in the cortex (CTX) and hippocampus (HP) throughout the frequency spectrum in control, 
pregnant, hypertensive and pregnant-hypertensive groups with 95%-confidence interval (CI) represented by 
lighter shade. Notice the narrowest CI in pregnant-hypertensive group.
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BP behavior commonly determines PE diagnoses with its hallmark (140/90 mmHg) appearing only around the 
beginning of the last gestational trimester5–7. In the attempt to establish an early warning of PE, some authors suggested 
that elevated levels of TNF-α would fit the role, as studies in pregnant women showed that PE group displayed increased 
levels of serum TNF-α, as compared with controls6,34,35. More than a marker, TNF-α is a pro-inflammatory factor also 
occurring in CKD and has been reported to facilitate seizures when in higher concentrations36,37. In the present 2K-1C 
model, TNF-α levels, determined on experimental day 21 for convenience, was increased in HP as compared with C 
animals. Although the eventual occurrence of spontaneous seizure or death, as reported in humans, was not observed, 
the susceptibility to fatal seizure was assessed by injecting pentylenetetrazol (PTZ), a GABAA antagonist38.

The excitatory mechanism involving TNF-α, produces the endocytosis of inhibitory gamma-amino-butyric 
acid (GABAA) receptors and exocytosis of excitatory AMPA receptors in hippocampal pyramidal cells, making 
them more excitable36. The injection of PTZ was intended to block available GABAA receptors in order to deter-
mine to what extent the animals’ endogenous inhibitory resources could fight seizure. A statistically significant 
decrease in latency, larger amplitude and extended seizure duration was found in HP animals as compared with 
C controls, consistent with HP group increased levels of serum TNF-α, confirming the role of this deleterious 
cytokine as a predictor of PE severity and consequent susceptibility to seizure.

The increased levels of serum TNF-α in P and H groups were found to have no statistical significance when 
compared with C, but significant decreased latency was found in P and H as compared with C. This discrepancy 
can well result from factors other than serum TNF-α. Johnson et al. administering PTZ in Sprague Dawley rats 
concluded from Western blots that there was a downregulation of GABAA receptor in pregnant animals as com-
pared with non-pregnant ones. In pregnant animals, the expressions of cortical GABAAR-δ and hippocampal 
GABAAR-γ2 subunits were found decreased. This reflected on decreased EEG latency in pregnant as compared 

Figure 5. Electrophysiologic activity in vitro. Location of electrode in the entorhinal cortex (layer III-IV) for in 
vitro study on hippocampal section. (A) Representative signal recordings of seizure-like events in a slice from 
a control (C), pregnant (P), hypertensive (H) and pregnant-hypertensive (HP) animal (B) with corresponding 
graphical analyses of seizure magnitude throughout the frequency spectrum where hotter colors indicate 
greater magnitude. (C–F) Analysis of amplitude, rate, duration and power of seizure-like event in 3 slices of 
each animal in C, P, H and HP groups shown with median value represented on CI (95%). (G) Levels indicated 
on the graph showing (*) were found to have statistically significant difference.
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with non-pregnant individuals39. Furthermore, Cipolla et al. showed that hippocampal neurons developed 
increased excitability when hippocampal slices were cultured in serum of pregnant rats, but not in serum of 
non-pregnant, despite both sera having similar levels of TNF-α content. These authors hypothesized that such 
increased excitability was linked to a factor, again other than TNF-α, that existed in the serum of pregnant rats, 
which did not in serum of non-pregnant ones37.

In the present study, H and HP groups showed increased susceptibility to seizure denoted by decreased latency 
as compared with C counterpart. The finding by Scorza et al. seems to sheds some light on how hypertension 
facilitates seizure episodes. These authors related hypertensive condition to micro infarctions in the capillary 
arrays of vascular supply to the brain, known to be a potential adjuvant of seizures40. Additionally, Deyn and 
McDonald observed that patients with severe renal insufficiency had levels of guanidinosuccinic acid, creatinine, 
guanidine and methylguanidine in their blood and cerebrospinal fluid as much as ten times higher than normal41. 
The experiments of the authors were suggestive that these substances inhibit the responses to inhibitory neuro-
transmitters GABA and glycine by blocking the chloride channels41, thus supporting the increased susceptibility 
to seizure of hypertensive individuals showing advanced renal function deterioration as is the case of H and HP 
animals denoted by their levels of SBP and proteinuria.

The magnitude of neuronal activity during seizure was analyzed by mathematically treating the EEG signals by 
bands of frequency (Fig. 4). The maximum and minimum values of a representative total measure of neuronal activity, 
named power density, cover a statistical range of 95% of a population assumed to be represented by the mean of EEG 
signals average values, and their variation, acquired in a given range of frequency, for each animal in the study group.

Figure 6. NeuN immunohistochemistry. Representative images of hippocampal sections from control (C), 
pregnant (P), hypertensive (H) and pregnant-hypertensive (HP) groups. Note the lighter staining of CA1, CA3 
and Hilus in section of pregnant-hypertensive individual. Scale bar for the first row of images represents 500 μm 
and scale bars for subsequent rows 200 μm. (A) Analysis of optical density in CA1, CA3 Hilus and Dentate 
Gyrus of hippocampal sections with group median values indicated on CI (95%). (B) Levels indicated on the 
graph showing (*) were found to have statistically significant difference.
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The behavior of mean values along the spectrum of frequency did not differ significantly among groups, but 
HP group showed a significantly narrower interval of minimum and maximum of power density for a given 
frequency. The statistical meaning of this finding is that the seizure condition was more evenly distributed in HP 

Figure 7. GFAP immunohistochemistry. Images (scale bar 50 μm) with enlarged area (scale bar 200 μm) 
of hippocampal sections from control (C), pregnant (P), hypertensive (H) and pregnant-hypertensive (HP) 
groups. Note that enlarged areas of HP individual contain more astrocytes than counterparts. (A) Analysis of 
optical density in CA1, CA3 and Dentate Gyrus of hippocampal sections with group median values indicated on 
CI (95%). (B) Levels indicated on the graph showing (*) were found to have statistically significant difference.

Figure 8. Offspring development. Weight follow-up of 22 days of pregnant (P) and pregnant-hypertensive 
(HP) offspring with individual values in the group represented in dispersion graph. Mean values are shown on 
standard-deviation long vertical bars. Images show 5-day pups from P and HP offsprings. Levels indicated on 
the graph showing (*) were found to have statistically significant difference.
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group since the assumed population concentrated heavily around the mean. This statistical concept is reflected on 
the significantly larger number of animal (not shown) that died during seizure in HP group.

Amburgey et al. reported that plasma from normotensive pregnant women as well as preeclamptic women 
increased the permeability of rat’s blood-brain barrier (BBB) in 6.5- and 18-fold, respectively42. Assuming that 
BBB permeability could possibly be a confounding variable, the present research work included in vitro experi-
ments in order to determine a possible influence of BBB permeability on the amount of PTZ reaching brain tissue 
of pregnant and non-pregnant animals.

The in vitro seizure events were obtained by exposing brain slices to 4-aminopyridine (4-AP). These events 
were definitely more powerful, had larger amplitude and were more frequent in 30-minute observation in HP 
group as compared with the other study groups (Fig. 5G), keeping consistence with respective power density by 
frequency analysis (Fig. 4).

Concerning seizure duration in vitro, P, H and HP groups did not differ significantly with durations of 
91.50 ± 2.71 s, 98.99 ± 5.53 s and 98.18 ± 1.08 s, respectively and were significantly longer than duration in 
C (50.69 ± 6.76 sec), whereas seizure duration in vivo did not differ among C, P and H, but was longer in HP 
(Fig. 3B). These findings seems to imply that the association of pregnancy and hypertension factors increased BBB 
permeability letting a greater amount of PTZ reach brain tissue of HP animals.

The distinctive intensity of seizure in HP animals, reflected on distinctive loss of neurons, was ascertained by 
immunohistochemistry. A remarkable change in staining density occurred along the characteristic hippocampal 
staining lines, particularly in regions CA1, CA3 and Hilus as shown by NeuN immunohistochemistry (Fig. 6A,B). 
Similar findings have also been reported in epilepsy studies43. Accordingly, astrocyte proliferation, which follows 
neuronal loss, also confirms the seizure intensity44. This is shown in Fig. 7A,B with controls exhibiting the least 
density of GFAP staining followed by P, H and HP in order of increasing staining density.

In conclusion, clamping one of the renal arteries to 0.15 mm was an effective and reliable approach for pro-
ducing characteristic human preeclampsia features, i.e., high blood pressure, proteinuria, increased TNF-α and 
reduced PLGF serum levels, reduced weight of offspring at birth and increased seizure susceptibility in vivo and 
in vitro.

Although the present 2K-1C model was not able to produce spontaneous seizure and ensuing death, as 
expected in untreated human pre-eclampsia, the present model showed animals with severe neurological injury 
and increased susceptibility to seizures.

Previous papers have implicated the significant contribution of placental alterations as key factors in the phys-
iopathology of PE2,28,29,32. Unfortunately, our work did not focus on the study of placental alterations in this model 
and, accordingly, new experimental studies directed to these alterations are being planned by our group.

As a last note, the authors would like to make it clear that they are well aware that addressing complex pathol-
ogies with animal modeling is not an easy task, mainly when the etiological agent or mechanism remains elusive 
as it is with preeclampsia. It is not unusual the instance when different animal models can represent only one facet 
of the disease itself – the etiological mechanisms, the underlying pathophysiologic processes, the clinical manifes-
tations and the alternative treatments. There may be not an ideal model that presents all information we need for 
comprehending human condition. And despite this entire complex situation, the experimental models have been 
instrumental in improving our knowledge, monitoring and control of human diseases to more adequate levels.

All previous models mentioned in this study have their own value by addressing very useful aspect for under-
standing the underlying mechanisms associated with PE, such as changes in the inflammatory cascade and/or 
ischemic placental changes. But in these models, the changes in systolic blood pressure (SBP) are minimal, which 
contrasts with the clinical findings, in which increased SBP is an alert for the possibility of PE.

Our intention was to represent the main clinical features that best characterize preeclampsia, that is, arte-
rial hypertension during pregnancy associated with increased susceptibility to convulsive seizures, biochemical 
changes related to renal dysfunction, and offspring with low birth weight. Certainly the present adaptation of the 
2K-1C model raises a renal issue that should be taken into consideration in further use of it.

Methods
All animal handling and experimental procedures complied with the guidelines for animal care and use of lab-
oratory animal and received the approval from the Board for Ethics in the Use of Animal (CEUA – Comissão 
de Ética no uso de animais) an institutional ethics committee of the Federal University of São Paulo (UNIFESP) 
under number 8821020715.

Animals. A total of 56 female Wistar rats weighing 180 to 220 g were randomly allocated into 4 groups of 14 
animals each: control (C), pregnant (P), hypertensive (H) and hypertensive-pregnant (HP) groups. The animals 
were kept (four per cage) at 21 °C in light/dark cycle of 12/12 h with free access to food and water. Twenty-eight 
animals (groups P and HP) were mated during the estrous phase and the presence of spermatozoid in the 
vaginal smear was established as experimental day 0 of the pregnancy period. These pregnant rats were then 
divided into 2 different groups: one underwent hypertension induction by the clamping of the left renal artery 
(hypertensive-pregnant group, HP) and the other group underwent sham surgery (P) in order to be control 
for the hypertensive condition in pregnancy. The other 28 female Wistar rats not undergoing mating were also 
divided into 2 other groups: one group had the left renal artery clamped (hypertensive group, H) and the other 
was taken as general control to both experimental variables, i.e., pregnancy and hypertension (Control group, C).

Hypertension induction (artery clamping). Groups HP and H underwent surgical procedure for 
induction of hypertension. In pregnant female rats it was performed soon after the detection of spermatozoid in 
their vaginal smear making pregnancy day 0 also surgical day 0 (baseline for hypertension induction). Surgical 
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procedure was based on a previous paper45. Animals were anesthetized with Xylazine 10 mg/kg i.p. (Anasedan®) 
and Ketamine 100 mg/kg i.p. (Dopalen®). The left renal artery (LRA) was accessed through dorsal incision and 
a flat U-shaped silver strip (2 cm × 0.2 mm) was clamped on it to the aperture of 0.15 mm, regular suturing was 
performed and animals were housed and left for recovery. Groups P and C were submitted to sham surgery, i.e, 
the left renal artery was accessed but not clamped.

eeG - electrodes implantation. During the surgical procedure for hypertension induction but previously 
to renal artery clamping, 4 rats from each group were placed in a stereotaxic apparatus. A pair of electrodes (NiCr 
150 μm DIA) aimed at the left hippocampal CA1 area (AP 3.8, LL 2.5 and DV 2.8; Paxinos and Watson46). A 
second pair of electrodes (100 μm DIA) was implanted in the left and right frontoparietal cortex, posteriorly and 
close to the bregmatic suture. All four electrodes were plugged into a micro-connector fixed to the animal’s skull 
with polymerizing acrylic resin.

Blood pressure recording. Systolic blood pressure (SPB) was taken with a tail-cuff BP-2000 Blood Pressure 
Analysis System, Visitech Systems. All animals were accustomed to measuring procedures by being subjected to 
them for 5 consecutive days before day 0. SBP was assessed on days 2, 8, 14 and 19 and consisted of taking SBP 10 
times with interval of 5 seconds between each take and calculating the mean value of the series.

Urine collection for proteinuria determination. Four animals from each groups were kept in metabolic 
cages for 24 h on days 3 and 19 with free access to food and water in order to collect material for proteinuria 
analyses.

pLGF, tNF-α and albumin determination. Immediately after delivery or experimental day 21, 4 ani-
mals from each group were decapitated and blood was collected and centrifuged at 4 °C for serum collection and 
storage at −80 °C. PLGF and TNFα concentrations were determined using commercial solid-phase sandwich 
enzyme-linked immunosorbent assay (ELISA) kits (Elabscience Biotechnology Co.Ltd, China). Albumin con-
centration was determined using ELISA kit from Bethyl Laboratories (Montgomey, TX, USA) with readings 
performed in multimode plate reader (PerkinElmer, VICTOR X3, Singapore).

seizure induction. In order to induced seizure, pentylenetetrazol (PTZ) (P6500-Sigma-Aldrich, St. Louis, 
MO - USA) in pyrogen-free saline solution at 0.9% was i.p. injected into 11 animals from each groups totalizing 
44 animals at the dose of 50 mg/kg 15 and 18 days following the surgical procedures.

In vivo electrographic recordings. EEG was recorded with animals in a Faraday cage. Signals were ampli-
fied (Grass instruments model RPS 107), digitalized (CED micro 1401-3, Cambridge, United Kingdom) and 
acquired using software Spike 2 v6.09®. EEG monitoring and data acquisition was performed for 5 hours. Seizure 
duration (period of time from onset of generalized seizure to the beginning of postictal depression), amplitude 
(variation from baseline signal to generalized seizure and decline to postictal onset using Cohen’s H-index)47 and 
latency (time between PTZ injection and first seizure spike) were assessed from EEG recordings using homemade 
scripts in MATLAB 2017®.

For every group, the electroencephalographic recordings were segmented into stretches of 5 seconds with 75% 
overlap and Fourier transform was used in order to obtain the power spectrum in the frequency domain. Mean 
values of power spectrum over time are shown with its confident interval CI (95%) (Fig. 4).

In vitro hippocampal recordings. Immediately after delivery or experimental day 21, 3 animals from each 
group were anesthetized with 1% isoflurane in 70% N2O and 30% O2, decapitated, and had their brains imme-
diately removed and hemisected, and horizontal slices were obtained containing the hippocampal formation, 
temporal, perirhinal and entorhinal cortex and a total of 9 slices per group were taken for in vitro study. Slices 
were prepared as described by Guimarães Marques et al.48 with brain tissue sliced in carbogenated ice-cold arti-
ficial cerebrospinal fluid (aCSF) at 4° ± 0.5 °C temperature composed by (in mM) NaCl 129, NaHCO3 21, KCl 3, 
CaCl2 1.6, MgSO4 1.8, NaH2PO4 1.25, and glucose 10, saturated with 95% O2 and 5% CO2. Slices were cut at 
thickness of 400 µm using a vibratome (LEICA VT 1200 S). Then, slices were immediately transferred to an inter-
face chamber perfused with aCSF at 36 ± 0.5 °C (flow rate: 1.5–2.0 ml/min, pH 7.4, osmolarity: 295–300 mOs-
mol/L) and after allowing brain slices to recover for 2–3 hours, the electrophysiological recordings were started. 
Extracellular recordings were performed using glass pipette filled with 154 mM NaCl, with tip diameter 2–3 mM, 
resistance 2 to 4 MΩ, positioned in the layer III-IV of the entorhinal cortex. Epileptiform activity type seizure-like 
events (SLEs) were induced by 4-aminopyridine (4-AP), (100 mM, Sigma Aldrich). Signals were amplified using a 
custom-made amplifier equipped with capacitance and offset potential compensation, filtered at 3 KHz, digitized 
on-line (CED-1401, Cambridge, United Kingdom) and stored for off-line analysis using Spike 2 v6.09 (CED-
1401, Cambridge, United Kingdom). Event rate (events per minute), duration (from onset up to two-thirds recov-
ery of the shift field potential), amplitude (peak-to-peak) and power (band frequency of 73–293 Hz)49 of SLEs 
were measured using homemade scripts (MATLAB 2017®) for 30 minutes after epileptiform activity becoming 
constant regarding event rate and amplitude.

NeuN and GFAP Immunohistochemistry. Immediately after delivery or experimental day 21, 4 animals 
from each group provided hippocampal sections for neuronal nuclei (NeuN) and glial fibrillary acidic protein 
(GFAP) antibody staining50 (1:50 – Chemical – Milipore – AB377 with IgG goat anti-mouse 1:200 AB6789 and 
1:5000 – Abcam – AB7260 with igG goat anti-rabbit 1:200 AB6721, respectively) in order to assess neuronal loss 
and neurological scarring. Assessment was performed through optical density50.
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Offspring birth weight. As a side observation, a total of 9 offspring individuals from each P and HP group 
were weighed on delivery day (experimental day 21) and followed for 22 days with weight take on every two days 
in order to determine any difference in growing pattern between offsprings of these groups.

statistical analysis. Shapiro-Wilk’s normality test was used to verify normal distribution of samples ori-
gin. ANOVA and Tukey’s post-hoc test were used to ascertain statistically significant difference among groups 
and identification of the pairwise significant differences, respectively. Alternatively to parametric statistical tools, 
Kruskal-Wallis test with Dunn’s post-hoc test were used for group differences. Level of statistical significance was 
set to 0.05. Confidence interval of 95% for median and mean were represented.
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