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Ischaemic stroke in mice induces 
lung inflammation but not acute 
lung injury
Victoria Austin1, Jacqueline M. Ku1, Alyson A Miller1,2 & Ross Vlahos   1

Stroke is a major cause of death worldwide and ischemic stroke is the most common subtype 
accounting for approximately 80% of all cases. Pulmonary complications occur in the first few days 
to weeks following ischemic stroke and are a major contributor to morbidity and mortality. Acute 
lung injury (ALI) occurs in up to 30% of patients with subarachnoid haemorrhage but the incidence 
of ALI after ischemic stroke is unclear. As ischemic stroke is the most common subtype of stroke, it 
is important to understand the development of ALI following the initial ischemic injury to the brain. 
Therefore, this study investigated whether focal ischemic stroke causes lung inflammation and ALI in 
mice. Ischemic stroke caused a significant increase in bronchoalveolar lavage fluid (BALF) macrophages 
and neutrophils and whole lung tissue proinflammatory IL-1β mRNA expression but this did not 
translate into histologically evident ALI. Thus, it appears that lung inflammation, but not ALI, occurs 
after experimental ischemic stroke in mice. This has significant implications for organ donors as the 
lungs from patient’s dying of ischemic stroke are not severely damaged and could thus be used for 
transplantation in people awaiting this life-saving therapy.

Stroke is currently the second-leading global cause of death behind heart disease, accounting for approximately 
12% of total deaths worldwide1. Ischemic strokes are the most common subtype of stroke, accounting for approx-
imately 80% of all cases2. Medical complications are common after stroke, and these are a major contributor to 
morbidity and mortality3,4. Pulmonary complications such as pneumonia, acute lung injury (ALI) and neurogenic 
pulmonary oedema (NPO) frequently occur in the first few weeks following a stroke5–8. ALI is commonly associ-
ated with various forms of brain injury and is estimated to occur in 5–30% of patients with subarachnoid haemor-
rhage, a subtype of stroke6,8,9. The incidence of ALI after ischaemic stroke is unclear; however one study reported 
acute respiratory distress syndrome (ARDS, a more severe form of ALI) in 4% of ischaemic stroke patients10. As 
ischemic strokes are the most common subtype of stroke, it is important to understand the development of ALI 
following the initial injury to the brain.

ALI has an estimated mortality rate of 40%, while ARDS has a mortality rate closer to 46%. In patients hospi-
talised with traumatic brain injury, the risk of mortality increases by approximately 20% in individuals with ALI/
ARDS11, and severity of brain injury is a risk factor for development of ALI12. Additionally, ALI and ARDS can 
lead to significant physical and neurocognitive impairment, likely due to hypoxia. Ischemic stroke is associated 
with long-term physical and cognitive impairment; thus, it is reasonable to assume that ALI/ARDS could worsen 
these impairments. ALI makes lungs from potential organ donors unsuitable for transplant. It is estimated that 
42% of lung donors die of stroke and therefore it is necessary to understand the occurrence of ALI in the context 
of ischemic stroke. This is critical because ALI would restrict the total number of lungs available from stroke 
patients for the many patients awaiting this life-saving therapy. Additionally, stroke-induced ALI may worsen 
lung injury caused by mechanical ventilation13,14.

ALI is a clinical syndrome characterised by an acute inflammatory process in the lung tissue and airways, 
leading to an acute onset of severe hypoxemia15. This influx of inflammation is due to the loss of barrier func-
tion of the lung epithelial cells and the pulmonary capillary endothelial cells16. Neutrophils adhere to the dam-
aged endothelium and migrate into the lung airspaces. Cytokines such as IL-1, IL-6 IL-8, IL-10 and TNF-a are 
secreted by alveolar macrophages, which stimulates chemotaxis and activation of neutrophils17. Neutrophilic 
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inflammation causes injury to the lung endothelium, in turn increasing capillary permeability18. This leads to an 
influx of protein-rich fluid into the airspaces, and ultimately pulmonary oedema. Diffuse alveolar damage and 
impaired gas exchange results from the culmination of these processes.

It is well established that ischemic stroke causes brain inflammation but whether this cerebrovascular damage 
translates into lung inflammation is not well explored. A recent study in rats showed that focal ischemic stroke 
is associated with brain-lung crosstalk, leading to increased pulmonary damage and inflammation, as well as 
reduced alveolar macrophage phagocytic capability, which seems to be promoted by systemic inflammation19. 
Streptococcus pneumoniae infection increased the levels of the inflammatory cytokines TNF-α, IL-6 and IL-1β 
after cerebral ischemia (middle cerebral artery occlusion) in the lung compared to uninfected mice20. It has also 
been shown that experimental stroke in mice induces a peripheral inflammatory response that peaks 4 h after 
stroke and precedes the peak in brain inflammation 24 h after stroke21. A recent study has shown that ALI appears 
to occur within 24 h of ischemic stroke22. These findings suggest that an investigation of lung inflammation and 
injury induced by stroke would need to draw a focus on the hours shortly after a stroke.

Therefore, the aim of this study was to determine whether ischemic stroke causes lung inflammation and ALI 
in mice, in the period shortly after stroke (6 h), and at times (24 and 72 h following stroke) when the stroke is more 
developed. As severity of brain injury is a risk factor for the development of ALI in the context of traumatic brain 
injury12, we also investigated whether there was lung inflammation and injury after experimental stroke using a 
longer ischemic period to model a more severe stroke. We hypothesised that lung inflammation and ALI would 
occur after experimental stroke, and it would be highest at earlier time-points and after a more severe stroke.

Materials and Methods
Mice.  All experiments were conducted in accordance with the Australia Code of Practice for the Care of 
Experimental Animals, the ARRIVE Guidelines and with RMIT University Animal Ethics Committee approval 
(AEC numbers 1349 and 1532). Male 7–12-week-old C57BL/6 mice (n = 89 total) were obtained from the Animal 
Resources Centre Pty. Ltd (Perth, Australia). Animals were housed at 20 °C on a 12 h light/dark cycle and had 
access to water and standard chow ad libitum. In all, 22 mice were excluded from the study which occurred when, 
during the surgical procedure to induce focal cerebral ischemia-reperfusion: (1) there was an inadequate reduc-
tion (<70%) in regional cerebral blood flow (rCBF) during the ischemic period or inadequate (>80%) increase 
within the first 10 minutes of reperfusion (n = 9); (2) technical or anaesthesia complications arose during surgery 
(n = 1); (3) they died prior to the end of the reperfusion period (n = 5); or (4) they had to be humanely killed prior 
to the end of reperfusion (according to clinical severity score; n = 7).

Focal cerebral ischemia and reperfusion.  Mice were anaesthetised with a mixture of ketamine (150 mg/
kg, i.p.) and xylazine (10 mg/kg, i.p.). Body temperature was maintained at 37 °C with a heat lamp throughout 
the procedure and until mice regained consciousness. Focal cerebral ischemia and reperfusion was performed 
on mice by transient intraluminal filament-induced middle cerebral artery occlusion (tMCAo) as previously 
described23–25. Cerebral ischemia was maintained for either 50 min or 60 min. rCBF in the area of the cortex 
supplied by the middle cerebral artery (MCA) (~2 mm posterior and 5 mm lateral to bregma) was monitored 
in all stroke mice and recorded prior to the induction of cerebral ischemia, during cerebral ischemia and for 
the first 10 min of reperfusion. For sham surgeries, the right external carotid artery and common carotid artery 
were visualised, but the filament was not inserted. After mice had recovered from anaesthesia, they were housed 
in individual cages. Mice were monitored hourly for a minimum of 8 h post-surgery and the following morning 
using our monitoring protocol and clinical signs severity scoring system (approved by our ethics committee). 
At the end of the experiment (6 hours, 24 hours, or 72 hours post-surgery), mice were killed with an overdose of 
isoflurane followed by decapitation.

Neurological scoring and functional impairment test.  Neurological assessment was performed 
24 and 72 h after either sham or stroke surgery using a five-point scoring system: 0 = normal motor function; 
1 = flexion of torso and contralateral forelimb when lifted by the tail; 2 = circling to the contralateral side when 
held by the tail on a flat surface with normal posture at rest; 3 = leaning on the contralateral side at rest; 4 = no 
spontaneous movement at rest or uncontrolled circling. A hanging wire test was performed at 24 h and 72 h after 
sham or stroke surgery to assess motor impairment, as previously described23. Briefly, mice were suspended by 
their forelimbs from a wire 30 cm above a padded surface for up to 60 s and the average hanging time (i.e. latency 
to fall) of 3 trials with 5 min rest in between was recorded. A score of zero was assigned to those mice that fell 
immediately and a score of 60 was assigned to animals that did not fall. Neurological scoring and functional 
impairment tests were not performed 6 h after sham or stroke surgery, as mice have not fully recovered from the 
effects of anaesthesia at this time-point.

Quantification of cerebral infarct and oedema volumes.  Cerebral infarct and oedema volumes were 
evaluated at 6 h, 24 h or 72 h after stroke surgery, as previously described23. Briefly, brains were coronally sectioned 
(30 µm thickness; 420 µm apart) and thaw-mounted onto 0.1% poly-L-lysine coated slides. Tissue-mounted slides 
were subsequently stained with 0.1% thionin to delineate the infarct. Thionin-stained sections were then imaged 
with an Olympus VS120 Slide Scanner (Olympus). Total infarct volume was then quantified using ImageJ analysis 
software, correcting for brain oedema, as previously described23,25.

Bronchoalveolar lavage and differential cell counts.  Lungs from each terminally anaesthetised mouse 
were lavaged in situ with a 400 µl aliquot, followed by three 300 µl aliquots of PBS as previously described26–28. In 
total up to 1 ml of bronchoalvealor lavage fluid (BALF) was retrieved per mouse. The total number of viable cells 
in the BALF was determined, cytospins prepared and cells differentiated by standard morphological criteria. The 
total number of viable cells in the BALF was determined using the fluorophores ethidium bromide and acridine 
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Figure 1.  Stroke outcomes at 6 h, 24 h and 72 h after 50 min ischaemia. Neurological deficit scores and hanging 
wire tests (A,B; n = 10–15), infarct and oedema volumes (C,D; n = 6–11). Data are expressed as mean ± SEM. 
Neurological deficit score data expressed as median (*P < 0.05 vs sham, Mann-Whitney test). Hanging wire 
test was analysed by two-way ANOVA (*P < 0.05 vs sham). Infarct and oedema data was analysed by one-way 
ANOVA followed by Sidak post-hoc test (*P < 0.05).

Figure 2.  Effect of 50 min ischaemia on inflammatory cell counts in BALF, lung weight and BALF protein 
concentration. BALF cellularity is shown as (A) the total number of cells, (B) macrophages and (C) neutrophils 
(n = 10–15). Protein concentration in BALF (D) and lung weight (E) data are also shown (n = 9–13). Data are 
expressed as mean ± SEM. Two-way ANOVA followed by Sidak post-hoc test (*P < 0.05).
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orange (AO/EB), on a Nikon Eclipse E600 (Nikon Instruments, USA). Cytospins were prepared using 100 μl of 
BALF spun at 400 rpm for 10 min using a Cytospin 3 (Shandon, UK). Cytospin preparations were then stained 
with DiffQuik (Dade Baxter, Australia), and 500 cells per slide were counted and differentiated into macrophages, 
neutrophils and lymphocytes using standard morphological criteria. The remaining BALF was centrifuged and 
the supernatant stored at −80 °C until required for further analysis. Whole lungs were cleared of blood via right 
ventricular perfusion of the heart with 5 ml of PBS, rapidly excised en bloc, snap-frozen in liquid nitrogen and 
stored at −80 °C until required.

RNA extraction and qPCR.  Lungs from individual mice were crushed to a fine powder in liquid nitro-
gen using a mortar and pestle, and subsequently homogenised by passing 5 times through a 21 G needle with a 
1 ml syringe. Total RNA was extracted from 15 mg lung samples using an RNeasy Plus kit (QIAGEN, Australia), 
according to the manufacturer’s instructions. RNA yield and purity were quantified using a nanodrop (ND-
1000, Biolab). Total RNA from lung samples were reverse transcribed to cDNA (Applied Biosystems High 
Capacity RNA-to-cDNA Kit, USA). Quantitative polymerase chain reaction (qPCR) was then performed using 
mouse-specific TaqMan® Gene Expression Assays (Applied Biosystems, USA), on an ABI 7900HT Sequence 
Detection System. Samples were assayed in triplicate and negative reverse-transcriptase controls were included. 

Figure 3.  Effect of 50 min ischaemia on mRNA expression of proinflammatory cytokines and chemokines 
in whole lung tissue. Data are expressed as mean ± SEM. Two-way ANOVA followed by Sidak post-hoc test 
(*P < 0.05; n = 6–12).
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Figure 4.  Hematoxylin and eosin stained lung tissue section from mice 6, 24 and 72 h post stroke (50 min 
ischaemia) or sham surgery.

Figure 5.  Stroke outcomes at 24 h after 60 min ischaemia. Neurological deficit scores (A) expressed as median 
(***P < 0.0005 vs sham, Mann-Whitney test; n = 5–11). Hanging wire test (B) expressed as mean ± SEM 
(***P < 0.0001 vs sham, Student’s t-test; n = 5–11).
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Fold change was determined relative to the sham control group, after standardising to GAPDH (housekeeping 
gene), using the standard 2(-ΔΔCT) method as previously published26–29.

Lung histology.  At the end of the experiments, the lung tissues were fixed with 4% paraformaldehyde for 
24 h and embedded in paraffin. After deparaffinisation and dehydration, the lungs were cut into 5-μm sections 
and stained with haematoxylin and eosin. Histology was performed as previously described27. Briefly, lungs were 
removed from the thorax and immersed in 4% formaldehyde for a minimum period of 24 h. After fixation of 
the lung tissue and processing in paraffin wax, sections (5 µm thick) were cut longitudinally through the left and 
right lung so as to include all lobes. Sections were stained with hematoxylin and eosin for general histopathology. 
Histological evidence of ALI was assessed by the presence of neutrophils in the alveolar or interstitial space; the 
formation of hyaline membranes; presence of proteinaceous debris; and thickening of the alveolar walls30.

Data analysis.  All results are presented as mean ± standard error of the mean (SEM); n represents the num-
ber of mice. Statistical comparisons between treatment groups were performed using either Student’s unpaired 
t test or one-way ANOVA with Sidak’s multiple comparisons post-hoc test. Mann–Whitney U test was used for 
non-parametric data. All statistical analyses were performed using GraphPad Prism 6 for Windows (Version 
6.07, La Jolla, CA, USA). Probability levels less than 0.05 (P < 0.05) were taken to indicate statistical significance.

Results
Functional and neurological outcomes of stroke (50 min occlusion).  Stroke mice displayed sig-
nificant neurological impairment compared to sham mice at 24 and 72 h post-stroke, however no difference 
in neurological impairment was observed when comparing stroke groups at 24 h and 72 h (Fig. 1A). Foregrip 
strength, as assessed by latency to fall in the hanging wire test, was significantly less in stroke mice at 24 and 72 h 
when compared to sham-operated mice (Fig. 1B). However, no differences in hanging grip times were observed 
between the 24 and 72 h stroke groups. There were detectable infarct and oedema volumes at 6, 24 and 72 h post-
stroke (Fig. 1C,D). Infarct and oedema volumes were greater at 24 and 72 h when compared to 6 h post-stroke. 
Neurological impairment and foregrip strength were not assessed at 6 h, as this time-point is too early to see 
changes in functional impairment and mice have not fully recovered from the effects of anaesthesia. There were 
no detectable infarcts or oedema in sham-operated mice (data not shown).

Effect of stroke on BALF cellularity and lung weight, structure and proinflammatory gene 
expression.  There was an increase in total cells in BALF at 6, 24 and 72 h when compared to sham-operated 
mice although this was not statistically significant (Fig. 2A). Similarly, there were no statistical differences in the 
number of neutrophils at 6, 24 or 72 h post-stroke (Fig. 2C). Although there was no difference in the number of 
macrophages 6 and 72 h post-stroke, there was however a significant increase in the number of macrophages at 
24 h post-stroke (Fig. 2B). Stroke did not affect lung weights or BALF protein content at any of the time-points 
investigated (Fig. 2D,E). Whole lung gene expression of IL-1β, TNF-α and MCP-1 was not altered at any of the 
time-points post stroke, but there was an increase in IL-6 and MIP-2α at the 6 h time-point (Fig. 3). No evidence 
of lung injury was observed following stroke at any of the time points investigated as assessed by histological 
examination of lung tissue (Fig. 4).

Figure 6.  Effect of 60 min ischaemia on inflammatory cell counts in BALF, lung weight and BALF protein 
concentration. BALF cellularity is shown as (A) the total number of cells, (B) macrophages and (C) neutrophils. 
Protein concentration in BALF (D) and lung weight (E) data are also shown (n = 5–10). Data are expressed as 
mean ± SEM. Student’s t-test was performed to assess statistical significance (*P < 0.05 vs sham, **P < 0.005 vs 
sham, ***P < 0.0005 vs sham).
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Functional and neurological outcomes of stroke (60 min occlusion).  Three-time points were stud-
ied in the 50 min occlusion study to determine the kinetics of the inflammatory response in the lung. From this 
study we found that there were differences in BALF inflammation (macrophages) only at the 24-hour time-point. 
Hence, we chose to only investigate the 24-hour time-point in the 60 min occlusion study as this would also limit 
the number of animals used for the study. Stroke mice displayed significant neurological impairment compared 
to sham mice 24 h post-stroke (Fig. 5A). Foregrip strength was significantly less in stroke mice at 24 h when com-
pared to sham-operated mice (Fig. 5B). There were detectable infarct and oedema volumes at 24 h post-stroke 
(20.79 mm3 and 16.42 mm3 respectively). There were no detectable infarcts or oedema in sham-operated mice 
(data not shown).

Effect of 60 min occlusion on BALF cellularity and lung weight, structure and proinflammatory 
gene expression.  When mice were subjected to a 60 min occlusion period there was a significant increase in 
BALF total cells, macrophages and neutrophils when compared to sham-surgery mice (Fig. 6A–C). However, the 
60 min occlusion did not affect lung weights or BALF protein content (Fig. 6D,E). Whole lung gene expression of 

Figure 7.  Effect of 60 min ischaemia on mRNA expression of proinflammatory cytokines and chemokines 
in whole lung tissue. Data are expressed as mean ± SEM. Student’s t-test was performed to assess statistical 
significance (*P < 0.05; n = 5–10).
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IL-1β was significantly increased but levels of IL-6 were significantly decreased (Fig. 7A,B). However, the levels of 
TNF-α, MCP-1 and MIP-2α were not altered in stroke mice when compared to sham-surgery mice (Fig. 7C–E). 
Moreover, no evidence of lung injury was observed following the 60 min occlusion as assessed by histological 
examination of lung tissue (Fig. 8).

Discussion
ALI is a clinical syndrome characterised by an acute inflammatory process in the lung tissue and airways, lead-
ing to an acute onset of severe hypoxemia. It is well known that brain injury is associated with ALI and ARDS, 
which is linked to mortality and leaves a high proportion of potential organ donors–those with fatal brain injury 
- unsuitable for lung transplants. The extent to which ALI occurs after ischemic stroke is not well established. This 
study aimed to determine whether experimental ischemic stroke causes ALI is in mice. We found that experi-
mental ischemic stroke caused significant BALF inflammation (increase in macrophages and neutrophils) and an 
increase in whole-lung pro-inflammatory cytokines (IL-1β) but did not result in ALI and ARDS.

In this study, we used two occlusion periods of 50 min and 60 min to mimic a moderate and more severe 
stroke. It was predicted that the more severe stroke (i.e. 60 min occlusion period) would lead to a greater lung 
inflammatory response. In the 50 min occlusion experiments we found that the there was no significant increase 
in BALF inflammation at 6 and 72 hours post-stroke. However, there was a significant increase in the total num-
ber of macrophages 24 hours post stroke. Interestingly, in the more severe stroke, we found that there was a signif-
icant increase in the total cells, macrophages and neutrophils when assessed 24 hours after stroke. Therefore, it is 
clear that experimental ischemic stroke causes BALF inflammation.

The increase in neutrophils is in accord with findings that neutrophils are involved in the pathogenesis of 
ALI, causing lung endothelial damage which leads to pulmonary oedema15–18. Damage to the lung epithelial 
and endothelial cells in ALI allows for the movement of protein and fluid into the airways. However, despite the 
presence of BALF neutrophilia, experimental ischemic stroke did not cause pulmonary oedema, as assessed by 
lung weights or protein concentration in BALF. This was surprising given the significant BALF inflammation sug-
gesting that lung epithelial and endothelia cells would have been damaged to allow oedema to occur. This would 
suggest that 60 min occlusion period still isn’t severe enough to see the full ALI/ARDS and that longer ischemic 
periods may be required. Thus, it would be worth trialling longer ischemic periods to determine their impact 
on lung inflammation, oedema and plasma leakage. Thus, it would be worth trialling longer ischemic periods 
to determine their impact on lung inflammation, oedema and plasma leakage. Based on the stroke literature we 
could use ischemic periods ranging from 60 and 120 minutes25,31,32.

While we were able to show increased BALF inflammation in stroke mice, we did not observe any increases 
in lung tissue inflammation as assessed by histology. This was surprising given the increased BALF inflammation 
and is in contrast to a recent study by Samary et al.19 who found that stroke mice had increased intra-alveolar 
oedema and increased macrophage counts when using transmission electron microscopy. It was also interest-
ing that they did not see increased lung neutrophilia. However, it must be noted that Samary et al. used a focal 
ischemic model of stroke (thermo-coagulation of pial vessels over the right primary sensorimotor cortex) and 
rats, which may account for the observed differences.

We then went on to explore whether there was proinflammatory cytokine/chemokine expression in whole 
lung tissue as assessed by QPCR. Although no significant changes in pro-inflammatory cytokine (IL-1β, IL-6, 
TNF-α) and chemokine (MCP-1, MIP-2α) gene expression were observed at 6 h, 24 h and 72 h after the 50 min 
ischemic occlusion, IL-1β, IL-6 and MIP-2α expression tended to increase 6 h after stroke. However, changes in 
pro-inflammatory cytokine and chemokine gene expression were more obvious at 24 h after a longer (i.e. 60 min) 

Figure 8.  Hematoxylin and eosin stained lung tissue sections from mice 24 h post 60 min post stroke (60 min 
ischaemia) or sham surgery.
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occlusion, with a significant increase in IL-1β and decrease in IL-6. However, there were no differences in TNF-α, 
MCP-1 and MIP-2α. Of these pro-inflammatory mediators, IL-1β is known to be involved in the development of 
ALI/ARDS, and has been shown to be one of the most biologically active cytokines in ALI. IL-1β has been shown 
to stimulate the production of a number of cytokines17, and is thought to increase the permeability of lung epithe-
lial and endothelial cells and contribute to the development of pulmonary oedema. Thus, gene expression analysis 
of pro-inflammatory cytokines in lung tissue indicated that lung inflammation is present after ischemic stroke. 
The recruitment and activation of neutrophils into the airways is a key feature of ALI in many disease contexts. In 
this study, however, no evidence of airway neutrophil infiltration was observed histologically after any length of 
ischaemia. Lung inflammation was present after experimental ischaemic stroke in this study, but not ALI.

Conclusion
This study showed that ischemic stroke causes BALF inflammation and while there was increased proinflam-
matory gene expression in the whole lung this did not translate into histologically evident lung inflammation, 
oedema and lung injury which are the characteristic features of ALI. It is possible that occlusion times greater 
than 60 min are required to induce a more severe stroke for ALI to occur so further studies will need to be con-
ducted to confirm this. Alternatively, it could be that ischemic stroke doesn’t cause ALI and ARDS in its more 
severe form. If this were the case, then this would mean that lungs from patient’s dying of ischemic stroke could 
be used for transplantation in people awaiting this life-saving therapy.

Data Availability
All data generated or analysed during this study are included in this published article.
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