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Cellulose elementary fibril 
orientation in the spruce S1-2 
transition layer
Mehedi Reza1, Carlo Bertinetto2, Kavindra Kumar Kesari1,2, peter engelhardt1, 
Janne Ruokolainen1 & Tapani Vuorinen2

The tight organization of major wood cell wall polymers limits the swellability, solubility and reactivity 
of cellulose fibers during the production of regenerated textile fibers, nanocellulose, bioethanol, and 
many other value-added products. However, the ultrastructural assembly of cellulose elementary 
fibrils (EF) and matrix materials in one of the outer layers, i.e. S1-2 transition layer of wood cell wall, is 
far from being understood. Here, single-axis electron tomography on ultrathin spruce sections was 
applied to observe the three-dimensional (3D) structure of the S1-2 layer. The nanoscale geometries 
of the EFs were further quantitatively modeled through mathematical fitting of the tomographic 
subvolumes by suitable parametric space curves. The results showed that crisscross, bundled and 
parallel EF organizations are all present in this layer; the former two exhibit a denser structure. Several 
quantitative measures such as distances and angles were obtained for the analyzed structures. The 
result obtained in this study suggests that the S1-2 transition layer differs in structure than the principal 
cell wall layers. The structural differences and its possible role in wood cell wall have been discussed. 
These results will enhance our understanding of the swellability, accessibility and solubility of woody 
biomass for its conversion into the aforementioned value-added products.

Cellulose elementary fibrils (EFs)1, also known as microfibrils2, are embedded in a matrix of hemicelluloses and 
lignin may form the skeleton of wood cell walls3–5. Wood cellulose is composed of long microfibrils (each a few 
nanometers in thickness)6, run through a hydrated matrix of glucomannans (the dominant hemicellulose in 
softwood tracheids)7, and other polymers8–11. The structural organization of EFs is considered to be the prime 
factor that regulates the mechanical performance of solid wood on micro to macro levels and the conversion of 
lignocellulose fibers into various products. These value-added products could be bio-fuels, fine chemicals, and 
rich energy sources for microbial fermentation and enzyme production12–15. In the preparation of material prod-
ucts, fibers are often treated with chemicals and/or enzymes in order to open up the fibrillar network of the cell 
wall during a subsequent mechanical disintegration. However, the EF structures (EF aggregates, for example)16 
that exist in wood and pulp reduce the accessibility of cellulose and hamper the action of enzymes and chemicals. 
The understanding of structural mechanics of EFs by microscopy techniques in combination with mathematical 
modeling would help us to explore the aforementioned value-added products. Specifically, the complex assembly 
of the cell wall limits its swellability, solubility and reactivity in the manufacture of micro/nanofibrillar cellulose. 
Also, dissolution of cellulose as a polymer for regeneration of textile fibers, and enzymatic hydrolysis of cellulose 
and hemicelluloses into sugars for their subsequent fermentation, for example, to ethanol to replace fossil fuels 
in the future17,18. Many studies have already suggested that the fiber ultrastructure along with solvent quality 
provides the most impact on the fiber swelling and dissolution process19,20, although, so far, the ultrastructure of 
the transition layers has not been studied due to their small width. However, it is well reported that fibers with 
secondary cell wall contains crystalline cellulose21,22, though its diameter (small width) and crystalline material 
are key inputs for the better understanding of cellulose microfibrils in respect to mechanical accomplishment23–25 
and future outcomes.

Current studies mainly concentrated on the major layers of the secondary wall, and to our knowledge no 
study has been conducted exclusively on the thin S1-2 layer (i.e. transition between the S1 and S2 layer, see Fig. 1) 
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to understand the ultrastructural assembly of the cell wall materials. The lack of knowledge in the transition layer 
ultrastructure limits the understanding of its role in various applications of the cellulose fibers. Furthermore, 
detailed knowledge of the wood cell wall ultrastructure is imperative for mimicking the properties of wood into 
new synthetic materials19. Therefore, S1-2 layer ultrastructure would provide us deeper insights of the behavior 
of cellulose fibers in numerous applications of wood. Attempts at observing the EF orientation in the transition 
layers of the secondary wall were taken by using two-dimensional (2D) imaging techniques (scanning electron 
microscopy (SEM), for example), but this layer could not be traced due to the gradual change of EF angle from S1 
to S2 layer26. The micrograph of spruce transverse section presented in Fig. 1, shows the orientation of EFs in the 
S1 and S2 layers, which is totally impossible to observe for S1-2 transition layer.

Results and Discussion
Cryo-transmission electron microscopy (cryo-TEM) tomography provides three-dimensional (3D) structure of 
S1-2 transition layer. 3D tomograms of this transition layer are presented in Figs 2–4. The S1–2 transition layer can 
be spotted by a drastic change of EF angle in the transverse and longitudinal sections, as shown in the electron 
micrographs27,28. These tomograms showed the existence of both crossed (Fig. 2) and parallel (Figs 3 and 4) fibril 
orientations in the transition layer. The crossed-fibrillar structure, which can be viewed more clearly by the fitted 
space curves (Fig. 2d), might originate from opposite helical orientations of EFs in the S1 and S2 layers, which 
cross in the transition layer forming a denser structure (Fig. 2b,c). Furthermore, the presence of a crossed-fibrillar 
structure is immediate (likely), when an out-of-plane orientation is present in both S1 and S2 layers with opposite 
helices (Supplementary Fig. S4).

Our findings suggest that an abrupt change of helices takes place in the transition layer with a crossed-fibrillar 
structure followed by a gradual change of EF angle in the succeeding layer. For example, EF angle in the S2 layer 
gradually changes from a high value in the outer-S2 to an almost axial in the inner-S2

26. An almost similar EF 
angle of S1 layer with opposite helix (Z) was observed in the inner side of the S1-2 layer that could be belonging 
to the outer-S2 layer. It was reported that the helical organization in the secondary wall gradually changes from 
S-helix in the S1 layer to Z-helix in the S2 layer in the developing tracheids26. The gradual change of EF orienta-
tion perhaps takes place in the matured transition layers when a parallel EF orientation exists, as in Fig. 3. The 
EF orientation in the secondary wall region can be quite variable within individual tracheids as investigated by 
Donaldson and Xu29. An intermediate structure between the layers in secondary wall was reported in a previous 
study30. Brändström and colleagues27 considered the S1-2 transition layer as a part of the S2 layer. However, this 
study is an agreement to our previous observations28 that the transition layers are independent because of their 
unique structure.

Figure 1. An overview of sectioning of the wood, selection of area, tomography and modeling of fibril 
orientation. Wood cell wall depicts layering and transmission electron micrograph shows the cellulose fibril 
orientation in the S1 and S2 layer; scale bar 100 nm. Wood fiber comprises thousands of elementary fibrils (EF) 
and their bundles. Each EF consists of several parallel cellulose molecular chains.
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As already mentioned, the other tomograms shown in this paper present a parallel fibril structure. A higher den-
sity can be observed in the transition layer of Figs 2 and 3, but it is not clearly evident in the one in Fig. 4. In Fig. 4c, 
a slight angle is visible between the EFs and the tangential plane. The transition layers usually appear brighter in the 
transmission electron micrographs than the principal cell wall layers31, indicating less lignin content in the transition 
layer than the other layers as lignin gets stained by potassium permanganate (KMnO4) and gives a dark contrast31. 
The denser structure of transition layers could be a result of EF aggregation as reported in S2 layer in several occa-
sions32. The low concentration of lignin in the transition layer, as suggested by the electron micrographs, may trigger 

Figure 2. Tomography of S1-2 transition layer and fitting with parametric space curves. (a) Schematic diagram 
of wood cell wall; (b,c) tomographic slices of the S1–2 longitudinal and transverse sections, respectively, show 
a dense S1-2 layer; scale bar is 50 nm; (d) the space curves fit from the indicated subvolume reveal the crossed-
fibrillar structure; plot units are nm. Tilt series was acquired on radial longitudinal section. The tomographic 
density scale bar shows low density (black color) to high density (yellow color).

Figure 3. Tomography of S1-2 transition layer. (a) Schematic diagram of wood cell wall depicts transverse and 
longitudinal sections; (b,c) tomographic slices of the S1-2 transverse and longitudinal sections, respectively, show a 
parallel fibril orientation in the S1-2 layer; scale bar is 50 nm; (d) the resultant fitted space curves also show a parallel 
structure, and some fibrils appear bundled together; plot units are nm. Tilt series was acquired on transverse 
section. The tomographic density scale bar shows low density (black color) to high density (yellow color).
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the cellulose fibril aggregations guided by hemicelluloses as claimed in studies on pulp33,34. Furthermore, hemicellu-
loses remain unstained by KMnO4 giving almost similar electron density as cellulose in the electron micrographs31. 
The tight association of EFs and their aggregation in the transition layer perhaps act as a gluing layer holding the 
principal cell wall layers with opposite helices to make wood strong as a material. Nevertheless, lignin is considered 
as the gluing agent in the intact cell wall, gluing the cells together. Several studies demonstrated that the transition 
between S1 and S2 layers form a weak zone, where the defibration predominantly takes place in mechanically stressed 
wood35. Investigation of the native wood cell wall presented in this study suggests a unique structure in the S1-2 layer 
that likely contributes to the structural weakness between the S1 and S2 layers. Thus, the results obtained in this study 
suggests several possibilities for the production of value-added products by measuring tomographical and mathe-
matical modeling parameters to explore the future outcomes.

Fitting of the cellulose elementary fibrils (EF) in the tomographic volumes by parametric space curves shows 
the EF orientation in the S1-2 layer. The tomographic slices obtained from the S1-2 layer clearly show the fibrillar 
structure of the wood cell wall, but the modeling of such structure with manual segmentation methods36 seems 
to be challenging because of the tight association of EFs and matrix materials. To address this challenge, we fitted 
the tomographic density with a geometric model for the individual EFs, using an algorithm modified from the 
one devised by Ciesielski et al.37. In such model, EFs are approximated by parametric space curves consisting of 
a helicoidal term and a polynomial one (which accounts for deviations from a straight helix); the computational 
procedure is explained in detail in the supporting information. This method is capable of extracting the unique 
nanoscale geometry of individual EFs in the tomograms, with the practical effect of a resolution enhancement 
and providing a quantitative structural description.

For the S1-2 layer in Fig. 2, this model indeed showed the presence of crossed-fibrillar structure in the transi-
tion layer (Fig. 2d). The nearest neighbor distance was also calculated for the fitted curves, obtaining a mean value 
of ~11 nanometer (nm) among parallel EFs and much smaller (not reported, but approximately contact distance) 
for crossing EFs. This observation supports the idea that the dense structure in the S1-2 transition layer originates 
from the crossed-fibrillar structure. The orientation appeared rather uniform in the considered subvolumes, with 
nearly all fitted curves perpendicular to the longitudinal axis and showing an angle of 45° (in either direction) 
with the tangential plane.

For the tomogram in Fig. 3, the curve fitting revealed the presence of bundles (Fig. 3d), which might explain 
the higher density in this type of transition layers. In this sample, the observed bundles contain only two or three 
EFs, and involve around 40% of all fibrils in the transition layer. In previous studies, EF bundles have been observed 
in both the S1

38 and S2 layers34,39,40, therefore in consideration to previous studies, it is quite obvious to find them 
in the transition layer of present study. The average nearest neighbor distance was ~10 nm. The fitted curves were 
approximately aligned to the tangential plane in the considered subvolumes, which all concerned merely the thin 
S1-2 transition layer. It will be of great interest to measure how such angle gradually changes approaching this layer, 
a study that will require further elaboration of the fitting algorithm. The angle between the EFs and the longitudinal 
axis could not be properly evaluated because of very thin sample used (less than 20 nm thick).

Figure 4. Tomography of S1-2 transition layer. (a) Schematic diagram of wood cell wall; (b,c) tomographic 
slices of the S1-2 longitudinal and transverse sections, respectively, show a parallel fibril orientation in the S1-2 
layer (fibrils are aligned to transverse section); scale bar is 50 nm; (d) the resultant fitted space curves are in 
accordance with the parallel fibril structure; plot units are nm. Tilt series was acquired on radial longitudinal 
section. The tomographic density scale bar shows low density (black color) to high density (yellow color).
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Bundles are not clearly observed in the tomogram of Fig. 4, although they are very difficult to detect on such a 
thin volume along the tangential plane. The average nearest neighbor distance was also ~10 nm; a slight decrease 
(~9.7 nm) is observed in the middle of the transition layer, though it may not be statistically very significant. 
The mathematical modeling (Fig. 4d) does not reveal a particular order apart from the parallel EF arrangement, 
but showed a median angle of about ±6° with the tangential plane, confirming the small angle, that was noticed 
by visual inspection in Fig. 4d. The angle with the longitudinal axis is perpendicular on an average, but small 
oscillations in either direction were observed, with a standard deviation of ~10°. The Supporting information 
shows plots of the spatial distribution of characteristics such as interfibrillar distances and angles throughout this 
tomogram. Additionally, Supplementary Fig. S1 shows average angles (degrees) of fitted EFs with the tangen-
tial plane in each square to visualize location in Fig. 4b. Supplementary Fig. S2 shows average angles (degrees) 
of fitted EFs with the transverse plane in each square and an overlapping of colormap visualized a location in 
Fig. 4b. Supplementary Fig. S3 shows Nearest neighbor distances (nm) for each analyzed subvolume, which on 
the xy plane are squares of length 40.5 and overlapping of colormap visualize a location in Fig. 4b. All about 
Supplementary Figs S1–S3 were described in supporting information.

Conclusions
Transmission electron tomography combined with mathematical modeling of nanoscale geometry of cellulose 
elementary fibrils (EF) showed the detailed structure and orientation of EFs in the S1-2 transition layer. Different 
EF arrangements, particularly criss-crossed, bundled and parallel, were observed in the analyzed samples. The 
mathematical modeling also allowed for obtaining quantitative information such as nearest-neighbor EF dis-
tances, percentage of EFs forming bundles, and angles with respect to the major directions.

Wood cell wall consists of different layers like an interplay of lamellae. Having a tight arrangements of cellulose 
EFs, transition layers may act as a gluing layer for principal cell wall layers by forming either physical intertwing-
ling of EFs or chemical bondings or both. Moreover, the tight association of EFs makes cellulose abundant in this 
particular layer, meaning that transition layers may have different cell wall materials content than the neighboring 
layers. All these observations on the EF structure may provide a better understanding of the reactivity of cellulosic 
fibers in biochemical, chemical and mechanical treatments. Further studies on wood cell wall will be necessary to 
get a deeper understanding of structural variation in the transition layer and its obvious role in the intact cell wall.

Materials and Methods
Sample preparation. In order to extract high-resolution information on the tracheid wall, a disk of Norway 
spruce wood was collected from breast height (~1.3 m) of a ca. 40 years old tree originating from Ruotsinkylä in 
Southern Finland. Cubes (3 × 5 × 10 mm3) of latewood were prepared without embedding in resin, before sec-
tioning. Ultrathin sections of ~100 or 150 nm were cut from transverse and radial longitudinal wood surfaces at 
cryogenic temperature (−40 °C) with a diamond knife on a Leica EM FC7 ultramicrotome. A fuller description of 
sectioning can be found in Reza et al.28 Grids with sections were post-stained for 30 min with 1% aqueous KMnO4 
to selectively stain for lignin followed by drying at room temperature for 2–3 hours.

Acquiring tilt series. Nine sets of single-axis tilt series of transverse and radial longitudinal sections were acquired 
from −63° to +63° at 3° angular increment using SerialEM41 software at a pixel size of ∼0.45 nm (unbinned) or 
~0.9 nm (binned 2x). Micrographs were recorded with a Gatan Ultrascan 4000 CCD camera on a cryo-TEM (Jeol 
JEM-3200FSC) at an accelerating voltage of 300 kV. The images were taken in bright-field mode and using zero loss 
energy filtering (Omega type) with a slit width of 20 eV (electron Volt). Low-dose mode of the acquisition software was 
used during the data collection. Specimen temperature was maintained at −187 °C during imaging.

Tomogram assembly and visualization. Tilt series were aligned by tracking 25–35 gold mark-
ers (~15 nm) with IMOD software package36. Tomograms were reconstructed from the tilt series using the 
Simultaneous Iterative Reconstruction Technique (SIRT) within IMOD and with 10 iterations. Finally, tomo-
graphic volumes were visualized with volume viewer plugin of ImageJ42. Gaussian filtering within UCSF-Chimera 
was applied to reduce the noise to some extent43. In order to avoid the effect of sectioning on wood structure44, 
tomographic slices were captured from the middle part of the tomograms.

Computational modeling. Tomographic volumes were imported and displayed in MATLAB R2017a (The 
Mathworks, United States of America (USA), using functions adapted from the particle estimation for electron 
tomography (PEET) software package37. Where necessary, they were rotated to approximately align the EFs with 
one of the axes. From each tomogram, several subvolumes were selected to perform curve fitting: precisely 13, 
44 and 261 subvolumes for the tomograms in Figs 2–4, respectively, and 91 for another tomogram presenting 
criss-crossed fibrillar structure (not shown). Many of these subvolumes were overlapping to verify the consistency 
of results. The code for the fitting algorithm was acquired from Dr. Ciesielski (University of Colorado, USA) and 
specifically modified for this work. The description of the fitting algorithm is fully explained in the supporting 
information. The minimization of the cost function was performed initially using a ‘Particle Swarm Optimizer’45 
and then refined by a simplex method with the MATLAB function ‘fminsearch’.
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