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Effects of intercalated atoms on 
electronic structure of graphene 
nanoribbon/hexagonal boron 
nitride stacked layer
Dongchul Sung, Gunn Kim & Suklyun Hong

Using first-principles calculations, we investigate an atomic impurity at the interface of a van der 
Waals heterostructure (vdW heterostructure) consisting of a zigzag graphene nanoribbon (ZGNR) 
and a hexagonal boron nitride (h-BN) sheet. To find effects of atomic intercalation on geometrical and 
electronic properties of the ZGNR on the h-BN sheet, various types of impurity atoms are considered. 
The embedded atoms are initially placed at the edge or the middle of the ZGNR located on the h-BN 
sheet. Our results demonstrate that most of the impurity atoms are more stable at the edge than at the 
middle in all cases we consider. Especially, a nickel atom has the smallest energy difference (~0.15 eV) 
between the two embedding positions, which means that the Ni atom is relatively easy to intercalate in 
the structure. Finally, we discuss magnetic properties for the vdW heterostructure with an intercalated 
atom.

Graphene has attracted tremendous attention as a next-generation electronic material because of its unique 
chemical and physical properties1–4. Mica5, silicon carbide (SiC)6,7 and silicon dioxide (SiO2)1,8–11 have been 
usually used as substrates for nanodevices. However, such types of substrates reduce the electronic mobility of 
graphene in the device12,13. Recently, the concern with the hexagonal boron nitride (h-BN) sheet as an insulating 
substrate for the graphene devices has been growing. When graphene is transferred directly to the conventional 
substrates such as SiO2, the electrical mobility is decreased by charged impurities in the substrates. Besides, the 
surface roughness of the SiO2 substrate results in the large corrugation of graphene12,14–16. In contrast, graphene 
on the h-BN sheet is almost flat, and shows much higher electrical mobility than graphene on SiO2. The h-BN 
sheet is an insulator with a large optical bandgap of about 6 eV17 and small lattice mismatch with graphene about 
1.6%. Another important point is that h-BN has weak van der Waals (vdW) interaction with graphene. Therefore, 
h-BN may be a good candidate as a dielectric substrate for graphene-based nanodevices. Besides, this material is 
chemically inert, compared to metal surfaces.

The free-standing zigzag graphene nanoribbon (ZGNR) shows localized electronic states and antiferromag-
netic property at the edge18–20. The edge states of the ZGNR can be affected by impurity atoms or the supporting 
substrate. Using first-principles calculations, Choi et al. studied the adsorption properties of alkali metal atoms 
from the edge to the middle of ZGNRs21. The adsorption energies of alkali metal atoms on the ZGNR depend 
on the position of the impurity, and are largest at the ZGNR edge. On the other hand, Lee et al. considered the 
functionalization of halogen atoms and molecules at the ZGNR edge22. They focused on free-standing ZGNR for 
the adsorption of atomic impurities. Since the real nanodevices are fabricated on a substrate, however, we need to 
study intercalation properties of such defect atoms at interfaces of graphene/substrate systems.

In this paper, we report a first-principles study of atomic and electronic properties of a ZGNR on an h-BN 
sheet with an intercalated atom. The purpose of our work is to understand intercalation properties of extrinsic 
defects such as alkali metal (Li, Na, and K) and halogen (Cl, Br, and I) atoms in order to tailor the localized states 
of the zigzag edge in a graphene on an h-BN sheet. We also examine effects of other types of residual atoms (Cu, 
Ni, and Si atoms) between graphene and h-BN sheet, which could be adsorbed to the graphene or h-BN sheet in 
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the transfer process. The intercalated atoms are expected to bring about charge doping or to change the magnetic 
properties of the system.

Results and Discussion
Van der Waals ZGNR/h-BN heterostructures. First, we obtain the optimized geometry of the vdW 
ZGNR/h-BN heterostructure with no intercalated atom, as shown in Fig. 1(a), where the grey, blue, and pink 
colours represent carbon, nitrogen, and boron atoms, respectively. The most stable configuration resembles the 
Bernal stacking of graphite. The carbon atoms of the ZGNR are located on top of the boron atoms and the cen-
tre of h-BN hexagons; that is, the centres of the ZGNR hexagons are on top of the nitrogen atoms of h-BN. Our 
results are in consistent with the previous reports20,23–26. The equilibrium distance between the ZGNR and the 
h-BN sheet is 3.15 Å. We find that the localized states exist at the edges of the ZGNR on the h-BN sheet, rep-
resented by the almost flat band of the zigzag edge around the Fermi level (EF). The localized states27, however, 
rapidly decay into the bulk, as shown in Fig. 1(b). Figure 1(b) shows the projected densities of states (PDOSs) 
at the left and right edges and near the middle of the ZGNR, respectively. The red, green, and yellow lines of the 
PDOSs of the ZGNR correspond to the same colours of carbon atoms at the ZGNR in Fig. 1(a), respectively. The 

Figure 1. (a) Top view of a vdW ZGNR/h-BN heterostructure, (b) its PDOS, and (c) top and side views of spin 
densities of the model system. Each coloured line shown at the ZGNRs corresponds to the same coloured line 
of the PDOS. The red, green, and yellow colours represent the 1st, 9th, and 18th lines from the left ZGNR edge, 
respectively. A, B and C, D represent the spin-up and down states at the left and right edges, respectively.
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results are same as those for free-standing ZGNRs28. The PDOS plots imply that the h-BN sheet does not affect 
the electronic properties of the ZGNR, in contrast to the conventional substrates such as SiC and SiO2. We also 
calculate spin densities to examine the magnetic properties of the edge states of the ZGNR. As in the ZGNR with-
out a substrate, antiferromagnetic properties are clearly shown in the ZGNR on the h-BN sheet, which means that 
spin-up and spin-down electrons are localized at each edge of the ZGNR, as shown in Fig. 1(c).

For the ZGNR placed on the h-BN sheet, we assume that the ZGNR edges are terminated by hydrogen atoms. 
The space between the H-terminated edge of the ZGNR and the h-BN sheet may open rather wide, and the 
open-edged ZGNR on h-BN may allow atoms or molecules to be intercalated between the ZGNR and the h-BN 
sheet. We place the alkali (Li, Na, and K), halogen (Cl, Br, and I), and other impurity (Cu, Ni, and Si) atoms at 
both edge and deep positions. We find the stable positions for the intercalated atoms located at edge and deep 
positions. The binding energy of each impurity atom between the ZGNR and the h-BN sheet is defined as

= + −‐ ‐E E (impurity) E (ZGNR/h BN) E (ZGNR/impurity/h BN),b tot tot tot

where Etot represents the total energy of the optimized geometry  for each system. Here, the positive (negative) 
sign of the binding energy represents an exothermic (endothermic) process. The binding energy values are listed 
in Table 1. Our results show that the deep position is less stable than the edge position because of the large curva-
ture and strain resulted from the deformation of the graphene and h-BN sheet. For all the halogen atoms we con-
sider, the deep position has negative binding energies, and is energetically unstable. The Li atom is small, and may 
be incorporated at the deep position since the difference of the binding energy is only ~0.21 eV between the deep 
position (Eb = 2.40 eV) and the edge position (Eb = 2.61 eV). One could produce a new type of vdW nanomateri-
als using the Li doping because the Li impurity atom tends to donate electron to the host material, and change the 
electronic structure of the system. The energy difference of the Ni atom for edge and deep positions is the smallest 
among them (~0.15 eV), whereas that for the halogen family is very large owing to a strong chemical bond to the 
edge of the ZGNR. For comparison with the results, we calculate the binding energies of the impurity atoms on 
the top surface of the ZGNR and the bottom surface of the h-BN sheet in the vdW ZGNR/h-BN heterostructure. 
The calculational results are summarized in Tables S1 and S2 (see Supplementary Information (SI)).

Van der Waals ZGNR/h-BN heterostructures with alkali metal and halogen atoms. To investi-
gate effects of the intercalated atoms at the interface of the ZGNR/h-BN structure, we calculate the atomic and 
electronic structures of alkali metal and halogen atoms placed at both edge and deep positions, as shown in Fig. 2. 
Similar trends in atomic and electronic structures are shown for alkali metal and halogen atoms. We choose the 
K and Br atoms for a detailed study. Figure 2 shows top and side views of optimized geometries and the PDOSs 
of the ZGNR/impurity/h-BN structures for K and Br impurities. Obviously, the interstitial space between the 
ZGNR and the h-BN sheet is enlarged in the presence of the intercalated atom at both edge and deep positions, 
as shown in Fig. 2. As shown in Fig. 2(a,b), neither h-BN nor ZGNR makes a chemical bond with the K atom for 
both edge and deep positions. The red, yellow, and green lines of the PDOS correspond to the left edge, right edge, 
and deep positions of ZGNRs, respectively, and the black line of the PDOS represents the impurity atom. Electron 
transfer occurs from the K atom to the ZGNR and the h-BN sheet at both edge and deep positions. At the edge 
position, the K atom has weak orbital hybridization with the ZGNR around EF, as shown in Fig. 2(a). Here, we 
find the broad potassium bands in the conduction band (~1.8 eV). It means that the K atom is fully ionized, and 
donates an electron to the ZGNR. Interestingly, the left edge near the K impurity does not have any practical 
spin-polarized state, whereas the right edge still has a spin-polarized state like a defect-free ZGNR edge. For both 
edge and deep positions, the strong edge state of the ZGNR occurs at EF, and the trend of electron donation is 
expected to be very similar. Therefore, one could use the partially filled edge states as one-dimensional channels 
for quantum electronic transport.

In contrast to the potassium impurity, the bromine atom forms a chemical bond to a carbon atom of the left 
edge of the ZGNR with sp3-like hybridization, and the left edge states of the ZGNR disappear in the edge-position 
configuration. Because of strong electron affinity of Br, the ZGNR is hole-doped, and the PDOS of the Br atom is 
clearly shown between −3.0 and −2.0 eV. More interestingly, the Br atom at the deep position creates spin mag-
netic moments coupled to the ZGNR edge, which will be discussed below in more detail, although it forms no 
chemical bonds to the ZGNR or the h-BN sheet. At the deep position, the narrow DOS peaks of Br occur near EF 
for down-spins, and the localized edge states of the ZGNR are shown near EF in Fig. 2(d). Thus, the Br-originated 
localized state near EF can cause electron scattering.

Van der Waals ZGNR/h-BN heterostructures with other types of atoms. As mentioned above, 
in the transfer process, some residual atoms from a substrate such as Cu, Ni, and SiC may be adsorbed on the 
h-BN or graphene surface29. In such cases, the deep-position configuration of the graphene/impurity/h-BN struc-
ture may be formed. Therefore, we also consider the deep-position configuration as well as the edge-position 

Alkali Halogen Others

Edge Deep Edge Deep Edge Deep

Li 2.61 2.40 Cl 2.09 −1.10 Cu 1.88 1.33

Na 1.46 1.04 Br 1.63 −1.59 Ni 3.54 3.39

K 1.24 0.40 I 1.18 −2.09 Si 2.09 −0.50

Table 1. Binding energy (in eV) of the intercalated atoms between the ZGNR and the h-BN sheet.
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configuration for Cu, Ni and Si defects in order to check the impurity effect on the electronic properties and 
spin magnetic properties of the ZGNR, although the edge configuration is energetically more stable than the 
deep-position configuration. Figure 3 shows the atomic and electronic structures of the vdW ZGNR/h-BN het-
erostructures with Cu, Ni, and Si defects at edge and deep positions, respectively. The Si atom results in significant 
deformation of the ZGNR and the h-BN sheet, but the Cu and Ni atoms do not cause remarkable geometrical 
changes in the two layers at the deep positions. The large and narrow PDOSs originating from Cu 3d orbitals are 
shown around −3 eV, and the Cu 4 s electron is slightly hybridized with the ZGNR edge states at EF. For both 
the edge and deep positions, electron transfer takes place from the Cu atom to the ZGNR, and cancels the spin 
magnetic moment of the left edge of the ZGNR, as shown in Fig. 3(a,b). For the Ni impurity, the Ni 3d orbitals are 
hybridized with the localized C 2p orbitals at the ZGNR edge between −2.0 and 0 eV (EF), as shown in Fig. 3(c,d). 
Figure 3(e) shows that the Si impurity atom bonds to the ZGNR edge and makes DOS peak just below EF. On 
the other hand, the Si atom at the deep position produces two nearly-degenerate localized states just below EF, as 
shown in Fig. 3(f).

Magnetic properties of van der Waals ZGNR/h-BN heterostructures with impurity atoms.  
Finally, we explore spin magnetic properties of the ZGNR/impurity/h-BN structures. Figure 4 shows the spin 
densities and the PDOS for ZGNR/h-BN structures with intercalated atoms (K, Br, Cu, Ni and Si) at both edge 
and deep positions. The red and yellow colours represent the spin-up and spin-down electrons, respectively. 
Table 2 summarizes the spin magnetic moment of each system. ZGNRs have localized states at the edge, and have 
the opposite spin configuration between two edges19. For alkali metal atoms at the edge position, the net spin 
magnetic moment of the system is ~1.0 μB (the Bohr magneton, 1 μB ≈ 9.274 × 10−24 J T−1). For the edge position, 
it is interesting that electron transfer takes place from the incorporated alkali metal atom to a ZGNR edge so 
that the spin magnetic moment of the zigzag edge bonded to the alkali metal atom disappears; however, the spin 
configuration of the opposite edge retains, as shown in Fig. 4(a). For the deep position, the antiferromagnetic 

Figure 2. Atomic and electronic structures of vdW ZGNR/h-BN heterostructures  with intercalated (a,b) 
potassium and (c,d) bromine atoms at the edge and deep positions, respectively. Each colour line shown at the 
ZGNRs correspond to the same colour solid line of the PDOS. The red, green, and yellow atoms at the ZGNR 
represent the 1st, 5th, and 18th line from the left ZGNR edge, respectively.
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configuration in the ZGNR is almost kept [see Fig. 4(b)], but electrons donated from the alkali metal atom are 
redistributed to give magnetic moment of 0.2 μB.

For the edge position, on the other hand, the halogen atom forms a chemical bond to an edge of the ZGNR, 
and the spin magnetic moment results only from the opposite site of the ZGNR, which gives the spin magnetic 
moment of 1.0 μB. Compared with Fig. 1(b), Fig. 4(c) shows that the localized states at the left edge (A and B 
states in the Fig. 1(b)) disappear near EF. Very interestingly, although the ZGNR keeps an antiferromagnetic 
configuration for the deep position, an almost vertical distribution of spin-up electrons around the halogen atom 
occurs as shown in Fig. 4(d), which gives the spin magnetic moment of ~1.0 μB. For the Cu impurity atom, the 
net spin magnetic moments at both the edge and deep positions are about 1.0 μB. As shown in Fig. 4(e), for the 
edge position, the left edge of the ZGNR near the Cu atom cancels the spin magnetic moment, and the remaining 

Figure 3. Atomic and electronic structure of the ZGNRs on the h-BN sheet with intercalated (a,b) Cu, (c,d) 
Ni, and (e,f) Si atoms at the edge and deep positions, respectively. The carbon atoms of red, green, and yellow 
colours at the ZGNRs correspond to the same colour solid lines of PDOS. The red, green, and yellow atoms at 
the ZGNRs represent the 1st, 5th, and 18th line from the left ZGNR edge, respectively.
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Figure 4. Spin densities and the PDOS for (a,b) K, (c,d) Br, (e,f) Cu, (g,h) Ni, and (i,j) Si atoms at the edge 
and deep positions, respectively. The red and yellow balloons represent he spin-up and spin-down states, 
respectively. The black, red, and blue dotted lines in the PDOS represent the ZGNR, impurity, and h-BN sheet, 
respectively.
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spin configuration of the right edge gives a magnetic moment. The PDOS also reveals that a filled spin-up state 
[state A in Fig. 1(b)] moves upward, while an unfilled spin-down state [state B in Fig. 1 (b)] moves downward. 
They meet at the same energy so that the spin density at the left edge disappears. An interesting point is that the 
Cu atom at the deep position also affects the spin magnetic moment of the left ZGNR edge, as shown in Fig. 4(f), 
although the distance between the Cu atom and the left edge is about 1.0 nm. We thus find a similar trend to the 
case of the edge position that a spin-down edge state moves downward and a spin-up state moves upward in 
energy for the left edge. The Ni defect induces no net magnetic moment, as previously reported in literature30,31, 
and the ZGNR retains antiferromagnetic, as shown in Fig. 4(g,h). However, it is evidently found that strong 
hybridization between the ZGNR and h-BN sheets occurs owing to the Ni 3d electrons. On the other hand, the 
left edge states of the ZGNR almost disappear when the Si atom is bonded to the left edge of ZGNR. Consequently, 
the net spin magnetic moment becomes zero. The PDOS in Fig. 4(i) shows strongly hybridized states between the 
Si atom and ZGNR just below EF for spin-up electrons. The Si atom at the deep position induces the spin mag-
netic moment of ~1.6 μB, while the ZGNR maintain the antiferromagnetic configuration. We find the difference 
between the PDOSs of the edge and deep positions. For the deep position, the states A and B in Fig. 1(b) re-appear 
in Fig. 4(j), compared to the edge position, and the spin-up states of the Si atom around EF are hybridized with the 
h-BN states as well as the ZGNR states. We find the difference between the PDOSs of the edge and deep positions. 
For the deep position, the edge states of the ZGNR move downward, and two almost-degenerate Si states appear 
just below EF. Therefore, the net spin magnetic moment of ~1.6 μB comes mainly from the Si atom, as shown in 
Figs 3(f) and 4(j).

Conclusions
We have carried out the first-principles calculations to investigate the electronic and atomic structure of the 
ZGNRs on the h-BN sheet with intercalated atoms such as alkali, halogen, and other atoms. The localized states of 
a ZGNR edge on the insulating h-BN sheet were observed to show a rapid decay into the bulk. Intercalated atoms 
located at edge and deep positions are considered. The deep position is less stable than the edge position because 
of strong deformation of the ZGNR and h-BN sheet. We also investigate the magnetic properties of the systems. 
In particular, the spin magnetic moments come from the ZGNR edge for the alkali metal defect, whereas they 
come from the intercalated atoms for the halogen impurity. The incorporating atoms affect the ZGNR edge in the 
vdW ZGNR/h-BN heterostructure. Therefore, it is important to identify the modification of the edge states of the 
ZGNR on the h-BN sheet with intercalated atoms in comparison with the free-standing ZGNR and to remove the 
residual atoms on ZGNRs for the devices.

Methods
First-principles calculations. To understand the interaction between the ZGNR and the h-BN sheets with 
an intercalated atom, we have performed density functional theory (DFT) calculations within generalized gradi-
ent approximation (GGA) using the Vienna ab initio simulation package (VASP)32–34. The projector augmented 
wave potentials are employed to describe the potential from the centre of each atom. The energy cut-off for the 
plane-wave basis is set to 400 eV. Spin polarization is also considered in our calculations. All geometries are opti-
mized until the Hellman-Feynman forces acting on the atoms become smaller than 0.03 eV/Å. To include weak 
vdW interaction between the adsorbate and the ZGNR, we adopt Grimme’s DFT-D2 vdW corrections based on a 
semi-empirical GGA-type theory35. For the Brillouin-zone interaction, we use a Γ-centered 1 × 3 × 1 grid in the 
Monkhorst-Pack k-point scheme.

For the study of the doping effect of intercalated atoms, we choose alkali metal (Li, Na, and K) and halogen 
(Cl, Br, and I) atoms. Alkali metal atoms tend to donate an electron to  graphene, whereas halogen atoms are likely 
to accept one electron from graphene36–38. In addition, we consider Cu, Ni, and Si atoms to investigate the changes 
caused by the atoms in atomic and electronic structures of the vdW ZGNR/h-BN heterostructure since Cu, Ni, 
and SiC are often used for growing graphene. If the atoms originating from the substrate surface are not removed 
perfectly during transfer, the graphene or h-BN sheet may contain the impurity atoms on its surface. To study 
effects of residual atoms, therefore, we consider the impurities such as Cu, Ni, and Si atoms.

The supercell size is 65.33 × 10.06 × 25 Å3. The vdW ZGNR/h-BN heterostructure consists of a stacked struc-
ture of a single layered h-BN sheet and the N = 18 ZGNR. The width of the ZGNR is about 38 Å. Two types of 
positions of the impurity atom are considered. One is just below an edge of the ZGNR that is labeled the edge 
position, and the other is ~1.0 nm far inside the zigzag edge that is labeled the deep position.
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