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A nature inspired modularity 
function for unsupervised learning 
involving spatially embedded 
networks
Raj Kishore1, Ajay K. Gogineni2, Zohar Nussinov3 & Kisor K. sahu1

the quality of network clustering is often measured in terms of a commonly used metric known as 
“modularity”. Modularity compares the clusters found in a network to those present in a random graph 
(a “null model”). Unfortunately, modularity is somewhat ill suited for studying spatially embedded 
networks, since a random graph contains no basic geometrical notions. Regardless of their distance, 
the null model assigns a nonzero probability for an edge to appear between any pair of nodes. Here, 
we propose a variant of modularity that does not rely on the use of a null model. to demonstrate the 
essentials of our method, we analyze networks generated from granular ensemble. We show that our 
method performs better than the most commonly used Newman-Girvan (NG) modularity in detecting 
the best (physically transparent) partitions in those systems. our measure further properly detects 
hierarchical structures, whenever these are present.

One of the most successful strategies in understanding a complex scientific/engineering problem involves two 
essentially crucial steps: deconstruction and reconstruction. In the “deconstruction” stage, one breaks a complex, 
nearly intractable problem into many elementary parts. These basic constitutes may be then more readily stud-
ied. During reconstruction, one glues these smaller parts back together, as they appear in the original system. 
In reconstruction of the original system from its basic building blocks, one places emphasis on attempting to 
understand the response of the entire system as a whole. In the past, most deconstruction steps used to be per-
formed manually (a step often somewhat facilitated by taking advantage of inherent symmetries of the problem 
whenever these were present). With the advancement of technology, the complexity and size of routinely investi-
gated systems are constantly increasing. Consequently abstract and scientifically superior mathematical methods, 
like network partitioning are becoming increasingly popular. These methods play a more prominent role in the 
deconstruction step. Networks appear naturally and may efficiently represent numerous systems in diverse fields 
including the social sciences, biology, information technology, neurosciences and economics. The architectures of 
real physical spatially embedded networks where the nodes are defined by their positions in Euclidean space are 
highly influenced by geometric constraints. Such physical networks are fundamentally different from networks 
that are not anchored in Euclidean space1–3.

In the current work, we will examine a particular class of spatially embedded networks, which are obtained 
from granular materials. In this type of networks, both long distance edges and hubs (high degree nodes) are 
absent. Also, the total number of edges in such graphs scales linearly with the number of nodes. The absence of 
hubs renders the topologies relatively feature-less. This more monotonous structure poses a great challenge for 
general purpose partitioning algorithms. Network analysis of granular materials and their ensembles often facili-
tates a scientific description of the complex structure of interacting particles, responsible for many bulk properties 
like mechanical stability, acoustic and heat transmission4–7 and paves the path for automated data analytics tools. 
The first step in this approach is to represent a granular assembly as a network. Herein, each particle is depicted by 
a node. An edge between any two particles captures their physical contacts or interactions (e.g. force). The second 
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step is to detect “community structures” in these networks by optimizing an objective function8,9 to extract any 
underlying mesoscale architecture.

The quality of partitioning a network, also known as clustering, is reflected in its ability to make a distinction 
between densely connected nodes of “communities” or “modules” that are sparsely linked to other communities. 
The most prevalent objective function used for this optimization is the so-called “modularity” of a network. A 
maximization of the modularity function leads to putative partitions of the network into clusters. Amongst many 
different modularity functions10–13, Newman-Girvan (NG) modularity14,15 is most commonly used for real net-
works16–19. The NG modularity contrasts the number of actual connections in a given network to that of a null 
model. The null model is obtained by randomly changing the network connections without altering degree of 
respective nodes. Conceptually, the construction of the null model can be achieved in the following way: (i) all the 
edges are cut in two and consequently (ii) any two half-edges are re-connected with equal probability. For single 
layer network, the NG modularity is given as
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Here, m is total number of edges in the network, σi denotes the community that node i belongs to, the numbers ki 
and kj are the degree of ith and jth node respectively (i.e the number of edges that respectively, have node i and j as 
an endpoint), Aij is the adjacency matrix (Aij = 1, if an edge between ith and jth node exist, and Aij = 0 otherwise) 
and δ(σi, σi) is the Kronecker delta whose value will be unity if ith and jth node have the same community mem-
bership and zero otherwise.

Since the NG modularity contrasts the real connections in the given network with the randomized connection 
of the null model as stated above, it is well suited for the networks where connections between any two arbitrary 
nodes are, at least in principle, not forbidden. However in many physical systems in which the networks are 
embedded in finite three- or two- dimensional Euclidian space, the edges are distance dependent. In particular, in 
many such systems, edges between arbitrary distant sites do not appear (since there are essentially neither forces 
nor correlations between far separated particles or sites). Thus it seems somewhat inappropriate to penalize (i.e 
render the value of modularity lower) for the absence of edges between two nodes, which are not in close physical 
proximity. An edge between distant nodes is not physically possible (even though they might belong to same 
community). Therefore the null model should be restricted from making those connections for spatially embed-
ded networks. Attempts have been made to adapt the modularity for spatially embedded static and temporal 
networks, though, invariably, some of the most important works3,20–23 uses null models. This is appropriate when, 
at least some knowledge exist for the systems under investigation.

With the rapid growth of modern technology, sensors and devices collect vast raw data. This engenders “the 
big data” problem in many different arenas. Often the volume of raw unlabeled data far outpaces the increase in 
labeled data, as in e.g, medical diagnostics. In many cases, even basic information about the field of study might 
not be available (or is economically unfavorable to harness for the purpose of supervised learning). It is very likely 
that unsupervised learning is going to play an increasingly vital role in analyzing “big data”. The quintessential 
example of unlabeled data systems that we study in this article describes granular materials. To the best of our 
knowledge, no labeled data of meaningful quantity exists in the public domain for these systems. This lack of 
labeled data occurs despite the fact that granular materials lie at the core of many industries including pharma-
ceutical, mining, mineral, chemical, fertilizer and agriculture24–26. Moreover, from the principle of objectivity, 
one can expect that sufficient information for optimal/nearly-optimal partitioning of a network can be sourced 
intrinsically.

Based on these considerations, here we propose a new physically inspired function, that is extremely simple 
and incorporates provisions for geometrical constraints for spatially embedded networks and demonstrate its 
suitability for use in unsupervised learning methods using granular network as a test case. Our model enables 
the detection and characterization of structures that vary over a broad range of length scales. As such, our model 
might be useful for many real world applications in which multiple length scales are significant.

Methods
Development of granular network. Granular networks for the present study have been created using two 
different protocols. The first protocol uses a physics-based Discrete Element Method (DEM) that simulates true 
granular dynamics. In the second protocol, we synthetically generate granular ensemble where, particles are posi-
tioned in a hexagonal lattice. We then use a square stencil to remove particles and therefore produce a patterned 
disordered region.

DeM simulation to generate granular ensemble. The granular ensemble of the present study is created 
using DEM27–29 simulation of 7428 macroscopic 2D particles of uniform size (radius 0.01 m) by centripetal pack-
ing. In this approach, an externally applied centripetal force (magnitude effectively equal to gravitational force), 
is directed towards the center of the box. DEM simulation protocol adopted for this article is identical to refs30,31, 
but nevertheless described in Supplementary Information (SI)-1 for the sake of completeness. All the particles 
move towards the center of the box because of this centripetal force and form a packing. During this packing 
process, collisions between particles cause reduction in their kinetic energy. Most of the particles in final structure 
pack in six-fold coordinated hexagonal structure. A very small fraction of the particles have coordination number 
(number of physically touching neighbors) different from six (Fig. 1a). The network is constructed by placing an 
edge between any two granules if they are in physical contact. Since most of the particles in the ensemble display 
six-fold coordination, the resultant network is a composition of mostly 6-regular sub-graph regions separated by 
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irregular regions (Fig. 1b). The irregular regions consist of weakly connected nodes. These regions maybe visually 
discriminated from the strongly connected regular regions.

synthetically generated granular ensemble. In this protocol, particles are positioned in a regular hex-
agonal lattice. We then use a square stencil to remove particles and therefore produce a patterened disordered 
region. These patterns form logical boundaries for community partitions. The network formation protocol from 
these ensembles is same as discussed earlier.

Finding the communities. For finding and creating communities in the network, we employ two different 
protocols. In the first protocol, we use a Potts model based community detection scheme discussed next. In the 
second protocol, we manually set the communities.

potts model based community detection algorithm. The accuracy of a graph clustering algorithm is 
mainly controlled by the quality function it uses. It should favor more edges inside community as well as restricts 
large number of missing edges by using some penalization function. We have used spin-glass-type Potts model 
algorithm for the community detection of Rhonhovde and Nussinov9 (hereafter referred as RN model) This algo-
rithm is described in details in SI-2 and the complete c++ code of RN method can be downloaded from https://
sites.google.com/a/iitbbs.ac.in/kks-research-work/research-data). The RN method attempts to iteratively find a 
partition that corresponds to the ground state of the following energy function (or Hamiltonian H) given in Eq. (2).

H a A b J({ }) 1
2

( ) ( , )
(2)i j

ij ij ij ij i j∑σ γ δ σ σ= − −
≠

The asymmetry between connected (Aij = 1) and disconnected (Jij = 1-Aij = 1) edges may be reflected by individ-
ually setting the respective edge weights (denoted by a and b). The multiplicative factor, γ, is used as a structural 
resolution parameter. Altering the value of γ may increase or decrease the missing edge weights thus providing 
control over size and number of communities found by minimizing the Hamiltonian of Eq. (2). Typically, larger 
values of γ favor smaller communities, and vice versa.

The Potts Hamiltonian favors an intra-community link whereas it disfavors the missing edges within same 
community. The optimised state of the potts model Hamiltonian have mostly similar spin entities in same state 
and vice versa32.

Manually setting the communities. In this protocol, we manually set the community boundaries without 
any regard to its optimality. If the community boundaries coincide with those associated with naturally occurring 
identifiable structures, clearly representing an optimal solution, then one may expect a higher modularity value, 
provided the function is properly constructed. At other times, we forcefully set the community boundaries not 
to coincide with such structures. Then one may anticipate a very low modularity values for such sub-optimal 
partitions. We will clearly demonstrate that our new modularity function is more sensitive to such changes and 
outperforms the NG modularity.

Figure 1. Granular ensemble and corresponding granular network. (a) Packing of 7428 uniform sized disks 
obtained by centripetal packing through DEM simulation (see main text and SI-1). The particles are colored 
based on their coordination numbers (see the colorbar at the extreme left). The ordered and disordered regions 
can be visually discerned. A good modularity function should become maximal for the partition that matches 
these partitions obtained by visual inspection. (b) Contact network formed from ensemble (a) by following the 
recipe: an edge is drawn between two particles if they are in physical contact. The weight of all edges is fixed as 
unity to make it an un-weighted network. Six-regular graph regions and irregular regions are shown in inset 
(extreme right). [The files containing node connectivity (graph_srep.gml) and the coordinates of each node 
and their corresponding degree (Particle_pos_with_coord_no_Srep.xls) can be downloaded from https://sites.
google.com/a/iitbbs.ac.in/kks-research-work/research-data].
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New Modularity function. Before presenting our new function, we briefly discuss physical intuition that 
underlies our formulation. This intuition is deeply rooted in the study of naturally occurring magnetic materi-
als. Specifically, the modularity function that we will shortly introduce is inspired by the formation of magnetic 
domains in ferromagnetic materials. In a magnetic material, there are “domains” in which all the moments tend 
to locally align (or become “polarized”) along the same direction. Such structures are of low energy. We wish 
to draw an analogy between such magnetic domains and clusters in a graph. Each node in the graph may be 
viewed as a local magnetic moments or “spin”, (such as that associated with an individual atom). An edge in 
the graph represents a magnetic interaction between two local moments (atoms/nodes). Along these lines, each 
community in the graph can indeed be viewed as a magnetic domain. Our modularity function is modeled by 
a Potts Hamiltonian33. The construction of this Hamiltonian essentially hinges upon the choices one makes to 
model the spin-spin interactions for four different scenarios. Adding these interactions together will yield the 
full Hamiltonian describing our system. The four possible scenarios in this spin dynamic formulation are the 
following (see SI-3 for details): (i) interaction between spins of identical polarization within same community (ii) 
interaction associated with a missing edge between nodes within the same community (i.e two nodes of identical 
spin polarization), (iii) interaction for an edge between two different communities (or two different magnetic 
domains of different spin polarization) and (iv) interaction representing a missing edge between two nodes from 
two separate communities. We will use a Heaviside step function to incorporate geometrical constraint associated 
with the individual items. A complete pictorial guide for all possible scenarios can be found in SI-4. While, the 
energy of a system (the Hamiltonian) is an extensive quantity, we will make the modularity an intensive param-
eter by scaling it with the total number of edges. We do so since, if the architecture of the network is relatively 

Figure 2. The community structures obtained at different γ values (a) 10 (b) 3 × 10−1 (c) 5 × 10−2 (d) 7 × 10−3 
(e) 5 × 10−3 (f) 9 × 10−4 (g) 6 × 10−4 (h) 4 × 10−4 (i) 5 × 10−5. The edges are not shown for clarity. All the 
nodes of a community have been assigned same color to make them visually separable and the color for each 
community is randomly selected. By a visual comparison with Fig. 1a,b, one can immediately point that (h) 
shows the most optimal partition. In next figure, both NG- and new-modularity functions will be quizzed about 
the quality of these partitions.
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homogenous, we expect a comparable value of the modularity capturing the system size independent “quality” of 
the partition. Our proposed modularity function reads:

Q
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Here aij and bij are the strength (not to be confused with edge weights) of connected and missing edges between ith 
and jth nodes respectively. For setting up the strengths of edges, aij and bij, there can be many choices. We employ 
a comparison to the local degree distribution between the ith and jth node with the average degree distribution 〈k〉 
of the network, and set
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Our proposition, therefore, has two important distinctions from almost all of the traditional modularity func-
tions that we know of, including the NG modularity (Eq. (1)) as well as other modularity functions developed for 
spatial networks. First, it does not explicitly resort to a null model (although the function of Eqs (2 and 3) was 
largely inspired by such a comparison). Second and most importantly, traditional methods neglect the 
inter-community interactions (both the existing and missing edges) whereas our function accounts for them. The 
key difference is embodied by the geometrical dependence that appears in our modularity of Eq. (3). The NG 
modularity penalizes for all missing edges between two distant nodes within same community. This penalty is 
imposed even when that edge might not be physically possible because of geometrical constraint. In order to 
restrict this incorrect over penalization, we introduced, in Eq. (3), a Heaviside unit step function θ(Δxij) which 
incorporates the geometrical constraints in the form of neighborhood definition. Here x x r rij c i j∆ = − → − →  is 

Protocol 
Combinations (PC) Key findings

Protocols used for

Objectives
Ensemble 
generation Finding community Modularity

PC 1 Best partition DEM RN model. γ used. NG vs. new
Discuss the role of γ in finding the optimal 
partition. Evaluate NG vs. new modularity for 
finding the best partition.

PC 2 Best partition Synthetic (manual) RN model. γ used. NG vs. new Evaluate NG vs. new modularity for finding 
the best partition.

PC 3 Hierarchical structures Synthetic (manual) Manual (forced). γ not used. NG vs. new Evaluate NG vs. new modularity for finding 
hierarchical structures.

Table 1. Usage of different combinations of protocols and organization of their results.

Figure 3. Modularity of community structures obtained at different γ values calculated using NG and our 
new modularity function of Eq. (3). Our function gives highest value at γ = 0.0004 (Fig. 2h, the right solution) 
whereas NG modularity has highest value at γ = 0.005 (Fig. 2e), clearly not the most optimal solution). The 
secondary x-axis represents indices of the subplots in Fig. 2.
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the difference in Euclidian distance between nodes i, j and xc defines cutoff distance for neighborhood and was 
chosen to be xc = 1.05 * (Ri + Rj) where, R is the radius of particle for the present study. The function θ(Δxij) intro-
duces a penalty only for those missing links where an edge is geometrically possible.

x
x

( )
1 0 (within cut off)
0 otherwise (outside cut off) (6)

ij
ijθ ∆ =






∆ > 




Our function compares the local degree distribution at node level with the average degree distribution of the 
network (Eq. (4)). Its value will be high if the nodes of a community are highly linked with each other. Highly 
linked communities exhibit a local degree distribution that is larger than the average degree distribution over the 
entire network. We remark that employing the absolute value |b|, in Eq. (3) is not mandatory; this takes care of a 
subtlety as we explained in SI-4. A thorough discussion on the implications of Eq. (3) for all possible scenarios is 
also exhaustively discussed therein.

Results
Table 1 outlines our protocol combinations (PCs) and the associated key results. In this study, three types of 
two-dimensional (2-D) granular networks were prepared using different protocol combinations and their 
corresponding results are discussed in details. In PC-1 we performed realistic simulation of 2-D granular 
ensemble (using DEM method) that produced a natural 2-D ensemble (Fig. 1a) from which the network was 
generated (Fig. 1b). Communities in this network were found using RN method at different resolution values (γ). 

Figure 4. Comparison of best partition obtained using NG modularity vs. new modularity. (a) Synthetically 
generated granular ensemble with periodic distribution of disordered region. The particles are colored based on 
their coordination numbers (see the colorbar at the extreme left, which is essentially same as in Fig. 1a).  
(b) The NG and our new modularity of community structures obtained by RN model at different resolution 
scale. (c) The maximum modular community structure detected by NG method at γ = 0.004. It detected many 
higher-mode ordering as most optimal solution (few of them are encircled; which are clearly not the best 
solution) (d) Maximum modular community structure detected by our function. This structure is most stable in 
the range of 0.02 ≤ γ ≤ 0.04 due to its high modularity. Therefore it is clear that, even in its peak, NG modularity 
is picking mixed modes (circled regions in c), whereas the new function, in the range of 0.02 ≤ γ ≤ 0.04, is 
picking up only the pure primary mode.
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Modularity for each partition was calculated by both NG- and new- modularity functions. We first illustrate the 
role of this resolution parameter (γ) and further evaluate the performance of both NG and new modularity func-
tions for finding the best partition. In PC-2, we analyzed a synthetically generated granular ensemble (i.e., without 
using DEM) with periodic distribution of disordered regions. RN method was used at different resolutions to find 
the partitions. Both the NG- and new- modularity functions were quizzed about the best partition. The results 
were compared to “rational human expectations”. In essence, we evaluate, which among these two functions 
more closely mimic “human-like” vision processing. In PC-3, we again used a synthetically generated granular 
ensemble. In this case, prime objective is to find which method is more capable in identifying the hierarchical 
organization. Therefore, the community boundaries were sometime set to coincide with natural boundaries and 
sometime not. This was done at different levels of hierarchical organizations, i.e., community size was varied from 
low to high (fine to coarse size).

Results for PC 1. The contact network (Fig. 1b) is created from the granular ensemble (Fig. 1a) as discussed 
in the ‘DEM simulation to generate granular ensemble’ section of “Method”. The network is then partitioned at 
different γ values using RN model (Eq. (2)). We have depicted the communities obtained at different γ values 
(i.e at varying structural resolution), keeping the node position to be the same as particle coordinates (Fig. 2) 
to establish a visual correlation between the RN model output and the coordination number plot (Fig. 1a). As 
the γ reduces in size from 10 to 5 × 10−5 (γ is a dimensionless parameter), the average community size increases 
gradually. This is reflected in Fig. 2a–i. The γ parameter set the resolution scale. Minimizing Eq. (2) over range of 
γ values, systematically uncovers organized structures in the network at different length scale. It is vividly seen 
that Fig. 2h has highest visual correlation with the coordination number plot where the regular/ordered region 

Figure 5. Manually partitioned network (a–j) and corresponding modularity obtained by NG and our new 
modularity function (as shown in (k)). Our function shows peaks for partition b, d, f and h and troughs for a, c, 
e and g; clearly indicating the presence of hierarchical community structures in the given network. Community 
separation for best (b) and worst (e) modular structures show that the corresponding partitions can be 
associated most and least with naturally identifiable structures respectively (b* and e* shows a magnified view 
of portions of b and e respectively, for clarity). The nature of these two functions is very different (clear from k) 
and demonstrates that, these two functions do not different by a simple constant.

https://doi.org/10.1038/s41598-019-39180-8


8Scientific RepoRts |          (2019) 9:2631  | https://doi.org/10.1038/s41598-019-39180-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

are clearly separated from irregular/disordered nodes. Due to this clear demarcation, Fig. 2h is expected to have 
highest modularity among all the possible partitions. This aspect is investigated in Fig. 3.

It is important to note that the raw values of these two modularity functions (NG vs. our new modified modu-
larity) should not be compared because any one of them can be shifted by an innocuous additive constant. It is the 
peak location that matters the most. It is evident from Fig. 3 that if community structure is separated at disordered 
regions then our method finds the most optimal partition (at γ = 0.0004, corresponding to Fig. 2h), whereas NG 
method failed to do so (the NG modularity suggested that the best partition occurs at γ = 0.005; corresponding 
to Fig. 2e).

Results for PC 2. We next analyzed a synthetically generated granular ensemble with periodic distribution 
of disordered regions (Fig. 4a; the inset highlighting the network at small scales). This approach creates clearly 
visible structures, with an in-built hierarchy. The communities were found via the RN model. As seen in Fig. 4b, 
the NG and our new modified modularity feature similar behavior for high γ values (small average community 
size). However, for large communities (at lower γ) they behave differently (Fig. 4b).

The best community structure obtained by NG and new modularity is depicted in Fig. 4c,d respectively. The 
new modularity shows very high visual correlation with natural structure and correctly picks the prime modes 
only (γ in the range of 0.02–0.04 in Fig. 4b, corresponding partition depicted in Fig. 4d), whereas the NG modu-
larity is picking mixed modes (at γ = 0.004 Fig. 4b, partition shown in Fig. 4c).

Results for PC 3. Many real world networks contain hierarchical organization where strong groups of verti-
ces have further sub-groups. Granular ensemble in Fig. 5a displays various sub-networks at different length scales. 
We have manually partitioned this network in roughly equal community sizes, which is so varied as to cover the 
entire length scale ranging from the primary mode length to system length (Fig. 5a to j, b* and e* shows a magni-
fied view of best (b) and worst (e) modular structures). The peaks in our new modularity curve (Fig. 5k) confirm 
the presence of hierarchical structures in the given network. This illustrates that modular structures at different 
scales, can be identified by peaks in our modified modularity function. These correspond to the partitions where 
the community boundaries coincide with disordered regions and therefore help in identifying the higher modes 
clearly. The most modular structure (Fig. 5b) has all its communities separated through disordered regions (pri-
mary mode) whereas the lowest modular (Fig. 5e) has none of its communities separated through the disordered 
regions. Interestingly, the partition corresponding to Fig. 5f, exhibits a lower NG modularity than both Fig. 5e,g; 
by contrast, our new modified modularity function shows the opposite but correct trend. It is therefore clear that 
the NG- and our new- modified modularity functions are characteristically very different (not just by a constant). 
Our new modularity function is highly sensitive towards coincidence of the disordered regions with the com-
munity boundaries as reflected in the large variation in its modularity values (shaded region in modularity curve 
(Fig. 5k)) whereas NG modularity shows little variation in the range of prime importance. Therefore we establish 
that, our new modularity function, which is simple in structure and nature inspired, is very capable in finding 
the best partition, at least for the restricted classes of spherical granular media that are discussed in this article. 
Further studies are necessary to evaluate its performance in more generic spatial networks. Its high sensitivity to 
natural structural features can be exploited to discover inherent hierarchical structures, if present. If this method 
is proven to be useful in those generic spatial networks, then its simplicity and self-containment will make it a 
good choice for first-level unsupervised learning techniques targeted at spatially embedded networks.

Conclusions
Here we have proposed a new modularity function that estimates the quality of partition of spatially embed-
ded networks without employing a null model. Our new modularity function is inspired by the Hamiltonian 
of a spin-glass system. Notably, it incorporates geometric constraints through the use of a Heaviside function. 
Though arbitrary interactions may be incorporated, we employed couplings inspired from the null model (with-
out explicitly using a null model). Our method accounts for the presence and absence (wherever applicable) of 
inter-community edges, which is neglected in nearly all kinds of formulations for modularity. The new modular-
ity function is able to determine the “best” resolution scale at which the community structure has highest associa-
bility with the naturally identifiable structures. Our modularity function lucidly detected hierarchical structure 
present in the synthetically generated network with clearly its associated peaks and troughs as a function of the 
scale parameter; this was not the case for NG modularity. Taken together, our results suggest that the modified 
modularity function is more appropriate than the currently existing methods for unsupervised learning and 
analysis of spatially embedded networks.
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