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Prediction of response to anti-
cancer drugs becomes robust via 
network integration of molecular 
data
Marcela Franco1, Ashwini Jeggari2, Sylvain Peuget1, Franziska Böttger1,3, Galina Selivanova1 
& Andrey Alexeyenko   1,4

Despite the widening range of high-throughput platforms and exponential growth of generated data 
volume, the validation of biomarkers discovered from large-scale data remains a challenging field. In 
order to tackle cancer heterogeneity and comply with the data dimensionality, a number of network 
and pathway approaches were invented but rarely systematically applied to this task. We propose 
a new method, called NEAmarker, for finding sensitive and robust biomarkers at the pathway level. 
scores from network enrichment analysis transform the original space of altered genes into a lower-
dimensional space of pathways. These dimensions are then correlated with phenotype variables. The 
method was first tested using in vitro data from three anti-cancer drug screens and then on clinical 
data of The Cancer Genome Atlas. It proved superior to the single-gene and alternative enrichment 
analyses in terms of (1) universal applicability to different data types with a possibility of cross-platform 
integration, (2) consistency of the discovered correlates between independent drug screens, and (3) 
ability to explain differential survival of treated patients. Our new screen of anti-cancer compounds 
validated the performance of multivariate models of drug sensitivity. The previously proposed methods 
of enrichment analysis could achieve comparable levels of performance in certain tests. However, only 
our method could discover predictors of both in vitro response and patient survival given administration 
of the same drug.

The problem known as the “dimensionality curse”1,2 - when a set of few (tens to hundreds) biomedical samples 
are described with a much larger number of molecular variables - undermines robustness of phenotype predic-
tors. This was aggravated further when novel omics platforms expanded the variable space from thousands to 
nearly millions of potentially informative molecular features. In addition, profiling of cancer samples revealed 
that genomic alterations across tumors of the same type appear disparate and poorly overlapping2. As a result, 
variability between cancer samples is often higher than is assumed by the common parametric statistics3. Beyond 
a few success cases4,5 molecular cancer signatures have been hard to corroborate in a novel, independent cohort. 
Across a number of meta-analyses, conclusions about practical applicability of the signatures range from entirely 
negative6,7 to mixed or moderately positive8. The common understanding is that seemingly disparate individual 
events must be confluent to certain pathways that represent cancer hallmarks and pathways9.

Modeling drug response in vitro was questioned by finding that molecular landscapes of cancer cell lines are 
be very different from those of original tumors10. A later, more comprehensive exploratory analysis demonstrated 
overall consistence of molecular aberrations between cell lines and primary tumors from matching cancer sites9 – 
although these authors did not investigate the therapeutic relevance of discovered in vitro correlates. Haibe-Kains 
and co-authors published a discouraging comparison11 between two large in vitro screens12,13. After that conclu-
sion and the following polemics14 and failures to replicate particular findings15, the urgent need in cross-platform 

1Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden. 
2Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden. 3Present address: 
OncoProteomics Laboratory, Department of Medical Oncology, VU University Medical Center, 1081HV, Amsterdam, 
The Netherlands. 4National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Box 1031, 17121, 
Solna, Sweden. Correspondence and requests for materials should be addressed to A.A. (email: andrej.alekseenko@
scilifelab.se)

Received: 24 September 2018

Accepted: 11 January 2019

Published: xx xx xxxx

OPEN

https://doi.org/10.1038/s41598-019-39019-2
http://orcid.org/0000-0001-8812-6481
mailto:andrej.alekseenko@scilifelab.se
mailto:andrej.alekseenko@scilifelab.se


www.nature.com/scientificreports/

2Scientific Reports |          (2019) 9:2379  | https://doi.org/10.1038/s41598-019-39019-2

and clinical validation became even more apparent. It is dictated by both statistical and biological challenges, such 
as excessive data dimensionality, imperfect analytical tools, the heterogeneity of cancer genomes, and the down-
stream diversity of methylation and expression patterns16. Authors of one of the most up-to-date investigations 
still admitted that the ability of cancer cell drug screens “to inform development of new patient-matched thera-
pies… remains to be proven”17. On the clinical side, oncologists expected reports on patient-specific alterations 
in the light of knowledge available from computerized support systems18. In our view, these challenges could be 
most systematically addressed by summarizing sparse, disparate events at the pathway level via the global inter-
action network.

Figure 1.  Rendering biological samples into pathway space with alternative enrichment methods. The 
placement of three cancer cell lines HuH-7, NCI-H684, and RT-112 in a 2-dimensional space of pathways 
‘PPAR signaling’ and ‘WNT signaling’ (KEGG#03320 and KEGG#04310) (A–D) or, alternatively, in a space 
of two key genes from these pathways (E) was done by using cell line-specific altered gene sets, AGS, which 
originated from transcriptomics data and contained 226, 143, and 48 member genes, respectively (AGS of 
class significant.affymetrix_ccle). (A) ORA: enrichment of the three AGSs was analyzed against 
the two pathways (or, more generally, functional gene sets, FGS) using the overrepresentation analysis. The 
pathway enrichment scores were calculated from overlap between the gene sets. For clarity we here denote the 
pathway size NPW which corresponds to NFGS elsewhere in the article. Due to the relatively small gene sets sizes 
(NPW and NAGS), a noticeable (N∩ > 1) and significant overlap was observed in just one out of six cases, which 
could limit the ORA sensitivity. (B) GSEA was calculated using the full ranked gene lists from each cell line 
sample25. (C) SPIA accounted for topological relationships of altered genes within the pathways. More weight 
was assigned to patterns of consistent up/down-regulation, i.e. where deregulated genes adjoined in regulatory 
cascades. Relatively disjoint regulatory events contributed with lower weights. The gene set submitted to SPIA 
can be of arbitrary size, up to full length, as in GSEA. The fold change values determine relative influence of the 
pathway genes. (D) NEA: the coordinates of the three AGSs in the space of two pathways were determined via 
network enrichment analysis. The NEA z-scores (on the axes and in yellow boxes) were calculated via network 
connectivity rates between corresponding AGS and FGS by taking into account the numbers of AGS-FGS links 
(Nedges in yellow boxes) and the node topology of the member genes (Fig. 1 and Methods). The summarized 
connections between AGSs and FGSs are shown by blue compound edges that represent multiple individual 
gene-gene edges in the global network (Nedges ~ line width). Individual edges within AGSs and within FGSs are 
not used in the analysis. (E) GNEA: since the power of NEA to detect network enrichment was high, it was 
possible to apply NEA to the cell line AGSs versus individual gene network nodes WNT2B and APOC3 in the 
same way as it was done versus pathways in D. Even though the Nedges values were expectedly smaller than in B, 
four out of six Z-scores appeared rather high. (F) Analysis workflow: alternative enrichment analyses received 
as input CCLE (cell lines in vitro) and TCGA (clinical) omics datasets and created AGSxFGS matrices for the 
cancer cell lines and primary tumor samples. The in vitro screens and clinical follow-up observations provided 
information on anti-cancer drug sensitivity, which together with the AGSxFGS matrices was used for evaluation 
of drugXfeature correlations. The strength, consistence, and robustness of these correlations was used for the 
comparative assessment of the enrichment methods as presented in Table 2.
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Adding omics data to clinical variables has demonstrated the potential for prediction of cancer disease out-
come in a DREAM challenge19. One particularly winning strategy was to employ multigenic expression pat-
terns. Such ‘meta-genes’20 were, despite the seemingly ‘network-free’ definition, nothing other than modules 
in a co-expression network, which allowed dimensionality reduction and a biological generalization. Another 
DREAM project revealed efficiency of summarizing gene expression in cancer cell lines over pathways21.

Further, identifying patient sub-categories responsive to a treatment is more challenging than one-dimensional 
drug sensitivity or survival analyses. A practical method should profile individuals across the cohort, so that the 
profiles can be fit to clinical variables and covariates. Therefore, a crucial feature for biomarker discovery would 
be the ability to assign scores to individual samples rather than to derive feature-pathway associations from the 
whole data collection. In addition, further sample classification in a flow of new patients should not require 
re-running the analysis on the whole cohort, i.e. recalculating the data space, as is often the case.

In this work, we use acronym NEA to refer to a specific approach for network enrichment analysis, which 
ascends to the idea of accounting for the node degrees of individual genes22. Using that approach of significance 
estimation via comparing network connectivity to a null model, NEA23,24 can characterize experimental and 
clinical samples with pathway scores by accounting for sample-specific gene set relationships in the global gene 
interaction network. The pathway-level output could be used in downstream analyses against arbitrary phenotype 
models. The ability to summarize rare alterations that cause the recurrent cancer phenotypes into pathway pro-
files provides higher statistical power, more information on the underlying biology, and robustness in phenotype 

Figure 2.  Network enrichment analysis of four cell line AGSs with differential response to methotrexate.While 
using AGSs of class significant.affymetrix_ccle, the response of cancer cell lines to methotrexate in CGP screen 
correlated with NEA scores (pane F) in regard to FGS “One carbon pool by folate” (pane C). The methotrexate-
resistant cell lines MPP89 and ECGI10 (panes A and B) received higher NEA scores since the numbers of edges 

−nAGS FGS connecting them to the FGS significantly exceeded those expected by chance, −n̂AGS FGS (52 vs 26.02 
and 19 vs. 4.89, respectively; pane F). For comparison, the sensitive lines RS411 and A2780 (panes D and E) had 
fewer edges than expected (15 vs 19.93 and 10 vs. 12.54, respectively) and therefore received lower, negative 
scores. The table in F and the sub-networks in A, B, D, and E were created via the web-site for interactive NEA 
https://www.evinet.org/76.
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prediction. However, neither NEA nor alternative methods of pathway enrichment had been systematically 
applied to the task presented above: the discovery of biomarkers suitable for individual outcome prediction.

In the first section of Results, we provide a detailed explanation of method NEAmarker and an instructive 
example of its work, both in comparison with alternative methods. A representative set of such methods was 
selected by investigating a wide range of earlier proposed algorithms and approaches. In Methods (section 
“Alternative Methods of Pathway and/or Enrichment Analysis”), we discuss their principles, consider both appli-
cability to biomarker discovery and software usability, and motivate our choice of methods presented in Fig. 1 
and Table 1. Thereby performance of our method NEAmarker is measured in parallel with using original gene 
profiles and alternative enrichment methods: overrepresentation analysis (ORA), gene set enrichment analysis 
ssGSEA25,26, signaling pathway impact analysis (SPIA27) and EGSEA28 that integrates multiple enrichment anal-
ysis methods. The outline (Fig. 1F) and details of the comparative evaluation are reported in Results. More spe-
cifically, we run the alternative methods in order to: (1) assess content of relevant information in three published 
experimental in vitro drug screens12,13,29 (dubbed CCLE, CGP, and CTD, respectively) as well as in eight TCGA 
clinical cancer cohorts, (2) investigate preservation of this content across drug screens, (3) perform a novel, 
small scale drug screen and demonstrate that the pathway-level multivariate models withstand the independent 
validation, and finally 4) validate the identified correlations in clinical treatment profiles from TCGA30 (Table 2).

Results
Background.  The main principle of NEA (Fig. 1D) can be understood via comparison to the simplest method 
for detecting enrichment called overrepresentation analysis (ORA)31 (Fig. 1A). First, An experimental or clinical 
sample should be characterized by a set of altered genes (AGS), such as top ranking differentially expressed genes, 
or a set of somatic mutations, or a combination of these. The second component of the analysis is a collection of 
functional gene sets (FGS): pathways, ontology terms, or custom sets of biological importance. Enrichment scores 
of the AGSs can thus be used as the samples’ coordinates in a lower-dimensional FGS space. In both ORA and 
NEA significance can be evaluated with appropriate statistical tests. In ORA, enrichment is measured by the num-
ber of genes shared between the FGS and AGS, normalized by the gene set sizes. Since NEA considers a third, net-
work component - via counting network edges that connect any genes of AGS with any genes of FGS - it includes 
normalization by topological properties of the network nodes. Due to the presence of different interaction mech-
anisms in the global network, NEA does not expect FGS genes to be altered themselves and therefore is capable 
of detecting enrichment of e.g. transcriptomics-based AGS in a pathway that operates by other mechanisms, such 
as trans-membrane signaling, phosphorylation etc. NEA holds other key advantages, such as exceptionally high 
power to detect enrichment in a global network, given the latter is sufficiently dense. Hence, even smaller gene 
sets often connect to each other by multiple edges so that even an individual key network node can even appear as 
an ultimately reduced FGS. This gene-level network analysis, GNEA (Fig. 1E) provides a more focused alternative 
to the default analysis at the pathway level, PWNEA (Fig. 1D) and we therefore separately evaluated performance 
of PWNEA and GNEA in the present work.

Method
Type of input 
data

Allows data type 
integration

Level of input 
(samples)

Network 
analysis

Level of output 
(features)

original data Any No All genes − —

ORA Any Yes Altered gene sets − Functional gene sets

ssGSEA Expression No All genes − Functional gene sets

ZGSEA Expression No All genes − Functional gene sets

SPIA Expression No All genes + Functional gene sets

EGSEA.min Expression No All genes − Functional gene sets

EGSEA.mean Expression No All genes − Functional gene sets

PWNEA Any Yes Altered gene sets + Functional gene sets

GNEA Any Yes Altered gene sets + Network gene nodes

Table 1.  Characteristic features of alternative input data types.

Step What was evaluated Measure Scheme Figure

1
Statistical power to detect 
correlation between omics-based 
features and sensitivity to anti-
cancer drugs

Fraction of significant 
correlates per feature class

(a) Within 3 published in vitro 
screens;
(b)within 8 TCGA clinical datasets

3

2 Validation across drug screens Consistency of univariate 
correlates Between 3 published in vitro screens 4

3 Sustainability of multivariate 
models between drug screens

Robustness under 
independent validation

From CTD in vitro screen to the 
novel ACT screen 5

4 Agreement between in vitro 
screens and clinical data

Applicability of same 
correlates in the both contexts

From 3 published in vitro screens to 
TCGA clinical datasets 6

Table 2.  Steps of analysis using alternative methods from Table 1.
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Testing the multiple alternative methods implied different input, processing and output (Fig. 1, Table 1). 
Accordingly, our data analysis procedure included the method-specific steps for sample/patient characteriza-
tion, enrichment analysis, and phenotype modeling. In order to maximally adapt GSEA to our applications, we 
tested two different ways of ranking gene lists, ssGSEA and ZGSEA (Methods) as well as two options of EGSEA, 
a method that combined multiple existing algorithms. In sections 3…5 of Results, we report the outcome of sys-
tematic analyses of the experimental datasets under these alternatives (Fig. 1F and Table 2).

We begin by introducing an example of data analysis and interpretation (Fig. 2). Using gene expression data, 
we observed a negative correlation between the PWNEA scores for pathway KEGG#00670 “One carbon pool 
by folate” for cancer cell line AGS features significant.affymetrix_ccle, on the one hand, and sensitivity to meth-
otrexate on the other hand (Spearman rank R = −0.248; p(H0) = 2.37e−06). For the example, we focus on cell 

Figure 3.  Comparison of the potential performance of different features, methods, and data types. The top 
seven boxplot rows (labeled “.kegg”) present results obtained using the limited set of 197 KEGG pathways 
using gene expression data (label “GE”). Next, since ORA, PWNEA, and GNEA could accept any data type, the 
other boxplots present tests on the full set of 328 FGS (the respective PWNEA and ORA values for GE might 
differ, since the KGML gene sets were different from the core KEGG version). Each boxplot element combines 
correlation values of all features available for a given data type (point mutations, PM; copy number alterations, 
CN; and gene expression, GE) processed with each method. This was either done for the in vitro drugs response 
in the three screens (left pane; in total 365 tests of 320 distinct drugs) or for the survival of patients who had 
been administered the drugs (right pane; 42 drugs present both in a screen and in at least one of the eight TCGA 
cohorts). As an example, we calculated Spearman rank correlations between sensitivity of cell lines to drug 
RITA and transcriptomics features of these cell lines: either original Affymetrix (CCLE) gene expression profiles 
(18900 genes) or enrichment profiles of cell line specific AGSs of class top.400.affymetrix_ccle produced by 
GSEA (328 FGS features), pathway-level NEA (PWNEA; the same 328 features), and gene-level NEA (GNEA, 
in which 19027 nodes in the global network were treated as single-gene FGSs). The p-values of Spearman 
correlations between the features and drug sensitivity were then adjusted for multiple testing. The fractions 
of adjusted p-values below 0.1 became X-coordinates for the plot. The four examples (indicated by the blue 
triangle markers) gave fractions 1837/18900 = 0.097; 23/328 = 0.070; 78/328 = 0.236; and 2090/19027 = 0.110. 
The most detailed data can be found in Supplementary_table 5.FDR_rates_behind_Fig. 3.xlsx. The p-value next 
to boxplots are shown for categories producing significantly (p < 0.001 by Kolmogorov-Smirnov test) more 
fractions with FDR < 0.1 than the respective baseline category (labeled “BL”). The boxplot elements are defined 
in Methods.
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Figure 4.  Consistency of drug-feature associations between drug screens. For each drug shared by any two 
in vitro drug screens (47 drugs in total), we calculated a rank correlation between drug-feature correlation 
coefficients in the two screens. (A) Agreement of drug-feature rank correlation coefficients between CGP and 
CTD screens of sensitivity to navitoclax using Affymetrix data as original gene expression values Affymetrix_
CCLE (left pane) and AGS features of class significant.affymetrix_ccle profiled with ORA, PWNEA, and 
GNEA (other panes). The agreement in this case was worst while using ORA profiles (rank R = 0.32), whereas 
GNEA profiles performed best (rank R = 0.81). The red lines indicate FDR levels of 0.1 (false discovery rate by 
Benjamini-Hochberg method). The grey diagonal line is the linear regression fit. (B) Fractions of cases with 
rank correlation value above each of the five specified thresholds on example AGS classes. The features are 
grouped by type of profiling and by data type identically to Fig. 3. Four example values from A are mapped to 
the gene expression plot in B. In order to characterize sensitivity to each of the 47 drugs we used here, in parallel 
with the original gene profiles, AGS features of one class of each type: significant.filtered.exome.mini (PM), 
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lines which combined lowest sensitivity to methotrexate with highest PWNEA scores for KEGG#00670 (dubbed 
here Drug−/PW+) versus those possessing highest sensitivity and lowest PWNEA scores (Drug+/PW−) (ten 
cell lines in each set). Figure 2(A,B,D,E) displays the network connectivity of the FGS KEGG#00670 “One carbon 
pool by folate” with AGSs for two cell lines (MPP89, ECGI10) of group Drug−/PW+ and two cell lines (RS411, 
A2780) of group Drug+/PW−. The high score for MPP89 (Fig. 2A) was likely influenced by the network node of 
formimidoyltransferase cyclodeaminase FTCD, which provided 14 out of the 19 edges. FTCD was a member of 
four out of the ten AGS of the group Drug−/PW+. Methotrexate is a cytostatic drug that inhibits dihydrofolate 
reductase, thereby blocking synthesis of tetrahydrofolate, the downstream production of folic acid, and finally 
that of thymidine. Therefore an overexpressed FTCD, as an enzyme controlling the interconversion between 
formimidoyltetrahydrofolate and tetrahydrofolate32, might rescue the thymidine production by supplying extra 
tetrahydrofolate33.

For comparison, AGS of the other resistant cell line ECGI10 did not share any genes with the target pathway 
(Fig. 2B), although still received a higher NEA score. In this case, the drug resistance could potentially have been 
mediated by the DNA repair protein XRCC5 or by the adenosylhomocysteine hydrolase AHCY, which were 
earlier reported to be implicated in methotrexate resistance34 and folate metabolism35, respectively. Both these 
genes were strongly downregulated in ECGI10. Since AGS may include genes altered in either direction, higher 
NEA scores cannot be traditionally interpreted as ‘pathway activation’ but rather indicate ‘pathway perturbation’ 
in general. the pathway “One carbon pool by folate” was therefore unperturbed in the low-scoring cell lines A2780 
and RS411, i.e. their AGS genes were not specifically connected to the pathway. For comparison, the alternative 
tested enrichment methods did not detect the association between “One carbon pool by folate” and methotrexate 
– in particular because no pathway genes correlated significantly with drug sensitivity at the gene expression, gene 
copy number, and point mutation levels.

Construction of sample-specific AGS.  In order to analyze data from the in vitro cancer cell screens and 
the primary tumor samples in the same manner, we constructed AGSs by following the same platform-specific 
approaches. Intuitively, having an AGS that is too big or too small could deteriorate specificity or sensitivity 
of NEA. Therefore, in order to prove that differences are not due to selecting AGS genes in a specific way, we 
tested and compared a number of options for AGS compilation. Mutation-based AGSs were created by first list-
ing all point-mutated genes in each given sample (which might include hundreds and even thousands of pas-
senger mutations) and then retaining only those with significant network enrichment against the rest of the 
set. This approach36 had been proposed for distinguishing between driver and passenger mutations, so that the 
filtering should enrich AGSs in cancer driver genes. Next, AGSs from gene copy number and expression data 
included genes most deviating from the cohort means. This was achieved by using one of the three alternative 
algorithms (see Methods). Again, even such deviant gene sets could still be too large, e.g. due to listing copy 
number-alterations over extended chromosomal regions. In order to compact these, alternative AGS versions 
were derived by retaining only genes with significant network enrichment for signaling and cancer pathways or 
for the mutation-based AGS of the same sample, which reduced the AGS lists 3–10 fold. Finally and as an extra 
option, we tested combined AGSs, produced by concatenation of the platform-specific AGSs.

Statistical power to detect correlates of drug sensitivity.  The goal of this first, exploratory analysis 
was to compare the different methods and feature classes in their ability to explain the differential drug sensi-
tivity. To this end, we counted how many features were significantly associated with a phenotype after adjusting 
for multiple testing. For example (Suppl. Fig. 1), we analyzed associations between point mutation profiles of 
cancer cell lines37 and cell lines’ sensitivity to each of the 203 anti-cancer drugs from Basu et al.29. The fraction of 
low p-values (e.g. p(H0) < 0.001) in the total number of statistical tests did not exceed the level expected under 
“true null”, i.e. in absence of any associations. Therefore, no genes received q-values (adjusted p-values)38 below 
0.05. On the contrary, the correlation analysis of gene expression12 against the same drug sensitivity profiles 
discovered nearly 15,000 patterns of association between gene expression and drug sensitivity (out of in total 
18,900 × 203 = 3,836,700 tests) with p(H0) < 0.001. After the adjustment, more than 2500 of these gene-drug pairs 
remained significant at q < 0.001. These two examples demonstrate how dramatically the information content 
could vary depending on the feature type and data origin.

Applying this approach to the in vitro drug screen data, we evaluated all features of different types and classes. 
Respectively in TCGA data - again using all available features - we measured correlations of features with survival 
of patients who received one of the 42 frequently used drugs in any of the eight cohorts. We systematically and 
uniformly compared different feature types, i.e. original data from high-throughput platforms and NEA scores 
as well as classes within the types (e.g. transcriptomics data from Affymetrix vs. Agilent vs. RNA sequencing). 
Each case was tested on both relapse-free and overall survival and three follow-up intervals. We also analyzed the 
relative performance of different AGS classes (Suppl. Fig. 3).

significant.filtered.snp6.mini (CN), and significant.affymetrix_ccle (GE), and significant.filtered.combined.
maxi (‘combined’). The advantage of GNEA (with the exception of “Point mutations” and “Gene copy number”) 
and PWNEA became apparent at the highest cutoffs R > 0.60 and R > 0.75. The lower pane presents testing the 
seven methods applicable to expression data only. This was done by using the same features for PWNEA and 
ORA as above and whole Affymetrix-CCLE matrices for the other methods. (C) Similarly to B, fractions of 
correlation values above each of the five specified thresholds were calculated for all feature classes and combined 
for all data types. For certain AGS feature classes, PWNEA and GNEA produced correlates highly conserved 
across screens (R > 0.6) in as many as 5–10% of cases.
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Overall, the NEA scores at both pathway level (PWNEA) and individual gene node level (GNEA) contained 
either approximately the same or larger amounts of information on drug sensitivity compared to the original gene 
profiles (Fig. 3; see full detailed results in Supplementary_table 5.FDR_rates_behind_Fig. 3.xlsx). In the drug 
screen data analysis, the ORA, PWNEA, and GNEA features performed apparently better than the respective 
original point mutation, gene copy number, and gene expression data. In the TCGA data analysis, the advantage 
of PWNEA and GNEA over both ORA and original gene profiles for particular drugs was even more pronounced, 
although not always overall significant. In the expression-based enrichment analyses limited to KEGG pathways 
(label “.kegg”), all the six tested methods significantly outperformed ORA, which served the baseline. In gen-
eral, transcriptomics datasets more frequently manifested correlations with drug sensitivity than gene mutations 
(Suppl. Fig. 3). We also assessed relative performance of the different AGS classes. From each dataset with contin-
uous values we created AGSs of fixed size (top.200 and top.400) as well as sets of variable size where genes 
were included based on significance as referred to the cohort mean (significant) and, in addition to the latter, 
tested for network enrichment toward cancer gene sets (significant.filtered.mini) or any signaling 
pathways (significant.filtered.maxi). As illustrated in Suppl. Fig. 3, the different classes yielded variable 
results. We evaluated consistency and significance of these differences using the Kolmogorov-Smirnov test on 
the gene copy number and expression datasets for cell lines and TCGA samples (Suppl. Table 1). This evaluation, 
however, did not lead to an unequivocal conclusion. In the cell line datasets, the fixed size AGSs performed sig-
nificantly better, while in the TCGA datasets the situation was rather opposite.

While the original features manifested considerable correlations in a number of classes, fractions of significant 
correlations were largely inferior when compared to NEA classes. Preliminarily, the different methods could be 
ranked by potential sensitivity in the following order: original gene profiles < [either ORA or EGSEA] < [either 
ssGSEA or SPIA] < [either PWNEA or GNEA]. However, we did not draw ultimate conclusions from the ranking. 
This exploratory analysis only informed us on the Type II error rates (i.e. statistical power to detect correlation). 
It suggested that multiple alternative methods and data types could appear – by following the state-of-the-art 

Figure 5.  Predicted versus observed drug sensitivity across cancer cell lines in discovery versus validation 
screens. The predictive models for three compounds tested in the published CTD screen were validated in our 
ACT screen. Elastic net models were built under multiple cross-validation inside the training set (columns 1 
and 3, blue) and then tested on non-overlapping sets of cell lines of the ACT screen (columns 2 and 4, green). 
Input variables were either original gene point mutation and expression profiles (columns 1 and 2, crosses) or 
PWNEA scores derived from these datasets for each cell line (columns 3 and 4, circles). Legends in each plot 
(‘Rank r=’) display the values of Spearman rank correlation between observed and predicted values and the 
number of non-zero terms in the model (‘N=’). Parameter alpha for the shown plots was set to 0.9. Since the 
drug sensitivity values from CTD screen were inverted compared to the other screens, the correlations are 
presented as negative values (note the inverted vertical scales for “observed in Basu et al.”). Detailed plots for 
models built under different alpha parameters are found in Supplementary Files glmnetModels.Basu_vs_new.
raw.pdf and glmnetModels.Basu_vs_new.pwnea.pdf.
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approaches – potentially predictive of drug sensitivity. In order to evaluate robustness of these predictions we pro-
ceeded to the validation step as described below. We emphasize that only the AGS-based methods ORA, PWNEA, 
and GNEA enabled using discrete (gene point mutation and copy number) data and allowed integration over 
different platform types – while the other alternatives could be applied only to expression platforms.

Consistency of the discovered correlates between drug screens.  In order to test reproducibility of 
the drug-feature associations in alternative experimental settings, we used data from three in vitro drug screens: 
CCLE12, CGP13, and CTD29. Similarly to an earlier presented comparison between CCLE and CGP screens11, we 
found that the association values between drug sensitivity and original features only weakly agreed between the 
drug screens.

Albeit weak, these correlates were still significantly concordant across screens. Figure 4A gives examples 
of between-screen rank correlations while using original gene expression profiles as well as ORA, PWNEA, 
and GNEA features. When comparing results from CGP13 and CTD29 screens, the correlation values between 
Affymetrix expression data and sensitivity to navitoclax ranged from R = 0.31 (original gene profiles) to R = 0.81 
(GNEA). More comprehensive analyses demonstrated (Fig. 4B,C) that applying PWNEA and GNEA consider-
ably strengthened the concordance compared to the original gene profiles and ORA. the summarized ranking 
appeared as: [original gene profiles and ORA] < PWNEA < GNEA. In the tests using KEGG pathways with gene 
expression data, SPIA, ssGSEA, and EGSEA were somewhat inferior to PWNEA.

Next, we validated drug sensitivity profiles of three anti-cancer compounds, tested previously in the CTD 
screen - RITA, PRIMA-1MET/Apr-246, and JQ1 - in a new in vitro screen, named ACT (after “Advanced Cancer 
Therapies” centre at Karolinska Institutet). Activity of these compounds was re-tested in a panel of 20 cancer cell 
lines (the ACT set) for which gene expression and point mutation profiles data were available from the CCLE. 
Similarly to the results in Fig. 3, many of the both original gene profiles and NEA features showed significant cor-
relation with drug sensitivity, which indicated a potential for creating multivariate prediction models.

As shown above, the original gene profiles were poorly preserved across drug screens. Therefore, we com-
pared the CTD results with those from ACT screen in a more relevant multivariate approach using the “elastic 
net” method39. Starting from all available features, each model was finally reduced to a much smaller subset. 
Multivariate models are notoriously prone to over-fitting when the number of variables exceeds the number of 
samples. For this reason, validation on independent sets has become an essential requirement in such studies40. 
The CTD-based models were thus created using cell lines not found in the ACT screen. The comparison was also 
streamlined by using only the data from CCLE Affymetrix and point mutation datasets versus two respective 

Figure 6.  Clinical performance of NEA features discovered in drug screens. Each TCGA cohort was split into 
four categories by two factors: administration of the specific drug (as “treated/untreated”) and a threshold for 
predictive feature (pathway or individual gene score, indicated in the plot header). While the primary feature 
evaluation, we calculated the factor interaction p-values without binarizing the cohort by the NEA score, i.e. in 
the continuous score space. Then for the visualization the binary classifications by the both factors were applied 
(“optimal threshold” value for the quantitative NEA feature). Therefore both continuous and binary p-values are 
indicated the legends. The plots present differential survival upon treatment with topotecan in ovarian carcinoma 
(A,C), gemcitabine in lung adenocarcinoma (B), and vinorelbine in lung squamous cell carcinoma (D).
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feature AGS classes mutations.mgs and significant.affymetrix_ccle. Using other classes pro-
duced similar results (data not shown).

Figure 5 demonstrates that by applying the same parameters for elastic net training, in each case it was possible 
to obtain a descriptive model from CTD drug screen data with a number (4…36) of non-zero terms and then 
substantiate the model (possibly with a poorer performance) using the ACT data in a smaller cell line set. For 
each model, we compared observed and predicted drug sensitivity values. The most important observation was 
that in all instances the signs of these correlations were consistent between CTD model and ACT validation, i.e. 
negative correlations in the training set remained negative upon validation.

Overall, the performance of the original profile models on the validation sets appeared comparable to that 
of PWNEA. However importantly, the former had much more freedom in model term selection since the initial 
feature space was around two orders of magnitude larger than that in PWNEA. Consequently, despite the rig-
orous cross-validation and feature selection implemented in the glmnet algorithm, using the original profiles 
generated more complex models (see the number of terms per model, N) which fit the training sets better. At 
the validation step however, the performance of the original data models significantly worsened - whereas the 
PWNEA-based models performed at the same level (all results obtained under variable parameters can be found 
in Supplementary Files glmnetModels.Basu_vs_new.raw.pdf and glmnetModels.Basu_vs_new.pwnea.pdf). This 
result essentially corroborated the previous conclusion about higher robustness conferred by NEA, compared to 
the usage of original gene profiles.

Agreement between in vitro screens and clinical data.  A more challenging task was to identify a 
conservation of associated features between the in vitro drug screens and clinical application of the same drugs. 
Any trustworthy setup of such an analysis would be very complex, so that even cross-validation and adjustment 
for multiple testing could not guarantee an unbiased probabilistic estimation. Thus, the final judgment should be 
made after a biologically independent ad hoc validation from the in vitro to the clinical domain. Even though the 
TCGA collection did not provide correctly balanced, randomized cohorts for estimation of relative risks, error 
rates etc., our task was simplified by only needing to compare the methods’ performance. In the eight largest 
TCGA cohorts, we counted how many significant in vitro-detected features correlated with survival of patients 
who received same drug30, (https://tcga-data.nci.nih.gov/docs/publications/tcga/; Suppl. Table 4)41. More spe-
cifically, molecular features of each class that significantly correlated with sensitivity to a drug in cell lines were 
required to also significantly correlate with patient survival in a TCGA cohort.Our survival analysis accounted for 
clinical covariates available from TCGA (Suppl. Table 4), which facilitated the ‘net’ effect estimation.

We matched correlates of same data types in CCLE and TCGA (possibly obtained using different omics plat-
forms, e.g. Affymetrix microarray from CCLE could be matched to RNA-seq from TCGA etc.). Then we deter-
mined whether correlation p-values of individual features, in their turn, correlated between in vitro and TCGA 
data, i.e. if genes or FGSs with high (respectively low) correlation with drug response in vitro tended to correlate 
in the same manner with the patients’ response. Due to the testing of alternative AGS classes, respective numbers 
of matching pairs in ORA, PWNEA, or GNEA were an order of magnitude higher than in raw data (column 2 
in Table 3). Therefore we coupled this calculation with a significance test by randomly permuting feature and 
sample labels. Altogether, the permutation tests indicated that point mutation and copy number data had zero 
true discovery rates (TDR), i.e. their correlation p-values were preserved not more than expected by chance (see 
column 3 in Table 3). On the contrary, the TDR levels were substantial (0.02…0.805) for gene expression data and 
for AGSs processed with each of the enrichment analyses.

At the next step (remaining columns of Table 3) we calculated the numbers of significant cases that would 
also be practically usable, i.e. had both lower p-values (<0.001) and rank correlation values above 0.2. No such 
cases were identified in the gene expression data. ORA, PWNEA, and GNEA yielded 0.8%, 3.5%, and 5.9% of 
practically usable cases, respectively. Interestingly, most (56 out of 78) of the ORA cases were identified in the 
breast cancer cohort, whereas the preserved PWNEA and GNEA correlations distributed uniformly across all 
the TCGA cohorts (the prostate cancer cohort shared only one drug with one in vitro screen). Remarkably, the 
separate test using the 197 KGML KEGG pathways also demonstrated superiority of PWNEA over ORA, ZGSEA, 
EGSEA, ssGSEA, and SPIA - despite the reasonably good performance of the latter two on the in vitro datasets 
presented above. Thus at this crucial validation stage while translating drug sensitivity correlates between in vitro 
and clinical applications, robustness of the features increased in the following order: [point mutations and gene 
copy number changes] < [gene expression] < [ORA, ZGSEA, ESGSEA, ssGSEA, and SPIA] < PWNEA < GNEA.

This analysis proved significance of the produced correlates, and we reiterate that using the original data and 
the alternative enrichment methods did not seem efficient: although many transcriptomics profiles correlated 
with drug sensitivity, those patterns could not be traced back to the in vitro screens.

Most of the consistent NEA features were obtained for AGS based on gene expression data (Suppl. Table 
2). They were identified for docetaxel, gemcitabine, and paclitaxel in BRCA (see the cancer cohort notation in 
Table 3); for dexamethasone, erlotinib, and topotecan in GBM; for gemcitabine in LUAD; and for gemcitabine, 
paclitaxel, tamoxifen, and topotecan in OV. While using gene copy number data, consistent PWNEA and GNEA 
features were found only for GBM (dexamethasone and topotecan). Consistent features that correlated with the 
response to cisplatin (LUSC) belonged to the combined, multi-platform types. One GNEA feature was based on 
somatic mutation analysis (gemcitabine in LUSC), although it did not match all the criteria. Below we present 
four promising findings predictive of survival in a TCGA cohort (Fig. 6).

The cancer emergence and progression were earlier linked to tissue inflammation through the NOD-like 
receptor signaling42. We found that the corresponding pathway score correlated with survival in ovarian carci-
noma patients treated with topotecan (Fig. 6A).
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Carboxylesterases (CESs) are capable of hydrolyzing gemcitabine43 - for instance, CES2 slows down hydrolysis 
of the gemcitabine pro-drug LY233473744. We identified as many as 31 gene-wise NEA features which corre-
lated with relapse-free survival in lung adenocarcinomas treated with gemcitabine. This list of network nodes 
from GNEA included CES1 (Fig. 6B), CES2, CES7, and a number of cytochromes with possible involvement 
in the catabolism of xenobiotics. Many of these genes were AGS members in both the gemcitabine-sensitive 
cell lines and in patients who responded to the gemcitabine treatment and – at the same time - were themselves 
part of KEGG pathways 00980 “Metabolism of xenobiotics by cytochrome p450”, 00983 “Drug metabolism – 
other enzymes”, and 00982 “Drug metabolism – cytochrome p450”. Consequently, the ORA and PWNEA anal-
yses detected enrichment of these pathways in the same patients. However the pathway scores correlated with 
response to gemcitabine neither in the CCLE and CTD screens nor in the LUAD cohort) and therefore would 
be useless as biomarkers. The gene expression profiles of carboxylesterases and cytochromes in cell lines and 
primary tumors did not correlate with gemcitabine response either. EBAG9 had been implicated previously in 
ovarian cancer progression45, but it has not been shown to affect response to topotecan. Indeed, in the datasets of 
our study the expression of the gene itself correlated neither with cell line sensitivity to topotecan nor with patient 
survival. However, the GNEA features (Fig. 6C) for EBAG9 as a network node did correlate with sensitivity 
to topotecan in vitro (top.200.affymetrix_ccle; p(H0) = 4.2 × 10−11) and with overall survival of OV 
patients (top.200.illuminahiseq_rnaseq; p(H0) = 4.4 × 10−4 during the 3-year follow-up time while 
accounting for “clinical stage” as a covariate).

The intestinal-type alkaline phosphatase ALPI is known to modulate cancer cell differentiation46 and cytopro-
tection47,48. In our analysis its GNEA feature was (Fig. 6D), in parallel with eleven others, negatively correlated 
with sensitivity to vinorelbine in vitro (gnea.significant.affymetrix1; p(H0) = 1.1 × 10−07) and with 
relapse-free survival of OV patients (p(H0) = 0.003).

This setup could not eliminate possible confounding effects from multi-drug treatment history and clinical 
factors that might determine administration of specific drugs. Nonetheless, the NEA scores apparently explained 
the differential sensitivity to anti-cancer drugs in a much more robust and efficient manner than the original data.

A visual inspection of the survival curves in Fig. 6 sheds light on usefulness of these tentative biomarkers 
in a clinical setting. As an example, in a 1-year survival perspective, relative risks (RR) would either increase 
(Fig. 6A,C) or decrease (Fig. 6B,D) given higher NEA scores of the patient samples. By using this fixed follow-up 
interval and the cohorts of limited size, the confidence intervals at the 95% level would be rather broad: 
ln(RR) = 0.405 (95% CI: [−0.07…0.88]); ln(RR) = −2.061 (95% CI: [−3.99…−0.13]); ln(RR) = 2.211 (95% CI: 
[−0.70…5.12]); ln(RR) = −2.181 (95% [CI: −5.15…0.78]) for Fig. 6A…D, respectively. The fractions of patients 
who might benefit from using these predictors could be estimated in terms of absolute risk reduction as 0.17, 
0.62, 0.08, and 0.25. Inversely, the “number needed to treat”, i.e. how many patients should be treated for one indi-
vidual to benefit from the new test would have been 6.00, 1.60, 12.91, and 3.94, respectively49. However we note 
that additional responders could be detected by using multiple markers in parallel. As an example, beyond the 
“NOD–like receptor signaling pathway” at Fig. 6A, the response to topotecan in ovarian cancers similarly corre-
lated with KEGG pathways “One carbon pool by folate” and “Bacterial invasion of epithelial cells” as well as with 
the GO term “Cytokine activity” (not shown). Predictions made with these markers would overlap only partially 
and therefore can complement each other. We presume that such discoveries should ultimately be evaluated by 
independent validation and careful clinical development. our combined analysis of independent cell screen and 
clinical results gave a first example of such validation.

Feature type

No. of 
available 
“feature 
X drug“ 
tests

True discovery 
rate by 
permutation 
test, by requiring 
p(H0) < 0.01

True discovery rate by permutation test, by requiring p(H0) < 0.01

All TCGA 
cohorts (% 
of available 
correlates)

Bladder 
carcinoma, 
BLCA

Breast 
carcinoma, 
BRCA

Colon adeno 
carcinoma, 
COAD

Glioblastoma 
multiforme, 
GBM

Lung adeno 
carcinoma, 
LUAD

Lung 
squamous 
carcinoma, 
LUSC

Ovarian 
carcinoma, 
OV

Prostate 
adeno 
carcinoma, 
PRAD

Original gene 
profiles

Point mutations, PM 360 0 0 0 0 0 0 0 0 0 0

Copy number 
alterations, CN 522 0 0 0 0 0 0 0 0 0 0

Gene expression, GE 1080 0.149 0 0 0 0 0 0 0 0 0

Enrichment 
analysis, all 
platforms and 
FGS

ORA 9014 0.033 78 (0.8%) 0 56 0 3 3 8 8 0

PWNEA 8822 0.146 305 (3.5%) 18 60 20 52 51 45 59 0

GNEA 8630 0.805 505 (5.9%) 15 84 46 113 93 72 82 0

Enrichment 
analysis, GE 
on 197 KEGG 
pathway FGSs

ORA 5252 0.025 21 (0.3%) 0 5 0 2 4 2 8 0

ZGSEA 1080 0.037 8 (0.7%) 0 2 0 0 1 0 5 0

ssGSEA 1080 0.020 7 (0.6%) 0 7 0 0 0 0 0 0

SPIA 1080 0.048 3 (0.3%) 0 0 0 3 0 0 0 0

EGSEA.mean 1080 0.014 4 (0.3%) 0 1 0 2 0 0 1 0

EGSEA.min 1080 0.006 0 0 0 0 0 0 0 0 0

PWNEA 4988 0.241 364 (7.2%) 44 83 20 79 27 19 92 0

Table 3.  Conservation of drug sensitivity correlates between the in vitro drug screens and clinical applications.
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Discussion
In our view, the advantages of our NEA approach are due to the following features of network-based data interpre-
tation: (1) combining major types of molecular interactions in a biologically relevant way, (2) summarizing seem-
ingly disparate molecular alterations at the level of pathways and processes, and (3) enabling lower-dimensional 
statistical analysis. In addition, a network context, with different types of evidence behind the edges provides 
better grounds for biological interpretation36,50,51. The poor performance of the individual gene analysis and 
alternative enrichment methods could be explained by the excessive dimensionality of the former and poorer 
sensitivity of the latter. In addition, the ability to use smaller and hence more specific AGS could have provided 
extra advantage of NEA over ORA and GSEA. On the other hand, NEA could also deteriorate on AGS of insuffi-
cient size when using sparser networks (around 104…105 edges) and networks with many missing nodes. These 
potential limitations were established earlier36 and we tried to avoid them in the present work by using e.g. a 
denser network from data integration. We admit that a future, more comprehensive version of NEA might adopt 
advantages of the alternative enrichment methods by employing full gene lists (as in GSEA) and intra-pathway 
topology (as in SPIA). Indeed, at certain steps of our analysis these methods demonstrated performance compa-
rable to that of NEA.

The individual molecular phenotypes of cell lines and tumors were characterized with AGSs compiled using a 
number of alternative methods. The analysis provided a primary comparison of their relative performance but – 
at the current stage – did not enable definite conclusions about performance of the different AGS classes. Indeed, 
AGS of fixed size (top.N) versus variable size (significant) compared differently in the cell lines versus the TCGA 
data (Suppl. Table 1). Further in the analysis of consistency in vitro versus clinical results, these classes were 
almost equally represented (Suppl. Table 2). We have also seen differences between different filtering approaches 
in AGSs of classes significant.mini and significant.maxi (Suppl. Fig. 2). Therefore an issue to be investigated 
further is the comparative performance and robustness of different feature classes, platforms etc. Importantly, 
multiple platforms’ data can be integrated into combined AGSs. Although in our analysis such AGSs did not per-
form much better than platform-specific ones (most likely due to the domination of transcriptomics data), a more 
detailed evaluation should be done, including new platforms from TCGA and elsewhere, such as DNA methyla-
tion, protein phosphorylation etc. Given the diversity of carcinogenesis routes and the multiplicity of respective 
molecular mechanisms, combining platforms appears essential and most promising. Incorporation of approaches 
from sparse linear regression modeling, GSEA26, SPIA27, and PARADIGM52 certainly represent promising ways 
in this direction. The statistical power of NEA was obviously far from full. As an example, there were 13 drugs 
for which the numbers of tested cell lines and patients treated in TCGA cohorts were sufficient for a significant 
estimation. For four drugs out of these 13, no reliable correlates could be found. One instructive example could 
be irinotecan, prescribed to 25 and 22 patients in COAD and GBM cohorts, respectively. The interesting feature 
of irinotecan is that its pharmacokinetic pathway involves the same enzymes as that of gemcitabine (Fig. 6B), 
namely CES1, CES2, CYP3A4, CYP3A5 and some others (https://en.wikipedia.org/wiki/Irinotecan#Interactive_
pathway_map) – although the enzymes here work in an opposite direction: they activate irinotecan rather than 
degrade as they do to gemcitabine. Nonetheless, relevant GNEA scores might have been informative for response 
to irinotecan. The patients’ response was sufficiently differential, too: while all the irinotecan-treated patients 
relapsed, the time to relapse varied from 78 to 1265 days. However, we did not observe almost any sensible cor-
relation of the pathway genes neither as GNEA features nor as raw gene expression profiles. In regard of GNEA, 
this elucidated a lack of network linkage between the AGSs of responders (or non-responders) to the irinotecan 
pathway.

Further, our FGSs were created by third-party sources and never meant to be used in NEA. Thus, another step 
for NEA-based biomarker discovery would be the compilation of novel, specifically optimized FGSs. Ultimately, 
one could compile de novo pathways - similarly to the approach by Glaab et al.53, but specifically informative of 
the drug response or disease prognosis. An example of such a functional set could be the presented above combi-
nation of the ten carboxylesterases and cytochromes.

Finally, given the low overlap of member genes between individual AGS, it is important to establish how 
AGS-level biomarker panels would practically summarize gene-level information and organize the accompanying 
statistical framework. Ways to compile and employ multi-platform AGSs, optimal FGS design, and construction 
of NEA-based biomarker panels should therefore become the topics of future studies.

Conclusions
We have presented method NEAmarker for using network enrichment scores in prediction of drug response 
and demonstrated its advantage compared to the conventional analyses of original gene profiles and alternative, 
previously presented enrichment methods. In the first place, NEAmarker allowed combining data from multiple 
omics platforms. Further, the NEA scores indicated higher statistical power to detect enrichment and were there-
fore more prone to manifest correlation with drug sensitivity. The higher robustness, anchored in the network 
context, enabled better preservation better between independent screens. Multivariate models using NEA scores 
were built from a lower-dimensional space, thereby proving more compact and, at the same time, robust when 
re-tested on novel data. Finally, corroborating in vitro phenotypes in corresponding clinical applications was 
possible by using our method but not by original profiles or alternative methods.

Methods
Drug screens.  Cell lines used in ACT screen.  In this analysis at ACT (“Advanced Cancer Therapies”) cen-
tre, we used 20 cancer cell lines for which molecular data could be found in the CCLE Affymetrix set as well as 
in both CCLE and COSMIC point mutation sets: A375, HCT116, HDLM2, HT29, JVM2, K562, L428, MCF7, 
MDAMB231, MV411, NB4, PL21, RAJI, RKO, SJSA1, SKBR3, SKNAS, SW480, T47D, and U2OS. Eight of these 
cell lines had also been included in the CTD screen (A375, HCT116, HT29, MCF7, PL21, RKO, SW480, and 
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U2OS). In order to avoid overlap in the multivariate models, we excluded these eight cell lines while training the 
original models from the CTD data and only used them in the validation set.

Assay for cell proliferation used in ACT screen.  Cell proliferation was estimated with the WST-1 assay (water 
soluble tetrazolium). Briefly, cells were incubated with each drug for 72 hours in a 96-well plate. At the end of 
this period, they were incubated with WST-1 reagent (Roche) for 2 hours. Absorbance at 450 nm was measured 
following the instructions from the manufacturer. The cell proliferation rate compared to that in the control was 
calculated.

For adherent cultures, cells were attached overnight before adding the compounds. For hematological malig-
nancies, the compounds were added simultaneously with seeding cells. The initial cell density was chosen so as to 
avoid confluence at the end of the assay. Each compound was applied in six consecutive 3-fold dilutions. In RITA 
and Apr-246/PRIMA-1-met, the stocks were established at the concentration based on individually determined 
efficacy. Final concentrations were for RITA: 0.01, 0.04, 0.12, 0.37, 1.11, 3.33 µM and for Apr-246/PRIMA-1-met: 
0.3, 1, 3, 9, 28, 83 µM. For JQ1 the cell lines HDLM2, HT29, MCF7, RAJI, RKO, SJSA1, SKBR3, and SW480 were 
tested using the final concentration range 1.66…0.007 µM in 1:3 serial dilutions. However later we found it nec-
essary to raise the concentration by one order of magnitude, so that the final concentrations for the rest of the 
cell lines were 16.66, 5.55, 1.85, 0.61, 0.20 µM. Then we respectively adjusted IC50 values for the first group as if 
they were tested under the final concentrations. This was done by incrementing the initial-stock IC50 values of 
HDLM2, HT29, RKO, and SW480 by log3(10) ≈ 2.09. The cell lines MCF7, RAJI, SJSA1, SKBR3 did not show any 
sensitivity while using the initial stock (IC50 = 0), so that their IC50 values upon JQ1 treatment were declared 
missing.

IC50 was defined as the drug concentration inducing a 50% reduction in cell proliferation compared to the 
control. In the quantitative analysis, we used a universal scale for all the drugs where units 1…6 stood for dilution 
steps (1 = 1:300; 2 = 1:900; 3 = 1:2700; 4 = 1:8100; 5 = 1:24300 and 6 = 1:72900). Sensitivity to compounds was 
expressed in IC50 values varying from 0 (insensitive to compound) to 6 (fully sensitive to compound).

IC50 values and p-values of the model parameters were calculated using function drm from R package drc48. 
The model form (argument fct) was chosen as LL.4, where model parameters Lowest and Highest were 
fixed at cell proliferation rates 0% and 100%, respectively, while parameters slope and IC50 were left unfixed. The 
IC50 values are provided as Supplementary File IC50values.ACTscreen.xlsx. Missing values are presented as NA.

CCLE screen.  Barretina et al.12 analyzed cell line sensitivity to 24 drugs in 504 cell lines. These authors consid-
ered a range of numeric sensitivity metrics for their analysis and finally preferred ‘normalized activity areas’. These 
original units were calculated as areas under compound response curves where higher values corresponded to 
higher sensitivity so that 0 stood for ‘insensitive to compound’ and 8 corresponded to ‘full sensitivity’. Further, the 
activity area values were normalized for unequal luminescence in the assay. We rendered them normally distrib-
uted by log-transformation. Thus the values in our analysis range from −3.00 meaning ‘insensitive to compound’ 
to +2.31 meaning ‘maximal sensitivity’.

CGP screen.  Garnett et al.13 analyzed 138 drugs in 714 cell lines. They used a combination of IC50 and the slope 
parameter to achieve the most complete description of responses. We decided to use the AUC as a single feature 
that reflects the both values. AUC was originally provided in the same table and ranged from 0% (fully sensitive) 
to 100% (insensitive). To approach the normal distribution, we transformed the values as log(1 - AUC), so that 
now they ranged from −8.11 meaning ‘insensitive to compound’ to 0 meaning ‘maximal sensitivity’.

CTD screen.  The authors (Basu et al.)29 mainly used areas under curve (AUC) for their quantitative analysis of 
203 drugs in 242 cell lines. We reproduced this approach in our study. In completely insensitive cases, the full area 
under eight experimental points reached 8, whereas 0 stood for full sensitivity. Thus, the scale of this screen was 
inverted compared to the other screens, which was considered in all calculations.

Molecular data.  Gene expression.  The profiling was performed in CCLE study using Affymetrix 
GeneChip® Human Genome U133 Plus 2.0 Array and in CGP study by Affymetrix GeneChip® HT Human 
Genome U133 Array plate. The expression datasets were normalized as described when made public by the 
authors. Expression profiles in the CTD study were from CCLE. It has been shown earlier11 that disagreement 
between CGP and CCLE could be attributed to the usage of different transcriptomics datasets only to a minor 
extent. We checked both the CCLE and CGP expression profiles and concluded that the latter provided poorer 
statistical power in regard to drug sensitivity as well as lower coverage of both genes (13891 unique mapped gene 
symbols vs. 18900 in CCLE) and cell lines (622 vs. 1034). For these reasons, we used the CCLE dataset in all the 
presented alternative analyses except NEA and ORA. AGS for the latter two were compiled from the both plat-
forms (affymetrix_ccle and affymetrix_cgp). Expression values x of the downloaded datasets were 
transformed to log2(x).

Gene Copy Number.  CCLE, CGP, and CTD all employed Affymetrix SNP 6.0 microarrays for gene copy num-
ber detection. We downloaded the CCLE dataset12 for 994 cell lines. In addition, we downloaded COSMIC 
data37 independently produced by the same platform and then post-processed in three different ways to provide 
total, absolute copy number per gene, number of copies of the minor allele, and a binary classification of gene 
copy number values into “gain” vs. “loss”. All datasets were used as downloaded, without further processing or 
normalization.
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Point mutations.  CCLE provided point mutation data on sequencing of 1667 genes in 904 cell lines. In addition, 
we downloaded COSMIC data from exome sequencing of 1023 cell line genomes, which mapped to 19759 gene 
symbols. Mutation data from the both screens were used in the binary form, i.e. all specifying attributes were 
neglected.

Following the same approach, we employed TCGA data on somatic point mutations reported in MAF files. 
The column ‘Variant_Classification’ contained a number (more than 15) different codes, most frequent being 
Missense_Mutation, Nonsense_Mutation, and Silent. the latter constituted around 25% of the total number 
of somatic mutations reported in the eight cancers, while around half of such cases contained only mutations 
reported as silent. This fraction would not significantly affect the false positive and true discovery rates in any 
enrichment analysis. Furthermore, we found that in each cohort tens to hundreds of most frequently mutated 
genes (e.g. top 5% ranked by frequency per base pair length) had a significant rate of purely silent mutations (see 
Supplementary File Nmut_vs_frequency.4cohorts.pdf). Discarding such would exclude many potential cancer 
drivers – although of yet unknown mechanisms. We therefore included all mutation records present in the MAF 
files.

Alternative Methods of Pathway and/or Enrichment Analysis.  We evaluated a number of existing 
multivariate, enrichment-based, and/or network analysis methods that could be potentially useful in the pro-
posed analysis, accounting for their complexity, applicability to different experimental designs, and the ability 
to analyze individual samples rather than the whole cohort. Various statistical algorithms have been proposed to 
quantify functional relevance of pathways and other gene sets by accounting for gene network topology.

A number of methods can generate sparse regression models via network-based regularization, i.e. account 
for topological relations between potential predictors (typically gene expression variables). The regulariza-
tion is based on certain assumptions, such as that e.g. term coefficients of neighbor nodes should be zeroes or 
non-zeroes simultaneously54, that edge confidence weights should influence penalties on the model coefficients55, 
or that there exists equivalence (or at least parallelism) between connectivity of nodes and covariance of model 
terms56,57. Advanced regularization of linear models in these methods often demonstrated promising efficiency58. 
However being very sophisticated, these models proved hard to tailor to novel, specific experimental designs. 
Notably, it was not feasible to include additional covariates or interaction terms which would be necessary for 
e.g. analyses similar to the one described in the present work - not even in the dedicated survival analysis method 
DegreeCox59. Using pathway membership information for summarizing cross-pathway linkage was proposed 
in60 - however, adjusting its error rate model to other purposes has not been straightforward.

Technically, individual scores that estimate samples’ uniqueness as compared to the rest of the collection 
can be obtained already from ORA, i.e. from the simplest analysis of dichotomous 2 × 2 tables applied to 
sample-specific gene sets61–64, also called “class I” in the classification by Huang et al.31. For comparison, the most 
popular gene set enrichment analysis, GSEA25 has been usually applied to finding pathway enrichment in gene 
lists pre-ranked by cohort-wise statistics. As an example, Haibe-Kains et al.11 analyzed correlations between drug 
sensitivity and molecular features calculated on whole in vitro drug screens12,13 which are among the datasets 
re-analyzed in this article. Those pathway enrichment scores represented correlates of drug sensitivity over the 
whole screened collections rather than characterized individual cell lines. Likewise, Iuliano and co-authors65 
matched molecular landscapes to survival in cancer sample cohorts in order to reverse-engineer relevant pathway 
and network structures. Thus, global methods often employ powerful, heavily optimized statistical techniques 
and are used for sample exploration or differential expression analysis29,66 but cannot serve features for phenotype 
prediction in novel cell lines or tumors. An overview of network applications in cancer studies52 showed that, 
indeed, most of the existing methods enabled exploratory analyses, discovery of driver genes and pathways as well 
as splitting a cohort into molecular subtypes, but did not characterize individual cases.

A number of hybrid approaches, such as SPIA27 and iPAS67 were also capable of calculating sample-specific 
pathway scores. However, their scores were based on gene expression values, which excluded the using of other 
data types. A genuinely integrative multi-omics method PARADIGM68 (the program is currently distributed only 
via a company web portal), on the contrary, accounted for combinations of events in the chain DNA->mRNA-
>protein activity. As input, it required well characterized regulatory relationships – a complete set of which 
would rarely be available. Also, similarly to the former group of methods, it relied on comparing cancer to normal 
samples. Those dramatic alterations between the normal and cancer tissues encompassing thousands of genes 
would mask more fine-grained features that determine between-tumor heterogeneity, differences between sensi-
tive and refractory cases etc. This requirement also precluded analyzing data where normal matches are missing, 
such as the widely used in our analysis cancer cell lines. Finally, EnrichNet53 has been an algorithm closest in spirit 
to NEA: by using random walk with restart (hence not limited to 1-step network distances), it can trace AGS-FGS 
relationships via network paths. However it existed only in a single-AGS, web-based implementation and there-
fore was also not available for testing it the present analysis.

Even though individual enrichment scores can be correlated with phenotypes, they have still been rarely used 
in predictor models. In the case of ORA and GSEA, the major reason was that the enrichment is mostly detect-
able for large FGSs (hundreds to thousands genes), but such are unlikely to characterize functional differences 
between tumors - while compact, specific, and discriminatory gene sets tend to escape their limits of statistical 
power. Nonetheless, Drier et al.69 have explored cancer cohorts with pathway-level sample scores derived from 
gene expression data in a quantitative way and found that certain sample clusters can be associated with patient 
survival. On the other hand, the network-based methods have been developed only recently and are therefore ‘too 
young’ to have been exploited fully. Above, we have also mentioned the network-based regularization of multiple 
regression models where inclusion of gene terms into the models was essentially coupled to their co-expression.

We finally decided to include in our testing, in parallel with PWNEA (pathway level NEA) and GNEA (gene 
node level NEA), the following methods:
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	(1)	 Using original gene profiles from respective omics platforms;
	(2)	 ORA, over-representation analysis which was capable of working on exactly the same AGS and FGS as 

PWNEA;
	(3)	 GSEA on full ranked gene lists, applying two alternative methods:

	 a.	 ssGSEA, ranking by absolute gene expression value,
	 b.	 ZGSEA, ranking by deviation of gene expression from the cohort mean;
	(4)	 SPIA, measuring the pathway perturbation via known intra-pathway topology.
	(5)	 EGSEA, that combined existing enrichment methods, using five out of the total twelve ones, which were 

capable of producing individual sample scores.

Using GSEA and SPIA was restricted to only transcriptomics data. SPIA, in addition, could only be run on 
pathways with known topology, which limited the set of available FGS to 197 KEGG pathways available in KGML 
format. This created an additional, specific line of testing on a limited collection of input data and FGSs for the 
methods ORA, ssGSEA, ZGSEA, SPIA, and PWNEA (see Figs 3,4 and Table 3).

Network Enrichment Analysis (NEA, PWNEA, and GNEA).  Network.  The network was based on the 
FunCoup method50 with consecutive merging of five more resources as described and benchmarked previously36. 
The results of that benchmark indicated that FunCoup was superior to STRING (a method similar to FunCoup in 
terms of scale and the size of input data collection70), mostly due to the latter broadly using prokaryotic evidence 
and therefore less specific in cancer-related analyses. The second conclusion from the benchmark was that adding 
to the FunCoup network edges of curated databases significantly improved its performance. We therefore added 
the FunCoup-based network with functional links from KEGG71, CORUM72, and PhosphoSite73, MSigDB tran-
scription factor-related part74), and an own reverse-engineered network36. The resulting network thus combined a 
wide range of molecular mechanisms, functional relations, and metrics from high-throughput data sets: physical 
protein-protein interactions, membership in same protein complex, membership in the same pathway, corre-
lation of mRNA profiles, correlation of protein abundance values, protein phosphorylation, coherence of GO 
annotations, concordance of upstream regulators (transcription factors and miRNAs), co-localization in same 
sub-cellular compartments, similarity of phylogenetic profiles etc. It contained 974,427 edges (links) between 
19027 nodes (distinct human gene symbols).

Altered gene sets, AGS.  Point mutation data (mutation gene sets):

•	 mutations.mgs: point-mutated genes that proved to be significantly NEA-enriched to either KEGG path-
way set #05200 “Pathways in cancer” or to the full set of point-mutated genes annotated in the given genome 
(the approach described by Merid et al.36).
Gene copy number and expression data:

•	 top.200 and top.400: genes with copy number or mRNA expression value that in the given genome was 
among top 200 or top 400 most deviating from the gene’s cohort mean using the one-sample Z-score. Each 
AGS thus had a fixed size, regardless of formal significance.

•	 significant: most deviating from the gene’s cohort mean (same as above), but selected only if below the 
formal significance threshold (Benjamini-Hochberg75 adjusted p-value < 0.05). These AGSs had variable 
sizes, depending on the significance criterion.

•	 significant.filtered.mini: members of the respective significant set had, in addition, to be also 
significantly NEA-enriched to either KEGG set #05200 “Pathways in cancer” or to mutations.mgs set of 
the same sample (whichever NEA score passed the significance threshold NEA FDR = 0.05).

•	 significant.filtered.maxi: members of the respective significant set were required to be signif-
icantly NEA-enriched to any of the signaling pathways (including all cancer ones) or to mutations.mgs 
set of the same sample.

Combined (multi-platform) AGS:

•	 significant.filtered.combined.mini: a merge (concatenation) of all sets of type significant.
filtered.mini.

•	 significant.filtered.combined.maxi: a merge (concatenation) of all sets of type significant.
filtered.maxi.

For convenience, AGS labels refer also to the platforms and sources, e.g. top.200.cn_ccle, signifi-
cant.filtered.maxi.affymetrix_ccle etc.

FGS.  The functional gene sets, FGSs, were AGS counterparts in the analysis. The main collection of 328 FGS 
was based on the KEGG pathways, the full collection of which was complemented with a number of separately 
published cancer pathways as well as specific GO terms corresponding to cancer-relevant signaling or hallmarks 
of cancer (around 70 cancer- and signaling-related gene sets from Reactome, Gene Ontology, WikiPathways and 
literature). Another approach was applied to enable compatibility with GSEA and SPIA. These methods were 
designed and are most suitable for analyzing expression data and, apart from that, SPIA was applicable only to 
pathways with well characterized intra-pathway topology. We therefore employed a special set of 197 KEGG 
pathways for which the topology was available in KGML files and tested on it SPIA, GSEA, ORA, and PWNEA 
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exclusively gene expression data (these results were separately labeled as ORA.kegg, SPIA.kegg, ssGSEA.kegg, 
ZGSEA.kegg, EGSEA.kegg, and PWNEA.kegg). The analysis on the FGS collection is referred to as pathway-level 
NEA (PWNEA).

In the other version of our analysis, called gene-wise NEA (GNEA), we treated each of the 19027 network 
nodes, regardless of their pathway or GO annotation, as a single-gene FGS.

Method
The major principles of NEA were described earlier23. In the current implementation, we evaluated enrichment 
of AGS versus FGS by the formula:
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where!n means “complement to n”, i.e. all global network edges that did not belong to NAGS-FGS. The number of 
links expected under true null, i.e. by chance, was determined by:
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Node connectivity values (numbers of all edges for each given node) were pre-calculated by the algorithm 
in advance, given the input network. Then NAGS and NFGS reported the sums of connectivities of member nodes 
of AGS and FGS, respectively, and Ntotal was the number of edges in the whole network. Since it was desirable to 
provide normally distributed values for the downstream analyses (linear modeling, correlation, survival), we 
calculated p-values from the Χ2 statistic p(H0) = f(Χ2) using function pchisq available in R language and then 
re-calculated corresponding z-scores from the p-values as Z = F(p(H0)) with function qnorm. Since Χ2 is only 
defined on the non-negative domain, the z-scores were coerced negative in cases of depletion, i.e. when

> .− −n̂ nAGS FGS AGS FGS

An important feature of GNEA (gene-wise NEA) is that its enrichment estimates are, on average, based on 
fewer network edges compared to PWNEA, so that often =−n 0AGS FGS . In such cases, the enrichment score is 
negative and the difference −− −ˆn nAGS FGSAGS FGS reduces to − −n̂AGS FGS, which, in its turn, is a function of cumu-
lative connectivity values NAGS and NFGS. In other words, lower NEA scores are then assigned to AGS-FGS pairs 
with more highly connected member nodes.

The steps of NEA described above can be performed with functions available in R package NEArender 
(https://cran.r-project.org/web/packages/NEArender/).

Signaling pathway impact analysis, SPIA.  The method by Tarca et al.27 was implemented as an R package 
SPIA. The authors presented it as combination of two p-values: pNDE from common analysis of overrepresenta-
tion of differentially expressed genes in KEGG pathways and pPERT from a perturbation analysis by accounting 
for topological relations of the same genes within each KEGG pathway. Since the authors claimed that pNDE 
values are no different from p-values from the trivial ORA, we used the pure pPERT values from function spia 
(while the performance of ORA was evaluated separately). In order to get normally distributed values for our 
analyses, pPERT were transformed to Z-scores and signed according to the SPIA “Activated/inhibited” status as: 
Z.spia = qnorm(pPERT/2, lower.tail = F)*ifelse(s1$Status=="Activated",1,−1).

Gene Set Enrichment Analysis, GSEA.  The R implementation of GSEA was downloaded from http://
software.broadinstitute.org/gsea/msigdb/download_file.jsp?filePath=/resources/software/GSEA-P-R.1.0.zip (see 
also https://software.broadinstitute.org/cancer/software/gsea/wiki/index.php/R-GSEA_Readme). While GSEA 
possesses a sophisticated toolbox for significance estimation via permutation tests, we needed only the enrich-
ment score and therefore calculated only the core ES values via function GSEA.EnrichmentScore. Normally, 
GSEA has been used for analyzing gene rankings from multi-sample analyses with replicates, such as a t-test of 
an experimental versus control group. The single-sample GSEA (so called ssGSEA) needed for our analysis was 
described by Barbie et al.26. They produced sample-specific lists by ranking genes by absolute expression values 
in each given sample. We implemented this analysis under acronym ssGSEA. However this approach might miss 
sample specificity. As an example, such ubiquitously expressed genes as GAPDH, RPS16, and RPS11 were found 
among the top 10 items in more than 90% of the CCLE cell line transcriptomes. For this reason, we additionally 
implemented and tested ranking genes in each sample by z-scores, i.e. by the standardized deviations from the 
genes’ means across the whole cohort. Using this option, dubbed ZGSEA, was similar to mode topnorm for 
calculating AGS in function samples2ags of our package NEArender.

Overrepresentation analysis, ORA.  The overrepresentation analysis, ORA estimated the significance of 
overlap between AGS and FGS in 2 × 2 tables. We did it via Fisher’s exact test using the function gsea.render 
in the R package NEArender described above. In order to get ORA values normally distributed, the “esti-
mate” values from function fisher.test were augmented with a pseudo-score 0.1 and log-transformed.

EGSEA.  The ensemble of genes set enrichment analyses28 can combine results from twelve individual algo-
rithms which were previously presented by third parties. EGSEA then calculates collective gene set scores for 
unified enrichment estimation. Since the framework of our analysis required assigning enrichment scores to 
individual samples rather than to multi-sample contrasts such as “experiment vs. control”, we excluded methods 
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that were present in EGSEA but only applicable to multi-sample contrasts, namely Camera, Roast, Fry, PADOG, 
CAGE, SAFE, and globaltest. We used the remaining suitable methods ORA, ZSCORE, GSVA, PLAGE, and 
ssGSEA. The correlation analysis and other models in our work required input in the form of enrichment scores 
rather than p-values. Therefore we could combine scores with two EGSEA methods which were not based on 
p-values, namely min rank and average rank.

Correlation between drug sensitivity and molecular features.  In each of the four drug screens, we 
quantified correlation between the cell line sensitivity to each drug and each of the molecular features F according 
to a general model of the form:

β ε= +S Fd

where ε denotes residual, i.e. unexplained by feature F, variance. The features were either original gene profiles 
from the three platforms (point mutations screens, copy number arrays, and expression microarrays) or scores 
from GSEA, or scores from the two NEA modes, PWNEA and GNEA, i.e. pathway-level network enrichment 
scores and single-gene network enrichment scores, respectively. All data sets, except the point mutation set, con-
tained continuous variables and were thus analyzed using Spearman rank correlation. The point mutation data 
were analyzed using a one-way ANOVA model with two levels of F: “any mutation” versus “wild type”. P-values of 
both Spearman and ANOVA were adjusted by Benjamini and Hochberg method75.

Elastic net models.  Every tested model was built under 10-fold cross-validation using function cv.
glmnet of R package glmnet (http://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html) with the follow-
ing parameters: lambda.min.ratio = 0.01 (the default) and nlambda = 25 (default was 100). Parameter 
alpha varied as {0.1; 0.3; 0.5; 0.9; 1.0}. The reported cross-validated mean error and the number of variables in 
the model corresponded to lambda.1se, i.e. largest value of lambda found within 1 standard error of the min-
imum lambda. The regression of observed on predicted values was plotted using lambda.min.

Drug sensitivity models in TCGA patients.  We used the follow-up time profiles for which both status 
records “relapse/relapse-free” and “dead/alive” were available, which allowed creating “relapse-free survival” and 
“overall survival” variables. Depending on the cancer aggressiveness and chemotherapy type, different timeframes 
could become informative in the analysis of the eight TCGA cohorts. The follow-up timeframes were defined as 
1/5th, 1/2nd, and full available (up to 18 years) intervals.

For the analysis reported in “Statistical power to detect correlates of drug sensitivity”, we used 42 drugs which 
were applied to at least 10 patients in one of the eight cohorts. In Fig. 3 we report fractions of adjusted p-values 
(FDR) from this analysis calculated by Benjamini and Hochberg. For the analysis of “agreement between in vitro 
screen and clinical data” we only considered 14 of the compounds, which were found in the in vitro sets. The 
p-values from this analysis were Bonferroni-adjusted in the cross-comparisons between the in vitro and clinical 
results.

Matching significance of the drug-feature correlations that had been detected in the cell-line in vitro screens 
required accounting for multiple clinical variables. Such phenotype covariates as well as drug treatment data were 
obtained from TCGA as biotab files via

https://tcga-data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/anonymous/tumor/*/bcr/biotab/clin/.
In order to measure and probabilistically estimate these effects, we fitted Cox proportional hazards regression 

models for every feature versus drug combination. Using all covariates available a cohort (such as “age at diag-
nosis”, “year of diagnosis”, “race”, “gender”, “ethnicity”) could result in unrealistically complex models. We thus 
included only covariates most likely associated with the disease prognosis, such as tumor degree, pathological 
tumor stage, immunohistochemical statuses in BRCA, Gleason score in PRAD, Karnofsky score in GBM (Suppl. 
Table 4). Next, we reasoned that when the association “feature - drug response” truly exists, we should observe it 
specifically in the patients who did receive the drug in the given TCGA cohort. Our survival models of the form
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contained, apart from the covariates C1…Ck and the residual term ε, main effects “drug” D and “feature” F as well 
as the interaction term D*F. A significant main effect of a drug could be interpreted as patients’ benefit in total 
and irrespective of the feature value, e.g. regardless of a gene mutation, or a gene expression, or a NEA-based 
pathway score. Conversely, a significant feature effect indicated that the feature correlated with survival directly, 
i.e. no matter if the drug was administered or not. Finally, significance of the interaction indicated efficacy of the 
drug specifically in patients with feature values either above or below a threshold, so that respective patterns could 
be explained by neither of the main effects. The interaction term was thus central for our purpose of detecting 
drug-feature correlations, whereas the significance of main effects of “feature” and “drug” was allowed although 
not required. As an example, a feature may or may not exhibit a significant correlation with survival in patients 
who did not receive the drug.

All survival analysis results were obtained using R package survival (https://doi.org/10.1007/978-1-4757-
3294-8). In order to estimate significance of the model terms, we used function coxph with continuous feature 
vectors. However, for visualizing the survival curves (Fig. 6) each feature was binarized at a cutoff that yielded 
the lowest p-value for the interaction term. Apart from the interaction model, we also checked if the p-value and 
FDR distributions preserved their properties under a unifactorial model. To this end, sub-cohorts of respective 
drug-treated patients were included in the survival analysis with the single main factor “feature”:
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Boxplots.  We used the default parameters for function boxplot in R. The boxes contain data points within 
25–75th percentile intervals (i.e. between quartiles Q1 and Q3). The maximal whisker length, MWL, is defined 
as 1.5 times the Q1–Q3 interquartile range (i.e. the box length). Whiskers can extend to either the MWL or the 
maximal available data point when the latter is below MWL. Markers thus correspond to data points that extend 
off the box by more than the MWL value.

Data Availability
The datasets generated for and analyzed during the current study are available from the corresponding author on 
reasonable request. The original drug screen data generated for this study (IC50 values) are included as one of the 
supplementary information files described below.
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