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Effect of chain flexibility on cell 
adhesion: Semi-flexible model-
based analysis of cell adhesion to 
hydrogels
Jooyoung Lee1, Boa Song1, Ramesh Subbiah  1, Justin J. Chung1, U Hyeok Choi  2, 
Kwideok Park1, Sang-Heon Kim1,3 & Seung Ja Oh1

Hydrogels have been developed and applied to various biomedical applications due to their 
biocompatibility. However, understanding of modulation between cells to hydrogel interface is still 
unclear, and parameters to explain the interaction are not sophisticated enough. In this report, we 
studied the effect of polymer chain flexibility on cell adhesion to various hydrogel constructs of collagen 
and fibrin gels. Specifically, novel method of semi-flexible model-based analysis confirmed that chain 
flexibility mediated microstructure of the hydrogels is a critical factor for cell adhesion on their surfaces. 
The proposed analysis showed possibility of more accurate prediction of biocompatibility of hydrogels, 
and it should be considered as one of the important criteria for polymer design and selections for 
enhancing both biocompatibility and biofunctionality.

Hydrogels are networks of polymer chains swollen with water and have been used in various biomedical appli-
cations such as drug delivery and tissue engineering1–3. Although hydrogels have attracted much attention as 
biomaterials due to high water content and biocompatibility, their poor mechanical properties are limiting factors 
for applications that require mechanical strength. Over the past decades, many efforts have focused on enhancing 
the mechanical strength of hydrogels4–7, since biomaterials are consistently exposed to tissue microenvironment, 
and their mechanical properties are known to affect cellular behavior. However, dynamics and communications 
between cells and hydrogel interfaces are poorly understood.

Cell adhesion to biomaterials is crucial for in vivo biocompatibility8. As the importance of mechanical prop-
erties of extracellular matrix (ECM) on cellular behavior has attracted much attention, researchers have tried to 
analyze the role of mechanical properties of biomaterials on cell adhesion. Most studies have evaluated cell adhe-
sion behavior by analyzing bulk stiffness of materials8–11. However, bulk mechanical properties do not fully define 
cellular behavior on biomaterials since there is scale discrepancy between cells and bulk samples. Therefore, 
there are high demands for defining precise mechanical parameters to understand cell to biomaterial interaction, 
thereby predicting both biocompatibility and functionality of biomaterials.

Natural polymers, such as collagen and fibrin, are attractive sources of biomedical applications due to their 
excellent biocompatibility. Most natural polymers are classified as a semi-flexible polymer, where neither models 
of flexible chain solutions nor rigid-rod networks apply to such systems12. They form viscoelastic networks, where 
the network mesh size is smaller than persistence length, but behave like flexible coils at long ranges. Because the 
micrometer scale architecture of these polymeric networks interacts with cells, their mechanical properties affect 
the cell adhesion behavior directly. According to the semi-flexible model, chain flexibility can be predicted by the 
scaling of elastic plateau modulus of polymeric networks13. These features cannot be captured with bulk stiffness, 
such as Young’s modulus, used in traditional adhesion studies.

In this report, we propose a new semi-flexible model-based analysis method for understanding of cell adhe-
sion to hydrogels by utilizing well-characterized collagen and fibrin. To investigate the determinant factors for 
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cell adhesion properties, three physically different collagen and fibrin constructs (2D coated-substrates, 2D bulk 
hydrogels, and 3D bulk hydrogels) with the variation of hydrogel concentrations from 1 mg/ml to 7 mg/ml were 
evaluated. Additionally, the bulk stiffness and roughness were quantified, and chain morphology was observed to 
define parameters for cell attachment. Finally, the results confirmed that the microstructure of hydrogels affected 
by chain flexibility was a crucial factor for cell adhesion. The authors believe that this was the first study on evalu-
ating the cell adhesion onto hydrogels by the slope of elasticity using a semi-flexible model. The proposed analysis 
method can offer guidelines for designing hydrogels and biopolymers for enhancing cell adhesion properties.

Materials and Methods
Hydrogel preparation. High concentration rat tail type I collagen (Corning Inc.) was dissolved in 10X 
M199 medium and 1X cell medium for 1, 3, 5, and 7 mg/ml concentration. Then the pH was adjusted by 1 N 
NaOH solution which was filtered by 0.22 μm pore filter. Bovine fibrinogen (Sigma Aldrich) was dissolved in 1X 
PBS in the concentration of 1, 3, 5, and 7 mg/ml. Then it was filtered by 0.22 μm pore filter before gelation process 
which is taken place by 2 U/ml of thrombin (bovine thrombin; Sigma-Aldrich) solution. Then the prepared solu-
tions were casted in 24 well-plate for 2 ml volume and incubated in 37 °C overnight. The hydrogels were carefully 
removed from the plate for measurement of mechanical properties.

Mechanical properties. Rheological properties of hydrogels were measured using a stress controlled type 
rheometer (AR-G2, TA instruments) at 37 °C with a parallel-plate (40 mm) geometry. Amplitude sweeps were 
first performed to get the linear viscoelastic region. Frequency sweeps were then performed at a constant strain 
of 0.1% in the linear viscoelastic region to determine values of the storage and the loss modulus. The compressive 
modulus were measured by the universal testing machine (Model 5966, Instron Corporation).

Hydrogel morphology and young’s modulus by atomic force microscopy. The surface topography 
of hydrogels was evaluated using an atomic force microscope (AFM; NanoWizard II, JPK Instruments) equipped 
with an inverted optical microscope (Nikon), in liquid contact mode using an HYDRA2R-50NG probe at the scan 
size of 40 × 40 μm2 to accommodate for typical surface features while maintaining a high resolution.

The young’s modulus (E) of hydrogels was measured using the micro-indentation technique. A gold-coated 
silicon nitride (Si3N4) cantilever (PT.SiO2.AU.SN10) functionalized with a 10 µm diameter SiO2 particle (spring 
constant = 0.01 N/m) was utilized. Indentation were carried out under a ramp size of 1 μm and a loading speed of 
1 μm/s. A series of indentation forces (0.5~10 nN) were applied to achieve an indentation depth of 10–20% of the 
measured hydrogels height. The average young’s modulus (E) was calculated using JPK data processing software, 
in which the Poisson ratio was set to 0.514.

Cell culture. Human umbilical vein endothelial cells (HUVEC; Lonza Inc.) cultured in Endothelial Growth 
Medium-2 (EGM-2, Lonza Inc.). HUVECs were cultured in 0.5% gelatin-coated 25T-flask to expand as recom-
mended by the company.

Cell adhesion assay. The cell adhesion rate has measured on different concentrations of collagen and fibrin 
hydrogels in a 2D manner. 400 μl of each hydrogel are casted in 24 well-plate and gelated for 1 hour in 37 °C incu-
bator. Then each well of the plate was filled with 500 μl cell suspension containing 5 × 104 cells ml−1. After 2 hours, 
the adhesion was quantified by Cell Counting Kit-8 (CCK-8).

Device preparation and gelation protocol. The device designed to make 3D channels most simply. The 
PDMS is poured in the aluminum mold that is designed in the right size and hardens in the 70 °C oven overnight. 
It has a channel that is lying through space where the hydrogel is casted. The channel diameter is 500 μm. We used 
a stainless tube that has 500 μm outer diameters to put through the gel casting area in the middle of the PDMS 
mold. Then the prepared collagen or fibrin hydrogel was casted. Then we let the hydrogel gelated in the 37  °C 
incubators for overnight. Then we pulled the stainless tubes out from the channel.

Endothelial cell seeding on 3D channel. The HUVECs were harvested in passage 6–8 by trypsinizing, 
then seeded inside the channel with a 6 × 106 cells/ml concentration. The cell-seeded device was set onto the rota-
tor for 2 hrs with the 6 round/hr speed. The inner surface of the hollow channel was observed 24 hrs after seeding, 
and the images were captured using the inverted microscope (Axio Vert. A1, Zeiss) equipped with CCD camera 
(AxioCam ICC 1, Zeiss).

Immunofluorescence staining. For the immunofluorescence study to measure the expression levels of 
CD31 from the seeded HUVEC on 2D hydrogels and 3D channel constructs. The sample was fixed with the 
4% paraformaldehyde for 30 mins at room temperature. Then, it was washed with 1X PBS for 10 mins, 3 times 
and permeablized with 0.3% of Triton X-100. The sample was incubated in 1% BSA blocking solution for 1 hr. 
The primary antibody (Abcam) diluted in 1% of BSA was treated at 4 °C for overnight, and secondary antibody 
(Thermo Fisher Scientific) was treated for 1 hr at room temperature. After 3 times of washing in 1X PBS, the sam-
ple was treated with 4’,6’-diamidino-2-phenyl indole (DAPI, Thermo Fisher Scientific) for nucleus staining. The 
fluorescence-labeled sample was observed under a laser scanning confocal microscope (LSM700, Zeiss).
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Results
Figure 1 describes the scheme to explain the experimental set-up of this study and analysis methods for charac-
terizing physical properties of hydrogels. For the experiment, various collagen and fibrin constructs (Figs 2(a) 
and 3(a)) were fabricated, including lumen structure to evaluate cell adhesion without gravity effect. The stiffness 
of the hydrogel was controlled by concentration increments of each component, then quantified by measuring 
the stress-strain relationship depending on the types of applied loads such as axial (tensile or compressive), and 
rotational (shear) stress. Chain flexibility in viscoelastic networks was evaluated based on the semi-flexible model.

Comparison of cell adhesion onto collagen vs. fibrin gels. To understand the relationship between 
physical properties of hydrogels and cellular behavior on the cell-hydrogel interface, cell adhesion on 2D 
coated-substrate and 2D bulk hydrogels was investigated (Fig. 2(a)). For the assay, HUVEC cells were seeded on 
each hydrogel for 2 hrs, and the adhesion was measured by the CCK-8 assay. As shown in Fig. 2(b,c), there were 
no statistically significant cell adhesion differences on 2D collagen and fibrin coated-substrates. This is possibly 
due to cells sensing the mechanical properties of the plate rather than the properties of the hydrogels15. Although 
collagen or fibrin was coated, physical properties of the plate could dictate biochemical cues when cells have 
enough time for settlement. In the case of 2D bulk hydrogels, however, the cell adhesion on 2D bulk collagen gels 
was much higher than that on 2D fibrin gels. For varying hydrogel concentrations, the cell attachment increased 
systematically with the collagen concentration, while the cell adhesion on fibrin gels was independent of the 
hydrogel concentration.

Figure 1. Schematic representation of methods for characterizing the physical properties of hydrogel: the bulk 
stiffness of hydrogel and chain flexibility in viscoelastic networks through the semi-flexible model.

Figure 2. (a) Representation of 2 types of hydrogel constructs evaluated in this study. (b,c) Adhesion of 
HUVEC cells on collagen and fibrin gels onto top surfaces of 2D hydrogel-coated plates (b) and bulk hydrogel 
(c), which is measured by CCK-8 assay 2 hrs after seeding.
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To clarify the different rate of cell adhesion on collagen and fibrin gels, cells were seeded in the 3D lumen 
structure of hydrogels in order to observe cell adhesion without gravity effect. The cells were seeded on the chan-
nel walls using a rotator to aid uniform distribution in the lumen for 2 hrs, and then cell adhesion was evaluated 
after 24 hrs. As shown in Fig. 3, different adhesion phenotypes on collagen and fibrin gels in the 3D condition 
were clearer than the differences observed in 2D hydrogels. The cells were well attached to collagen gels compared 
to that of fibrin gels.

Bulk mechanical properties of collagen and fibrin hydrogels. To understand the underlying mech-
anism of different cell adhesion rate between collagen and fibrin, the physical properties of the gels were investi-
gated. Firstly, the bulk stiffness of hydrogels was compared by measuring the linear viscoelasticity of collagen and 
fibrin at different concentrations; plotted in Fig. 4. Collagen and fibrin hydrogels are predominantly elastic in the 
entire range of frequency: G’ is independent of frequency and at least 100-fold larger than G”. This indicates that 
all the collagen and fibrin hydrogels from this study formed nearly perfect elastic gels on macroscopic scales13,16. 
As the concentration of collagen and fibrin increased from 1 mg/ml to 7 mg/ml, the elastic modulus gradually 
increased from 2 Pa to 300 Pa. Despite the different types of constituents, collagen and fibrin hydrogels showed 
similar elasticity values at the same concentration.

Other mechanical properties that are known to be closely related to the cell adhesion, such as Young’s modu-
lus10,17,18 and compressive modulus19,20, were also measured and shown in Fig. 5(a,b). The tendency was similar to 
the results of the viscoelastic modulus: the stiffness increased as the concentration increased and showed similar 
values at the same concentrations regardless of the constituents. Stiffness values measured by these various meth-
ods suggested that collagen and fibrin gels show similar bulk physical properties as elastic gels on macroscopic 
scales. As a result, none of the methods measuring bulk physical properties could explain different cell adhesion 
rates between collagen and fibrin gels.

Analysis of chain flexibility of hydrogel. The concentration dependence of the elasticity in low-frequency 
provides another way to distinguish the physical aspects of hydrogels on microscopic scales by describing the 
architecture of fiber molecules and their networks21. As shown in Fig. 6(a), the elastic modulus in the plateau 
region, ′Gp, follows a power law =′G cp

v, with an exponent of 2.48 and 1.86 or collagen and fibrin gels, respec-

Figure 3. (a) Representation of 3D bulk hydrogel constructs (b) The inner surface of hollow channels in which 
the images were captured 24 hrs after seeding. (c) The fraction of cell lining as quantification of cell adhesion.
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tively. This behavior has been explained by a semi-flexible network model which predicted =′G cp
5/2 for densely 

cross-linked gels, =′G cp
11/5 for semi-flexible polymers, and =′G cp

2 for flexible chain12,13,22,23. This indicates that 
the collagen gel structure, where ′Gp is more sensitive to the concentration, consists of the densely cross-linked 
filament, whose elastic stiffness is due to entropic origin, arising from the stretching out of individual filaments, 
while fibrin gel consists of relatively flexible chains, whose network elasticity is determined by chain bending, 
which is an enthalpic elasticity23.

Atomic force microscopy (AFM) was used to observe the network structures of the two gels and are shown 
in Fig. 6(a). Collagen gel structure displayed a fibrous network as previously reported, well-defined rod-shaped 
semi-flexible filaments with their straight appearance, which suggested persistence lengths of several microme-
ters. The fibrin gel structure, however, showed a considerably different structure to that of collagen gel: the gel 
structure consists of a few semi-flexible filaments, where the associated protein is much more entangled, which 
can be identified as dynamically trapped flexible chains.

To confirm the degree of cell attachment on the hydrogels, the cells seeded for 2 hours were fixed, and the 
nucleus was stained. Cell surface marker CD31 was also stained to confirm stabilized architecture of endothe-
lium. Although bulk stiffness of collagen and fibrin gels at the same concentration was similar, cell adhesion rate 
difference was obvious as shown in Figs 2 and 6(b). It was found that the total amount of cells attached to collagen 
hydrogel was greater than that of fibrin hydrogel. It was also shown that CD31 expression of cells on collagen gel 
was higher than the expression on fibrin gel, indicating cells are adhering more on collagen.

Such scaling results and morphology explained the cell adhesion behavior to hydrogels. The cells were more 
adhesive on collagen with higher stiffness regarding the chain on the microscopic scale. In the case of fibrin with 
a relatively flexible chain, the cells hardly retained adhesion. Therefore, our data suggest that the microscopic 
stiffness of the hydrogel is a dominant factor for the degree of cell attachment.

Figure 4. Linear viscoelastic properties of collagen and fibrin hydrogels as a function of various hydrogel 
concentrations: (a,b) angular frequency dependence of storage (G′, filled symbols) and loss (G″, open symbols) 
moduli for (a) collagen and (b) fibrin hydrogels.
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Discussion
Cell adhesion is fundamental in cell communication and regulation which is also critical for the development 
and maintenance of tissues. Specifically, robust cell adhesion to extracellular matrix (ECM) is crucial for the 
arrangement of multicellular components in various tissue formations. Many of previous studies have shown the 
effect of bulk mechanical properties of ECM on cell adhesion. Mechanical properties that are known to be closely 
related to the cell adhesion are Young’s modulus10,17,18 and compressive modulus19,20. Despite the use of various 
types of cells and substrates, most of the studies showed similar trends; substrates with higher Young’s modulus or 
compressive modulus were more favorable for cell adhesion. In this study, we proposed a new analysis parameter 

Figure 5. Mechanical properties of collagen and fibrin hydrogels at various concentrations: (a) Young’s and (b) 
compressive modulus as a function of collagen or fibrin gel concentration.

Figure 6. Analysis of chain flexibility of hydrogel: (a) power-law scaling of plateau modulus with a 
concentration of hydrogel for collagen and fibrin. Dash lines are the results of fits to power law equation =′G cp

v 
and microstructure of two representative samples of 0.5% concentration each in collagen and fibrin. (b) cell 
surface marker, CD31, after cells seeded for 2 hours for two representative samples of collagen and fibrin (0.5% 
concentration).
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to explain cell adhesion on bulk hydrogels. Conventional methods measuring bulk stiffness or Young’s modulus 
were not able to determine the different cell adhesion rates on collagen and fibrin gels. We found that the micro-
structure of hydrogel affected by chain flexibility could be one of the factors to explain the different cell adhesion 
rates on hydrogels. Additionally, the microstructures of the hydrogels were defined by the slope of elasticity using 
a semi-flexible model.

Cells adhere to the ECM through specific anchorage points, termed focal adhesions24,25. Despite the cell-to-cell 
variations, it is generally accepted that cells on stiffer substrates have more organized cytoskeletons and stable 
focal adhesions26. Because individual focal adhesion is less than a micrometer scales, conventional stiffness meas-
urements are not accurate procedures for the cell attachment evaluation, and more precise method of evaluating 
mechanical properties is required. In our experiment, bulk stiffness was not a critical factor for cell adhesion to 
the hydrogels.

Previous research has tried to measure the microscopic modulus of hydrogels by measuring the stress-strain 
relationship of a single fiber by optical tweezer or AFM27,28. Such results suggest that fibrin fiber is softer than 
that of collagen fiber. Fibrin fiber has a unique architecture which can be laterally stretched and show entropic 
recoil, inducing soft gel network and extraordinary extensibility, while collagen has a stiff hierarchical network 
of crosslinked helix fibers. Although modulus of a single fiber is critical for cell-matrix interaction, it is not rep-
resented in bulk stiffness properties of the traditional adhesion studies. Our result suggests that chain flexibility 
is an appropriate parameter which can reflect microscopic stiffness. Plus, it is an easier method than evaluating 
the modulus of a single fiber, because the linear viscoelastic modulus is very sensitive to strain exerted by cells. 
The method proposed in this work is most-likely applicable to other ECM hydrogels and proteins which are not 
evaluated in this study since most of the biopolymers have already been shown to exhibit semi-flexibility.

Collagen and fibrin have been widely used in the biomedical application as FDA approved natural polymers29. 
The analysis method proposed in this study could be practical to understand cell adhesion behavior on the sur-
faces of biomaterials. An accurate understanding of cell to material surface interaction will provide a significant 
scientific impact for the biomaterials design, although many material parameters, such as durability and mechan-
ical strength, need to be considered for in vivo applications of hydrogel biomaterials.

Conclusion
In summary, we have shown a semi-flexible model-based explanation of cell adhesion to hydrogels. Tissue stiff-
ness measured by a shear storage modulus, or Young’s modulus has been shown to regulate cell adhesion, prolif-
eration, and differentiation. This study now suggests that chain flexibility mediated microstructure of hydrogels 
is a determinant factor for cell adhesion on their surface, which was quantified by analyzing the slope of elasticity 
using a semi-flexible model. The authors hypothesize that this simple method can explain cell adhesion proper-
ties and offer more precise predictions in biocompatibility of polymeric biomaterials. We expect that this study 
provides a practical tool for the design and construction of 3D artificial tissue in various biomedical applications 
such as an engineered blood vessel.
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