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High throughput Laser process of 
transparent Conducting surfaces 
for terahertz Bandpass Ultrathin 
Metamaterials
Qinghua Wang  1, Michaella Raglione2, Baojia Li1,3, Xin Jin1,4, Fatima toor4, Mark Arnold2 & 
Hongtao Ding  1

terahertz (tHz) imaging has attracted much attention within the past decade as an emerging 
nondestructive evaluation technique. In this paper, we present a novel Laser-based Metamaterial 
Fabrication (LMF) process for high-throughput fabrication of transparent conducting surfaces 
on dielectric substrates such as glass, quartz and polymers to achieve tunable tHz bandpass 
characteristics. The LMF process comprises two steps: (1) applying ultrathin-film metal deposition, 
with a typical thickness of 10 nm, on the dielectric substrate; (2) creating a ~100-micron feature pattern 
on the metal film using nanosecond pulsed laser ablation. Our results demonstrate the use of laser-
textured ultra-thin film with newly integrated functional capabilities: (a) highly conductive with ~20 
Ω/sq sheet resistance, (b) optically transparent with ~70% transmittance within visible spectrum, and 
(c) tunable bandpass filtering effect in the THz frequency range. A numerical analysis is performed to 
help determine the fundamental mechanism of THz bandpass filtering for the LMF-built samples. The 
scientific findings from this work render an economical and scalable manufacturing technique capable 
of treating large surface area for multi-functional metamaterials.

Imaging or sensing using terahertz (THz) electromagnetic radiation has emerged as a highly promising non-
destructive evaluation technique1,2 for wide-ranging applications in agriculture and food science3,4, communi-
cation5,6, medical biology7,8, and security screening9. There is a growing need in the development of new THz 
devices to generate, detect and manipulate THz waves10,11. However, it remains a challenging task for scaling up 
the manufacturing process of current designs of THz devices, particularly those with an ease of tuning in the 
THz-domain. In addition, most of the available THz materials are usually not transparent within the visible spec-
trum, which makes them not utilizable for broad applications12.

Metallic THz filters on transparent substrates are practical and effective devices for filtering THz radiation. 
They can provide applications, such as THz frequency calibration artifacts and as a deterrent against counter-
feiting13. The tunable and transparent THz metamaterial based multifunctional surface will be of vital impor-
tance for design and fabrication of THz bandpass filtering device with a glass-based substrate14. For example, 
there is a growing need to integrate THz optics or windows with electronic tuning or heating functions onto 
the windows of vehicles and airplanes for applications, such as camouflage and signal reception/filtering15,16. 
Meanwhile the visible transparency as a window coating and electrical conductivity for tuning THz response 
of the windows have to be maintained. It is therefore of great interest to incorporate these three surface func-
tionalities into one single surface owing to the above-mentioned requirements and to develop a low-cost man-
ufacturing solution.

Metamaterials, defined as engineered composites exhibiting properties that are not found in nature17–19, 
have been designed and developed for THz-domain applications20. A main thrust in THz-domain metamate-
rial design is transmission through sub-wavelength hole array structures. Cao and Nahata21 demonstrated the 
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resonantly enhanced THz transmission through a periodic sub-wavelength hole array, which was perforated on 
free-standing stainless steel metal foils of 75 µm thickness. Significant enhancement of THz transmission was 
observed relating to the hole periodicity and the refractive index of the surface plasmon polariton (SPP) waves 
at the metal dielectric interface. Rivas et al.22 structured gratings on doped silicon and characterized the extraor-
dinary THz transmission of the periodic structure. They attributed the phenomenon to the excitation of surface 
plasmon polariton on these structures and the subsequent tunneling through the periodic subwavelength holes. 
Matsui et al.23 discovered that in contrast to the conventional view, enhanced THz transmission resonances can be 
obtained by quasiperiodic (also termed aperiodic) hole structures in metal films. The lineshapes of these quasipe-
riodic surface structure have a width comparable with those of resonances obtained with periodic structures and 
could be used to achieve desirable transmission properties. Miyamaru et al.24 designed a surface-wave sensor to 
detect very small change in the substances by monitoring the transmission spectrum. The effects of design factors 
on THz transmission have been well studied, which includes hole periodicity25, hole shape26,27, hole orientation28, 
dielectric functions of metals29, hole size30,31, and thin dielectric layers32. Even with these recent research advance-
ments, however, the state-of-the-art THz frequency selective filters still lack the frequency-domain modulating 
functionality, and often utilize metal foils with thickness of several tens of microns, which severely reduces their 
optical transmission in visible spectrum.

State-of-the-art fabrication methods of transparent conducting films utilizing metals include laser process-
ing33, electrospinning34, inkjet printing35, photolithography36,37 and nanoimprinting38. Among these fabrication 
methods, direct laser fabrication of transparent conducting films has become a popular method due to its advan-
tages in terms of good process flexibility and low manufacturing cost. Paeng et al.39 developed a nanosecond laser 
ablation method for flexible transparent conducting electrodes on copper (Cu), during which periodic metal-
lic hole array structures were directly produced on different heat-sensitive flexible substrates without introduc-
ing significant thermal damage. The transparent conducting films prepared using the method proposed in [35] 
achieved a sheet resistance of 17.48 Ω/sq and a visible transmittance at 550 nm of 83%. The authors also demon-
strated an improved photoelectric performance for their laser ablated transparent conducting film compared with 
commercial indium tin oxide (ITO) transparent conductive film. However, the laser ablation process throughput 
in their method was extremely low, which took more than four hours to process a 36 mm × 36 mm area, making 
it an unsuitable process for scaling up. A similar method developed by Lim et al.40 utilized ultrafast laser at a 
high pulse repetition rate to selectively remove self-assembled silver (Ag) nanoparticle network on polyethylene 
terephthalate (PET) substrate for fabrication of flexible and transparent film heaters. Besides laser ablation, other 
direct laser patterning methods such as selective laser sintering33,41–44, laser nano-welding45 and laser annealing/
texturing46–57 were also used by researchers to fabricate transparent conducting films. To the best of our knowl-
edge, THz transmission characteristics of transparent conducting films has not been investigated to-date utilizing 
laser textured metallic films.

New materials processing science is needed to incorporate visible transparency and electrical conductivity 
into the design and fabrication of THz bandpass filters. In this paper, we present an innovative surface engineer-
ing method for dielectric material substrates such as glass, quartz and polymer, which is aimed to achieve the 
following integrated surface capabilities: (1) electrically conductive, (2) optically transparent, and (3) tunable 
bandpass filtering effect in the THz frequency range of 0.3 to 3 THz (or wavelength range of 100 µm to 1 mm). We 
name this proposed process: “Laser-based Metamaterial Fabrication (LMF)”, which comprises of two steps: (1) 
applying ultrathin-film metal deposition, with a typical thickness of 10 nm, on the dielectric substrate; (2) laser 
patterning of the coated surface using a Q-Switched Nd:YAG nanosecond pulsed laser (1,064 nm wavelength) 
with a typical feature size on the order of 100 µm. The schematic of LMF setup is shown in Fig. 1(a).

The results presented in this manuscript constitute the first attempt to achieve the combined functions of THz 
filtering effect, visible transparency, and electrical conductivity for dielectric substrate materials. Conventionally, 
metal mesh with a much higher thickness (tens of microns) is employed for THz devices/filters. In order to 
enhance the transparency of the THz bandpass filter, our method employs an ultra-thin metal film deposition. 
A fast one-step laser patterning process is developed to generate periodic surface patterns to make the THz 
bandpass filter fully functional. In comparison, the other existing fabrication methods are either too costly or 
time-consuming for periodic surface patterns used for THz bandpass filters58. Our research demonstrates for the 
first time that an ultrathin metal film (~10 nm in thickness) with periodic microscale patterns can have a band-
pass filtering effect in the THz spectra. The fabricated transparent conducting THz bandpass filters can be used to 
select specific frequencies of interest and remove undesirable background radiation. The transparent conducting 
THz bandpass filter can be further used in devices, such as, signal receiver on the window of military vehicles59, 
electronic skin60,61 and human body sensor62.

Results and Discussion
Laser-based metamaterial fabrication. Various thin film deposition processes and materials have been 
experimentally evaluated in order to provide a viable fabrication solution of ultrathin-film metal deposition for 
LMF. Two different metals, Cu and aluminum (Al), and two different glass-based substrate materials, soda-lime 
glass (abbreviated as “glass”) with a thickness of 1 mm and quartz with a thickness of 500 µm, were used respec-
tively as deposition and substrate materials. Two different film deposition methods were respectively used for 
Cu and Al. For coating of the substrate with Cu film, pure Cu was deposited using the Angstrom Engineering’s 
6-pocket electron beam evaporator system. During the electron beam evaporation process, the thickness of the 
deposited metal was monitored in-situ by a piezoelectric thickness monitor. In this work, no binding agent was 
used on the substrate before the E-beam deposition process. This was deemed appropriate as the Cu film did 
not detach from the glass-based substrate even after a long time of storage and various tests. For coating the 
substrate with Al film, pure Al was deposited using the direct current (DC) magnetron sputtering technique. The 
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deposition facility used was an IntlVac-Nanochrome I Sputterer. During the DC magnetron sputtering process, 
the power was set at 400 W and the Ar gas flow rate was 16.5 sccm. Using these two deposition techniques respec-
tively, Cu and Al films with thickness of around 10 nm were deposited onto the substrates.

A 1,064 nm wavelength Q-Switched Nd:YAG nanosecond laser was selected for the second step of laser pat-
terning. A 3-axis galvanometer laser scanner (SCANLAB intelliSCAN® 20 and varioSCANde 40i), configured 
with an f-theta objective, served to direct the laser beam with a beam size of ~100 µm onto the sample. The 
substrate materials of glass or quartz are highly transparent at this laser wavelength and hence absorbs little laser 
energy during patterning. It was determined that the long pulse mode of 120 ns duration with a pulse energy on 
the order of hundreds of mJ would be appropriate for laser patterning of the ultrathin film. The nanosecond laser 
ablation of Cu thin films enabled material removal without inducing thermal damage of the underlying glass or 
quartz substrate, allowing for the metallic micro-hole array to be directly produced on the substrate. An optical 
micrograph of the laser patterned micro-hole array pattern is shown in Fig. 1b. The current LMF process used a 
laser line spacing of ~150 µm and a processing speed of ~1.5 mm/s. It is noted that this work applied a high energy 
nanosecond laser with a repetition rate of 10 Hz. The processing speed can be substantially increased by adopting 
higher pulse repetition lasers. A 36 mm × 36 mm area could be fabricated within 6 s using a nanosecond laser 
with a typical 10 kHz repetition rate. The high throughput of our laser texturing technique will enable large-area 
processing for industrial applications.

sheet resistance. The sheet resistance was quantitatively measured to demonstrate the electrical conductiv-
ity of the LMF-built specimens. Four-point probe sheet resistivity measurements were initially performed for the 
as-deposited ultrathin Al and Cu films with varying thickness utilizing a Signatone Pro4 series system, as shown 
in Fig. 2a. For the as-deposited Al film, as the film thickness increased from 8 nm to 15 nm, the sheet resistance 
gradually decreased from 12.0 Ω/sq to 6.0 Ω/sq. For the as-deposited Cu film, as the film thickness increased from 
6.5 nm to 15 nm, the sheet resistance gradually decreased from 11.0 Ω/sq to 2.4 Ω/sq. It can be found that the 
as-deposited Cu film has lower sheet resistance than the as-deposited Al film with same film thickness because 
Cu has much better electrical conductivity than Al.

The sheet resistance of the LMF-built samples varies with the laser pattern. A key parameter is areal density, 
which means the ratio of residual area after LMF process over the total area as illustrated in Fig. 2. As the areal 
density increased from 0.32 to 0.56, the sheet resistance decreased from 21.7 Ω/sq to 10.9 Ω/sq for the laser pat-
terned 8 nm-thick Cu thin film, as shown in Fig. 2b. Compared with the as-deposited Cu film, the sheet resistance 
of the 8 nm-thick laser patterned Cu film increased as significant amount of metal was removed during laser 
patterning. However, the increase is still within a reasonable range. It should be noted that sheet resistance on the 
order of ~30 Ω/sq for a transparent conductor is comparable to ITO, a common transparent conducting oxide 
and suitable for use in optoelectronic devices.

Furthermore from Fig. 2 it can be found that the sheet resistance of 8 nm-thick laser patterned Cu film with 
different areal densities has a much larger standard deviation than that of the as-deposited Cu film. This indicates 
that the sheet resistances at different locations on the laser patterned Cu film are not as uniform as those on the 
as-deposited Cu film. This will potentially affect the current flow on the laser patterned surface and thus degrade 
the photoelectric performance of the laser fabricated film. The uniformity of the laser patterned hole array will be 
further investigated to resolve this issue.

Visible transmittance. Optical transparency of the LMF-built sample is demonstrated by clear texts seen 
through a typical LMF-built sample area of 36 mm × 36 mm (Fig. 3a). The effects of various metal films and 
thickness were experimentally evaluated by performing transmittance measurements using a UV-Vis spectrom-
eter (USB4000, Ocean Optics). It is generally believed that the ultra-thin metal film should be semi-transparent 
in order to achieve high visible transmittance after laser patterning39. In this work, Cu films with thicknesses of 
15 nm, 12 nm, 10 nm, 8 nm and 6.5 nm were deposited on the glass substrate. The as-deposited Cu film with a 
thickness of 15 nm only has an average visible transmittance of 23.8% in the visible wavelength range of 450 nm 
to 800 nm, as shown in Fig. 3b. When the thickness of Cu film was reduced to 10 nm and 8 nm, the average vis-
ible transmittance increased to 37.7% and 50.1% respectively. With the thickness of Cu film further reduced to 

Figure 1. (a) Schematics of LMF experiments with Step 1 illustrating the ultra-thin metal film deposition 
process utilizing E-beam evaporator and Step 2 showing the laser surface patterning process; (b) optical image 
of a LMF surface patterned on an 8 nm-thick Cu film.
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6.5 nm, the average visible transmittance increased further to 55.7%. According to literature63, it is believed that 
the Cu film thickness can be further reduced to ensure that the as-deposited Cu film has an average visible trans-
mittance of ~60% in the visible wavelength range of 450 nm to 800 nm with satisfying sheet resistance. However, 
the sheet resistance of the as-deposited Cu film with very low film thickness will be extraordinarily high, which 
will affect the electrical conductivity of laser patterned film. Thus, the film thickness should be properly selected 
in order to maintain balance between the sheet resistance and visible transmittance on the as-deposited film. In 
the meantime, the average visible transmittance of Al films with thicknesses of 8 nm, 10 nm and 15 nm deposited 
on the glass substrate is shown in Fig. 3b. The average visible transmittance of the 15 nm-thick Al film was 1.9%. 
When the thickness of Al film was reduced to 10 nm and 8 nm, the average visible transmittance increased to 3.7% 
and 17.4% respectively. It can be found the as-deposited Cu film has higher average visible transmittance than 
the as-deposited Al film with same film thickness. Combined with the sheet resistance results, we conclude that 
Cu film is a suitable material choice for LMF as it helps achieve better combined photoelectric properties on the 
LMF surface.

Areal density of laser patterning is a key parameter for the visible transmittance. As the areal density decreased 
from 0.56 to 0.32, the average visible transmittance increased from 56.2% to 67.2%, as shown in Fig. 3c. The aver-
age visible transmittance of the as-deposited 8 nm-thick Cu thin film is 50.1%. Laser patterning process increased 
the average visible transmittance by 17.1% using an areal density of 0.32. The LMF surface with the areal density 
of 0.32 also has a sheet resistance of 21.7 Ω/sq, demonstrating superior photoelectric properties.

This study has demonstrated the importance of metal film thickness for achieving satisfying visible transmit-
tance and electrical conductivity, as they are contradicting properties for the laser patterned films. On the one 
hand, the visible transmittance of the as-deposited metal film decreases as the film thickness increases. On the 
other hand, the electrical conductivity increases as the film thickness increases. For the as-deposited Cu film, as 
the film thickness increased from 6.5 nm to 15 nm, the sheet resistance gradually decreased from 11.0 Ω/sq to 2.4 
Ω/sq. Thus even though lower thickness of the as-deposited metal film is preferred for achieving a good optical 
transparency, low sheet resistance with a good amount of conducting material also needs to be considered.

The laser ablation process during laser patterning significantly affects the visible transmittance property. As 
nanosecond laser patterning is a thermal process that experiences melting phase transition, ablating the metal 
film with a thickness on the order of several micrometers will produce large amount of debris and result in high 
surface roughness due to the instability of the melt surface. In this work, ultrathin metal film with a thickness 
on the order of ~10 nm is patterned using the nanosecond laser which creates a relatively clean surface with 
low surface roughness. Still, from the optical micrograph of the patterned hole array as shown in Fig. 1b, it can 
be inferred that there are burrs generated around the hole circumference after LMF process. These burrs are 
attributed to the nanosecond laser fluence used in the experiments that generated distinct heat-affected zones. It 
can be seen in the figure that the laser power intensity caused ejection of condensed and solidified nanoparticle 
clusters which were deposited around laser patterned holes. These burrs can cause scattering of light and increase 
surface roughness25, which may result in poor optical and electrical performance. Slight aperiodicity of the laser 
patterned hole array and imperfect hole shape are also observed which could lead to electrical shorts. Laser 
parameters, pattern design and areal density of the laser patterned film can be further adjusted to achieve the 
photoelectrical performance that can balance the visible transmittance and electrical conductivity.

THz bandpass filtering effect. We measured the THz transmission of different surfaces, including pure 
quartz and glass substrates, quartz and glass substrates coated with 8 nm-thick Cu film and laser patterned Cu 
films on the quartz substrates utilizing the 1000D TeraView THz-Time Domain Spectrometer.

Figure 2. Sheet resistance of (a) as-deposited Cu and Al films as a function of layer thickness; (b) 8 nm-thick 
laser patterned Cu thin film as a function of areal density.
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The time-domain waveforms corresponding to the transmitted THz pulses through different interfaces are 
shown in Fig. 4a. The temporal scan window was set large enough in order to accurately obtain the linewidths of 
the resonance features. By comparing the waveforms of air reference, pure quartz substrate, and quartz substrate 
coated with 8 nm-thick Cu film, notable different features can be found in these time-domain traces. First an 
apparent time delay can be found for the bipolar pulse feature in the waveform of pure quartz substrate compared 
with that of air reference because of the difference in their refractive indexes. Second, the air reference waveform 
exhibits an almost one cycle pulse which corresponds to the incident THz wave. For the waveforms of pure quartz 
substrate and quartz substrate coated with 8 nm-thick Cu film, there are several etalons after bipolar pulse. In 
comparison with the waveforms of pure quartz substrate and quartz substrate coated with 8 nm-thick Cu film, it 
appears that there are damped oscillatory waveform features present in the waveforms for laser patterned Cu film 
and the spectral features of the transmission resonances are contained in these oscillations. These oscillations can 
be attributed to the resonant interaction of the THz pulse with the periodic surface structure patterned on Cu 
film. In general, the magnitude of the oscillations corresponds to the magnitude of the resonance feature, while 
the oscillation duration corresponds to the linewidth of that feature. From Fig. 4, it is apparent that the bipolar 
pulse feature in the waveforms of laser patterned Cu film shows a sign reversal relative to the waveform of pure 
quartz substrate. The sign reversal can be potentially attributed to the significant reshaping due to diffraction 
caused by the interaction between the incident THz pulse and laser patterned periodic hole array structure26. As 
a result of this reshaping process, the transmitted THz pulse might exhibit an additional ± π

2
 phase shift in the low 

frequency limit. Thus the sign reversal of the transmitted time domain waveform would correspond to the phase 
shift imparted to a THz pulse transmitted through the laser patterned periodic hole array structure21,26.

The THz transmission spectra of the pure quartz and glass substrates, the quartz and glass substrates coated 
with 8 nm-thick Cu film, and the laser patterned Cu films on quartz substrate were collected by THz-Time 
Domain Spectroscopy (THz-TDS) technique. Experimental results indicate that the pure quartz substrate has an 
average THz transmission of 75% in the frequency range of 0.3~3 THz. However, the pure glass substrate only has 
an average THz transmission of 33% in the frequency range of 0.3~3 THz and its THz transmission intensity pro-
file exhibits a significant drop in this frequency range. After 8 nm-thick Cu film was deposited on the pure quartz 
and glass substrates, the average THz transmission was decreased to 3% in the frequency range of 0.3~3 THz for 
both of the substrates, which can be found in Fig. 4b. To achieve THz filtering effect, it is required that the THz 
transmission profiles between the pure quartz substrate and 8 nm-thick Cu film coated on quartz substrate should 
have significant difference. The reason could be attributed to that if no difference can be found between these two 
transmission profiles, no transmission peak can be generated after laser patterning. Therefore our research shows 
that quartz is more suitable as the substrate required for achieving THz filtering effect. Thus in order to achieve 
the best combined properties of high transmittance, low sheet resistance and THz filtering effect, quartz and Cu 
are selected as the substrate material and metal film material respectively.

This work for the first time demonstrated ultra-thin metal film with a thickness on the order of ~10 nm to effi-
ciently block the THz wave. Although the AC complex conductivity of metals at THz frequencies is well known, 
the skin depths of metals reported in literature were on the order of at least 100 nm64–67. The thickness of the metal 
film used in this work is on the order of ~10 nm, which is one magnitude lower and significantly different than 
those reported in literature. Based on the research work of Cao and Nahata21, they have proposed to examine the 
properties of the wave field propagating on and through the pure metal film in terms of the properties of SPPs. 
They concluded that because of failing to obey the conservation of energy and momentum laws, electromag-
netic radiation incident on a plane metal-dielectric interface cannot couple to the SPP waves. Therefore, it can 
be inferred that conservation of energy and momentum laws are still not obeyed with the metal film thickness 
on the order of ~10 nm. Future work will be focused on more investigation to elucidate the fundamentals of this 
interesting phenomenon.

For the LMF experiments, two different sets of experimental parameters were used for laser patterning of 
Cu film: Pattern 1 used a laser beam diameter of 115 µm, a hole spacing of 135 µm and an areal density of 0.43; 
Pattern 2 used a laser beam diameter of 115 µm, a hole spacing of 160 µm and an areal density of 0.59. After LMF 
process, the LMF surfaces exhibited clear THz filtering effect with specific resonance frequency and the resonance 

Figure 3. (a) A large LMF surface is placed on the text of a research paper illustrating its high visible 
transmittance. The size of the LMF surface is 36 mm × 36 mm; Visible transmittance of (b) as-deposited Cu and 
Al films as a function of film thickness and (c) 8 nm-thick laser patterned Cu thin film as a function of areal 
density (AD).
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frequency could be tuned by changing the experimental parameters, as shown in Fig. 4c. Since the Cu film was 
deposited on the quartz substrate, there are three interfaces surrounded this stacked structure: metal-air interface, 
quartz-air interface and metal-quartz interface. The metal-air interface and quartz-air interface were ignored 
when calculating the location of the resonant transmission peaks. The quartz substrate causes a downward shift 
in resonant frequency, which reaches a limiting value scaled by the square root of the mean dielectric constant68. 
The equation that is used to calculate the approximate locations of the resonant transmission peaks is defined as 
Equation 1 21,26,69:

λ ε=
+

P

i j (1)
peak 2 2

where P is the physical periodicity, ε = 3.7~4.2 is the dielectric constant of the interfacial dielectric media for 
metal-quartz interface, and i and j are indices corresponding to the resonance order.

Using the above equation for calculation of the resonant transmission peaks and conversion between wave-
length and frequency, the approximate locations of the resonant transmission peaks for both experimental con-
ditions will be: 1.08~1.16 THz (wavelength of 259.7~276.7 µm) for Pattern 1 and 0.91~0.97 THz (wavelength of 
307.8~327.9 µm) for Pattern 2. The experimental results indicate that the resonant transmission peak occurs at 
1.09 THz (wavelength of 274.5 µm) for Pattern 1 and 0.90 THz (wavelength of 333.1 µm) for Pattern 2, as shown in 
Fig. 4c. The experimental results and theoretical calculations exhibit good agreement.

The experimental results show a secondary resonant transmission peak and a rather wide FWHM bandwidth, 
which is caused due to the following laser patterning defects. Firstly, laser patterned hole array exhibited distinct 
aperiodic nature, as can be found in Fig. 1b. The imperfect periodicity of the laser pattered hole array was caused 
by the manufacturing inaccuracy during LMF process. Secondly it can be found that the geometry of the laser 
patterned spot is not perfectly circular. Thirdly, there are burrs generated around the hole circumference after 
LMF process, as discussed in the previous section. These burrs exhibit distinct heat-affected zones and will cause 
scattering effect and increase surface roughness. All of the above-mentioned factors contribute to the occurrence 
of the secondary peak and a relatively wide FWHM bandwidth of Δf ≈ 2 THz, which is higher than the ideal 
FWHM bandwidth of 0.2~0.3 THz70,71. By using a laser that generates high-quality Gaussian beam, the above 
issues are expected to be resolved, and thus the secondary resonant transmission peak can be removed and the 
FWHM bandwidth of the LMF surface can be much narrower, which will facilitate the design and fabrication of 
narrow-band THz filter.

Table 1 shows the combined photoelectric properties for LMF surfaces for Pattern 1 and Pattern 2. Both visible 
transmittance and sheet resistance were measured for more than three times at various locations on a specimen 
and the average value with standard deviation was reported. It can be found that the two surfaces exhibit a vis-
ible transmittance of ~60%, a sheet resistance of ~20–30 Ω/sq and a specific resonance frequency with ~2 THz 
FWHM bandwidth. The reason that the visible transmittance of the LMF surfaces fabricated on the quartz sub-
strate is lower than that on the glass substrate can be attributed to the following reasons: (1) The visible transmit-
tance of quartz substrate is slightly lower than that of the glass substrate; (2) The thickness of the as-deposited 
films on different substrates is slightly different. In addition, it is noted that the visible transmittance of Pattern 2 
is larger than that of Pattern 1, and the sheet resistance of Pattern 2 is higher than that of Pattern 1 even though 
the areal density of Pattern 2 is larger than that of Pattern 1. This variation was mainly attributed to the various 
Cu film thickness employed in Pattern 1 and Pattern 2. The visible transmittance of the as-deposited Cu film of 
Pattern 2 was around 4% higher than that of Pattern 1, while the sheet resistance of the as-deposited Cu film of 
Pattern 2 was 3.4 Ω/sq higher than that of Pattern 1. Therefore, although the combined photoelectric properties 
need further refinement, we demonstrate that the LMF method has potential to be used for the large scale and 
low-cost fabrication of the multi-functional THz components.

From the THz spectra of two patterns, it is found that the peak transmission intensity of Pattern 1 is 67.4%, 
which is slightly higher than the peak intensity of 64.5% for Pattern 2. This could also be attributed to the slight 
difference between the thicknesses of Cu films used for the two patterns. The Cu film for Pattern 1 is slightly 
thicker than that of Pattern 2. As a result, a higher peak transmission intensity is observed for the THz spectrum 
of Pattern 1 rather than Pattern 2. This phenomenon indicates that metal thickness is important for efficient THz 
transmission through laser patterned metal film. With higher metal film thickness, higher THz transmission 
intensity is facilitated. In addition, the electrical conductivity will be higher while the visible transmittance will 
be lower with higher film thickness, as discussed in the previous section. To balance the three properties, proper 
metal film thickness should be used in the LMF experiments. It is also found that the locations of resonant trans-
mission peaks for Pattern 1 and Pattern 2 are different since different areal densities were used for these two pat-
terns during LMF experiments. The experimental results indicate that areal density affects the THz transmission 
of the LMF surface. Literature work indicates that the physically relevant parameter that determines extraordi-
nary THz transmission properties is the hole size for a fixed hole periodicity31. Therefore, metal film thickness, 
hole size, and areal density are key parameters that determines the combined performance of visible transmit-
tance, electrical conductivity and THz filtering effect. According to the specific requirements of any electronic 
devices, these parameters could be further optimized to achieve the desired functions.

Processing efficiency. The LMF process developed in this work is highly time-efficient and cost-effective 
as it only involves two simple steps for the three integrated functionalities. The other state-of-art nanofabrication 
methods usually involve many steps, which are time-consuming and costly for large area processing. For exam-
ple, photolithography method27–29 has been applied for fabricating THz transmission subwavelength hole arrays, 
which involves at least six steps including ultrasonic cleaning, spin coating, soft-bake, UV exposure, chemical 
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development and reactive ion etching. The production time for such a metasurface with metallic hole array is at 
least one magnitude longer than the LMF process.

One key advantage of the LMF process is that it utilized a laser beam diameter on the order of several hun-
dreds of µm during laser scanning of the thin metal film. Thus the processing efficiency has been significantly 
increased compared with the existing research work done by other type of nanosecond laser39, picosecond laser72 
or femtosecond laser73, which used a laser beam diameter on the order of only several µm. It is expected that the 
laser beam diameter could be further increased to several millimeters while maintaining the similar laser fluence 
to further enhance the processing efficiency. Furthermore it should be noted that the LMF process just used an 
affordable nanosecond laser with a repetition rate of 10 Hz and thus currently it took around one hour to fabricate 
the transparent conducting film with an area of 36 cm × 36 cm using the optimal laser processing parameters. 
The processing speed can be significantly further optimized by using lasers with higher repetition rate. If a laser 
at 10 kHz pulse was used, the processing time could be reduced to 6 seconds. It should also be noticed that even 
with such high laser fluence, no structural deformation and damage were found on the quartz substrate. All of the 
above-mentioned advantages of this LMF process will render more practical treatment of glass-based materials 
to produce multi-functional THz components for various applications.

Understanding the LMF THz bandpass filtering via numerical simulations. Finite element method 
model was developed utilizing COMSOL Wave Optics module74 to help determine the fundamental mechanism 
of THz bandpass filtering for the LMF-built samples. Figure 5 shows the simulated THz transmission of the LMF 
surfaces created with identical laser beam diameter of 115 µm, and different hole spacings of 135 µm with an areal 
density of 0.43 and 160 µm with an areal density of 0.59. The simulations were set up with periodic boundary 
conditions assuming a unit cell of one hole with spacing defined by the LMF process. The source and listener 
ports were set in the simulation to generate and measure the transmitted THz wave through the patterned Cu 
film, respectively. The simulations were performed utilizing the refractive index of Cu in THz domain obtained 
from literature75. For the case with the hole spacing of 135 µm, the resonance frequency of this structure can be 
found at around 1.09 THz. While for the case with the hole spacing of 160 µm, it exhibits a red-shifted resonance 
frequency at 0.90 THz compared to the case with the hole spacing of 135 µm. The red shift feature is attributed to 
the larger hole spacing which results in a larger wavelength value for the location of the resonant transmission 
peak, as indicated in Equation 1.

Figure 4. (a) Time domain data collected for air reference, pure quartz substrate, quartz substrate coated with 
8 nm-thick Cu film, laser patterned surface with laser beam diameter of 115 µm and hole spacing of 135 µm 
and laser patterned surface with laser beam diameter of 115 µm and hole spacing of 160 µm. There is notable 
oscillations in the waveform of the laser patterned Cu films; (b) THz transmission spectra for quartz and 
glass substrates without treatment and quartz and glass substrates coated with 8 nm-thick Cu film; (c) THz 
transmission spectra for laser patterned surface with laser beam diameter of 115 µm and hole spacing of 135 µm 
and laser patterned surface with laser beam diameter of 115 µm and hole spacing of 160 µm.
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Table 2 presents the error of the resonance frequency and resonant transmission intensity between the exper-
imental and simulation results. It is found that the error of the resonant frequency between the experimental and 
simulation results is less than 6%, while the error of the resonant transmission intensity between the experimental 
and simulation results is a little higher with a value of 15~21%. This indicates that the simulated results agree 
well the experimental results in terms of the resonance location. However, there is discrepancy for the resonant 
transmission intensity between the experimental and simulated results which could be attributed to the imperfect 
nature of the laser patterned hole array caused by the manufacturing inaccuracy during laser micro-machining, 
as discussed in the previous section. The processing parameters during numerical simulation were assumed to be 
ideal while experimental error occurred for LMF experiments. Simulation results indicate that hole spacing and 
hole geometry are important parameters that will affect the quality of THz transmission and these two parameters 
should be further optimized. In addition, if an industrial laser with high repetition rate and low pulse energy can 
be used, there will be less metal deposition around the laser ablated holes and thus the surface roughness of the 
LMF surface can be reduced, which will eliminate the scattering effect and enhance THz transmission through 
the LMF surface25. Although the discrepancy exists, the good agreement between the experimental and simu-
lation results indicates that LMF process is a promising method for fabrication of transparent conducting THz 
bandpass filters.

Conclusions
This work developed an innovative Laser-based Metamaterial Fabrication (LMF) process to enable time-efficient 
and cost-effective fabrication of transparent conducting THz bandpass filter. The laser patterned ultra-thin metal 
film exhibits combined surface properties of high visible transmittance, good electrical conductivity and THz 
bandpass filtering effect. This LMF process proves the feasibility that these three important functionalities can be 
integrated into one single surface. This process significantly improves the processing efficiency and reduces pro-
duction cost compared with the existing laser surface patterning methods for fabrication of functional photoelec-
tric surfaces. By using a high-energy nanosecond laser, it renders practical treatment of macroscale transparent 
substrates for various military, industrial and transportation applications.

More future efforts will be devoted for the development of tuning methods for the THz bandpass filter, such 
as electrical, magnetic, and mechanical methods. The developed THz bandpass filters with a frequency-domain 
modulating functionality will be tested and used for various THz applications, such THz gas-phase spectros-
copy76,77 and THz imaging78.

Methods
optical micrograph. The optical micrograph of the laser patterned hole array structure was captured using 
a measuring optical microscope.

sheet resistance measurement. The sheet resistance of the laser patterned hole array were tested with 
a digital four point probe sheet resistivity measurement system (Signatone Pro4 series), which is connected to a 
sourcemeter (Keithley 2400 series) for sheet resistance value reading. The schematic for sheet resistance measure-
ment is as shown in Fig. 6a. Four metallic probe pins are applied to the surface of a specimen, being lined up, and 
current is made to flow through the two outer most probe pins. When the difference in potential between the two 
intermediate probe pins is measured, the sheet resistance can be found from Equation 2:

ρ π
= = .s V

I ln
V
I2

4 5325 (2)

where ρs is the sheet resistance with the unit of Ω·sq, V is the voltage between the inner probes, and I is the 
current through the outer probes. S is the needle spacing as shown in the schematic. Each specimen surface was 
measured for three times at various locations, and the averaged sheet resistance was obtained.

optical transmittance measurement. The optical transmittance of laser patterned microhole array was 
measured using a UV-Vis spectrometer (USB4000, Ocean Optics Co.) with normal incidence. The schematic for 
optical transmittance measurement is as shown in Fig. 6b. The UV-Vis spectrometer measures the transmittance 
of the specimen surface in the wavelength range of 400~1000 nm. Before transmittance measurement, calibration 
of the transmittance scale was performed by measuring the transmittance through air. Then the specimen was 
placed on the optical path of normal incidence for the actual transmittance measurement. During the transmit-
tance measurement, light from a visible and near-infrared light source (HL-2000; Ocean Optics Co.) was fed 
through the illuminating fiber-optic probe, directed through the specimen placed on top of the pinhole, and into 
the quartz fiber-optic probe coupled to a USB4000 spectrometer. OceanView® software was utilized to process 
and visualize the transmittance measurement results. Each specimen surface was measured for three times at 
various locations, and the averaged spectral transmittance was obtained.

Visible transmittance Sheet resistance
Resonance 
frequency FWHM width

Pattern 1 56.9 ± 0.4% 16.3 ± 1.8 Ω/sq 1.09 THz 1.94 THz

Pattern 2 57.2 ± 0.6% 31.9 ± 3.2 Ω/sq 0.90 THz 2.29 THz

Table 1. Combined photoelectric properties for Pattern 1 and Pattern 2.
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tHz-time domain spectroscopy. Experimental THz transmission spectra, were generated using 
THz-Time Domain Spectroscopy technique79,80. THz-TDS is conducted by generating a coherent pulse of EM 
radiation at THz frequencies, passing the radiation through the sample of interest, and detecting the transmit-
ted radiation in a time dependent manner. Figure 6c shows a general schematic of a typical THz-Time Domain 
Spectrometer. The THz-Time Domain Spectrometer is comprised of three main elements: a near infrared laser, a 
THz emitter, and a time domain detection system.

A 1000D TeraView spectrometer (TeraView Limited, Cambridge, UK) was used to collect the THz-TDS data. 
This instrument utilizes a Ti:Sapphire (Ti:Al2O3) near infrared laser to generate a femtosecond laser pulse over a 
period less than 100 fs at a wavelength of 800 nm. This pulse is then split into a probe and pump beam. The pump 
beam strikes a polarized, low temperature grown GaAs semiconductor, quickly creating electron-hole pairs to 
generate a broadband of electromagnetic radiation. The broadband nature of this radiation makes it well suited 
for solid-phase measurements where spectral bands are relatively broad compared to gas-phase spectra.

Time information is collected using a delay line. The probe beam is directed to the delay line, where the delay 
line position allows for sampling of the time domain signal in a discrete and time-integrated manner. The 1000D 
TeraView spectrometer is equipped with a photoconductive (PC) detector. This detector operates by utilizing 
low temperature grown GaAS semiconductor (band gap ~1.5 eV at STP). After the pump beam passes through 
the sample compartment and the probe beam passes through the delay line, they are directed to illuminate the 
detector. The higher energy probe beam generates electron-hole pairs in the semiconducting PC material, while 
the mobile electrons are accelerated by the oscillating electric field vector of the THz radiation, creating a meas-
urable current between the antenna electrodes of the detector assembly. The semiconducting material used in the 
Teraview 1000D spectrometer is GaAs with 1.5 eV band gap at room temperature79,80.

Each THz-TDS spectrum was collected as 1800 co-added scans attained over one minute. Three air-reference 
spectra and nine sample spectra were collected for each quartz sample. Confounding water vapor lines were 
avoided by purging the sample compartment with dried air. Time-domain spectra were processed subsequently 
to achieve frequency-domain absorption spectra. Each time-domain spectrum was truncated just before the first 
etalon and the truncated time-domain spectrum data was zero-filled to 8192 (213) points as shown in Fig. 6d. 
A boxcar apodization function was applied prior to the fast Fourier transform to yield the corresponding 
frequency-domain electric field spectrum. Transmission spectra were then calculated as the ratio of the sample 
to air electric field spectra in the frequency domain. The resolution of the resulting spectra was 0.036 THz over a 
spectral range of 0.3~3 THz.

Figure 5. Experimental and simulated THz transmission of laser patterned surface with laser beam diameter 
of 115 µm and hole spacing of 135 µm and laser patterned surface with laser beam diameter of 115 µm and hole 
spacing of 160 µm.

Hole 
spacing

Resonance frequency (THz) Resonant transmission intensity (%)

Simulation Experimental Error Simulation Experimental Error

135 µm 1.15 1.09 5.5% 85.2 67.4 20.9%

160 µm 0.92 0.90 2.2% 76.2 64.5 15.4%

Table 2. Error of the resonance frequency and resonant transmission intensity between the experimental and 
simulation results.
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Finite element method (FeM) simulations. To better explain and verify the experimental results, THz 
transmission of the LMF surface was simulated using the Wave Optics Module of the finite element method 
(FEM) software COMSOL Multiphysics®81. The simulation domain of the structure was reduced to a single 
unit cell with periodic boundary conditions, to simplify the computation. Two ports, source and listener ports 
were placed on the interior boundaries of this unit cell to determine the transmission characteristics using the 
S-parameter calculation. The hole diameter and spacing were varied in the simulation corresponding to actual 
experimental conditions to determine the impact of these parameters on the THz transmission of the patterned 
Cu films. The geometry, material and boundary conditions for the FEM simulation of the THz transmission 
through the LMF surface will be discussed in this section.

In the model, the simulated surface structure is consisted of a unit cell inside the periodic micro-hole array 
patterned on the quartz substrate coated with ultra-thin Cu film, as shown in Fig. 7a. The thicknesses of the Cu 
film and the quartz substrate, the laser spot diameter and the laser patterned hole spacings were set corresponding 
to the experimental conditions in LMF experiments. The optical properties of the Cu film is frequency depend-
ent in the THz range 0.3~3 THz, and the refractive index for this material was extracted from the experimental 
data of Sun et al.75. The substrate material used in this work was defined as quartz, and the refractive index of 

Figure 6. Experimental setup for (a) sheet resistance measurement; (b) visible transmittance measurement; (c) 
THz time domain spectroscopy; and (d) Time-domain spectrum collected by THz-TDS.

Figure 7. 3D simulation setup of the LMF surface (a) the whole simulation domain; (b) unit cell structure of 
the LMF surface; (c) material setup of the LMF surface; and (d) mesh setup and boundary conditions for the 
simulated LMF surface with the maximum boundary element size set equal to λ/6.
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this material was obtained from the built-in library of COMSOL. The rest of the simulation regions are air-filled, 
and the refractive index in these regions was also obtained from the built-in library of COMSOL. The simulated 
surface structure and material setup of the simulation domain are shown in Fig. 7b,c.

The THz wave propagated in a hypothetical air-filled top region was set with perfect electric conductors (PEC) 
on the side normal to the wave propagation direction while the bottom side was set as scattering boundary con-
dition (SBC). The simulation domain of the LMF surface was reduced to a single unit cell with the 
Floquet-periodic boundary conditions applied on four sides of the cell to simulate the infinite 2D array. The 
air-filled top and bottom regions were set to perfectly matched layers (PMLS) for absorbing the excited mode 
from the source port and any higher order modes generated by the periodic structures. The structure mesh is 
physics-controlled with the maximum element size equal to λ

6
 with λ defined as the wavelength of the incident 

wave. The paired boundaries of the periodic boundary regions were set with the identical surface meshes. The 
mesh setup of the LMF surface is shown in Fig. 7d.
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