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enhanced nonreciprocal 
transmission through a saturable 
cubic-quintic nonlinear dimer 
defect
Muhammad Abdul Wasay  1, M. L. Lyra2 & B. s. Ham  1

the transmission properties through a saturable cubic-quintic nonlinear defect attached to lateral 
linear chains is investigated. particular attention is directed to the possible non-reciprocal diode-like 
transmission when the parity-symmetry of the defect is broken. Distinct cases of parity breaking are 
considered including asymmetric linear and nonlinear responses. the spectrum of the transmission 
coefficient is analytically computed and the influence of the degree of saturation analyzed in detail. The 
transmission of Gaussian wave-packets is also numerically investigated. our results unveil that spectral 
regions with high transmission and enhanced diode-like operation can be achieved.

The investigation of controlled transport of energy/mass has remained a hot area of research since a long time and 
it has recently gained considerable revival due to its direct implications in manufacturing technological devices 
for controlled transport. The diode is one of the basic devices which can directionally control transport allowing 
it to occur mainly in a preferential direction. Besides the most traditional diodes that operate by rectifying electric 
current, there have been several demonstrations for the capability of achieving such non-reciprocal transport of 
heat flow1–3, acoustic4–6 and electromagnetic7–10 waves.

In linear systems with time-reversal symmetry, no symmetry breaking of transmission can be generated 
according to the reciprocity theorem11–13. Time-reversal symmetry can be broken in magneto-optical devices 
by an applied magnetic field to generate nonreciprocal transport of optical waves10. An analog mechanism has 
been developed to produce non-reciprocal isolators of acoustic waves14. On the other hand, nonlinear processes 
can lead to asymmetric wave propagation without the need of an external magnetic field. Recent experimental 
advances have demonstrated that nonlinear optical lattices with alternating gain and loss atomic configurations 
are ideal realizations of non-Hermitian parity-time symmetric systems that can be explored to better understand 
the peculiar physical properties of these non-Hermitian systems in atomic settings15,16.

By exploring to own nonlinear properties of the underlying medium, the nonreciprocal propagation of elastic 
and optical waves have been demonstrated. In particular, a pronounced rectifying factor for the scattering of 
harmonic waves was reported in a multilayered system represented by a set of discrete nonlinear Schrödinger 
equations with a cubic nonlinearity restricted to take place just in two nonlinear asymmetric layers17. Recently, 
the effect of a higher order quintic nonlinearity on the non-reciprocal transport has been investigated, unveiling 
that the combined effect of cubic and quintic terms is non-additive18. The nonlinear dynamics of soliton forma-
tion in laser-induced optical gratings has been experimentally probed under the competing action of cubic and 
quintic nonlinear contributions19,20, evidencing mutual transformations among droplet-like fundamental, dipole, 
and azimuthally modulated vortex solitons.

However, when very intense waves propagate in matter, it recovers its linear behavior but with a distinct group 
velocity as compared to that of a low-intensity wave21. This phenomenon is known as the saturation of the non-
linearity and is associated with the emergence of several non-trivial optical phenomena21–32. Within the context 
of non-reciprocal transmission through non-linear asymmetric layers, it has been shown that bistability can be 
enhanced by saturation of a cubic nonlinearity, thus favoring the nonreciprocal diode-like transmission. Also, 
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saturation was shown to have opposite impacts of the rectifying action over short and long wavelength harmonic 
signals33. Further, non-local nonlinear responses were shown to generally act by reducing the diode action34.

Motivated by the non-additivity of cubic and quintic nonlinear effects on the non-reciprocal transmission of 
harmonic waves and by the beneficial trend produced by saturation of the nonlinear responses, we will address to 
the question of how these aspects can be put together to enhance the diode-like scattering of waves by a nonlinear 
asymmetric dimer. Within a tight-binding approach, we will analytically compute the spectrum of transmission 
through a saturable nonlinear asymmetric dimer coupled to linear side-chains. We will explicitly consider the 
saturation of both cubic and quintic nonlinear contributions and explore distinct scenarios for breaking the par-
ity symmetry. We also numerically investigate the transmission of Gaussian incoming waves. In particular, we 
discuss the possibility of achieving large rectification action with high transmission in appropriated regions of the 
model’s parameters space.

The paper is organized as follows: In section II, we introduce the model and develop the main formalism used 
to obtain the spectral transmission properties. In section III, we explore the saturation effect on the multistabil-
ity and transmission for various(distinct) symmetry breaking scenarios. Section IV devotes to the analysis of 
the saturation effect on the rectification factor. In section V, we provide some numerical results concerning the 
non-reciprocal transmission on incoming Gaussian wave-packets. Finally, in section VI, we summarize and draw 
our main conclusions.

saturable Cubic-Quintic DNLs Chain
In the present work, we study the stationary scattering solutions of plane waves in a discrete linear chain with a 
pair of saturable nonlinear defects. The defects will be described as a saturable cubic-quintic discrete nonlinear 
Schrödinger dimer. The saturable cubic-quintic discrete nonlinear Schrödinger (sCQDNLS) equation with a sat-
urated nonlinearity is given by
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where μ3 and μ5 are the control parameters for the saturation of both the on-site cubic and quintic nonlinear 
responses, respectively. In what follows we will assume μ3 = μ5 = μ. Vn is the potential at site n. The off-diagonal 
coefficient is chosen to be unity without loss of generality. The parameters γn and νn are the local cubic and quintic 
nonlinear responses of the system, respectively, that are the main nonlinear contributions at low wave amplitudes. 
The stationary solutions of Eq. (1) are given by

ψ φ= .ω−t e( ) (2)n n
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Using these in Eq. (1), we arrive at a stationary cq-DNLS equation
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which can be re-arranged in a backward iterative scheme17,35 as follows:
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where ω is the spatial frequency and φn is the complex mode amplitude at site n. Eq. (4) is a map for the amplitudes 
at site n − 1 of the time-independent discrete nonlinear Schrodinger equation. This map is helpful for obtaining 
the transmission formulae, since Eq. (4) provides the amplitude at site n − 1 given the amplitudes at site n and 
n + 1. Note that we are interested in examining the scattering by a nonlinear dimer, i.e., two sites carrying the 
nonlinear effects at the center of an infinite one dimensional chain. This implies that the full cq-DNLS in Eq. (1)  
applies to just these two sites. Therefore, the last two terms in Eq. (1) will not contribute when an input/output 
signal is away from the dimer. In that case, the transmission will be governed by just the linear part of Eq. (1).  
Hence the input/output signal will not feel any nonlinear response from the lattice in that region and can prop-
agate freely.

We will focus on the scattering properties of plane wave solutions of the following form
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where, R0, R and T are the amplitudes of incoming, reflected and transmitted waves, respectively. Note that the 
nonlinear region in the lattice corresponds to the sites n = 1, 2. Thus the site-dependent coefficients carrying non-
linear effects νn and γn are absent in the linear part of the lattice. Therefore, the model corresponds to a nonlinear 
dimer connected to otherwise linear side chains. Further, we will consider Vn = 0 on both side chains.

The purpose of this work is to evaluate the capability of the saturated cq-DNLS dimer to produce efficient 
asymmetric scattering and hence to operate as a wave diode. The desired effect (asymmetric transmission) arises 
when one breaks the translational symmetry of the lattice17,18,33,34. This symmetry breaking combined with the 
nonlinearity leads to a nonreciprocal transmission of the input signal. In a one-dimensional setting, this can be 
done in different ways which we discuss in details in the following sections.
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Using the backward transfer map, the transmission coefficient for a right-propagating wave (k > 0, i.e., the 
wave is incident from the left of the dimer) is given by
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When a harmonic wave is incident from the right of the nonlinear dimer ( <k 0), i.e., a left-propagating wave, 
the transmission coefficients can be computed in the same way simply by exchanging the subscripts 1 and 2, 
which amounts to flipping the lattice17,18,33,34.

Effects of Saturation on Multistability and Transmission
We are interested in exploring a nonreciprocal transmission of input signals which will lead us to the desired 
diode-like action. In particular, we focus on the influence of the simultaneous saturation of both cubic and quintic 
nonlinear responses. We begin by showing the typical relation between incoming and transmitted intensities for 
varying strengths of the saturation parameter μ.

Figure 1 is a plot for transmitted intensity |T|2 as a function of incoming intensity |R0|2 for the nonlinear dimer 
with V0 = −2.5 and with γ = 1, ν = 0.5 representing the local (on-site) cubic and quintic nonlinear response of 
the lattice respectively, μ determines the extent to which we saturate these nonlinear responses. Note that we have 
defined the asymmetry in on-site potentials εv whose strength determines the extent to which the on-site poten-
tials differ from each other V1 = V0(1 + εv) and V2 = V0(1 − εv). In the case at hand we deal with a dimer and the 
difference between (two) on-site potentials is taken to be εv = 0.05. Similarly, we will later utilize the asymmetry 
in other site dependent parameters with a relevant corresponding denotation. For no saturation (μ = 0, top left 
in Fig. 1), there are two bistability regions, i.e., regions where a single input intensity gets transmitted with differ-
ent intensities representing distinct defect modes. The first window occurs at lower incident intensities and it is 
significantly broad compared to the second window occurring at higher incoming intensities (see18 for details). 
When the saturation parameter μ increases, the multistability regions are suppressed, going from a single bista-
bility window at intermediate values of μ) to the usual single mode behavior at strongly saturable nonlinearities.

Figure 2 shows the transmission coefficient t(k, |T|2) as a function of transmitted intensity |T|2 for a sCQDNLS 
dimer with the same parameter values as in Fig. 1. The shift between the left and right-incident transmission 
peaks due to the asymmetry in on-site potentials εv is apparent. It is also important to mention that the trans-
mission coefficient is comparatively larger in the ranges of intensity which lead to a significantly asymmetric 
transmission. The asymmetry between the left and right incidence transmission is suppressed when the nonlinear 
dimer is strongly saturable.

Figure 3 is the transmission coefficient density plot for the sCQDNLS dimer with asymmetric on-site poten-
tials and with the parameter values for the on-site nonlinear responses being the same as in the previous figures. 
The transmission increases with increasing saturation from μ = 0 to μ = 0.5 (see the plots in the top panel in 
Fig. 3), then the transmission gradually decreases when we further increase the saturation from μ = 0.5 to μ = 1.5 
(see the plots in the bottom panel in Fig. 3).

When the lattice’s symmetry is broken threefold with all three site dependent parameters chosen to be different 
simultaneously at each dimer site (different on-site potential, cubic and quintic response), it is possible to main-
tain higher transmission at increased levels of asymmetry and saturation. Figure 4 is produced to depict this case 
with the parameter values chosen as described in the caption. The three-fold symmetry breaking parameters εv, 
εc and εq are non-zero simultaneously, where εv describes the asymmetry in on-site potentials, εc and εq describe 
the asymmetry in cubic and quintic response, respectively. In the regime of high saturation and 3-fold asymmetry, 
high transmission occurs at intermediate wave-numbers k ≈ 0.8~1.8. Note however that in this regime, there is 
no transmission for very small wave-numbers k ≈ 0~0.2 or very large wave-numbers k ≈ 2.7~π. It is important to 
stress that higher transmission at higher asymmetry is a welcome feature with regard to a diode-like transmission. 
In previous works, higher asymmetry renders a better diode effect but usually with an overall lower transmis-
sion17,18,34. The present result shows that the simultaneous asymmetry on the potential and cubic and quintic 
nonlinear contributions can overcome the problem of lower transmission at better diode-like modes.

Distinct Asymmetry scenarios
As mentioned before, there are three distinct ways to break the translational symmetry of the underlying 
one-dimensional sCQDNLS lattice system in order to support the nonreciprocal transmission. It is of interest to 
study possible implications of saturating the nonlinear responses of the lattice on transmission of input signals 
under various distinct possibilities to induce asymmetry. The sCQDNLS dimer model has two local nonlinear 
responses. In this section, we will report on the effects of saturation on the nonreciprocal transmission under 
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three different possible parity breaking schemes. The three different cases correspond to the three distinct choices 
of on-site parameters asymmetries. For instance, one could choose either of the following

 (i) different on-site potentials for the two dimer sites.
 (ii) different on-site cubic nonlinear response.
 (iii) different on-site quintic nonlinear response.

Additionally, one can also have all three factors acting simultaneously, which would amount to a higher degree 
of broken symmetry, i.e., a threefold-symmetry breaking or threefold-asymmetry case, which we will also discuss 
in detail in the upcoming sub-sections.

Different on-site potentials. This is the first of three possibilities to break the translational symmetry of 
the one dimensional chain under consideration. Figure 5 presents the transmission coefficient as a function of 
saturation μ and the transmitted intensity |T|2.

As shown in Fig. 5, bulk of the transmission occurs at saturation μ = 2~3. For smaller saturation, μ < .0 5, the 
transmission is very small. To reinforce this conclusion, we plot the transmission coefficient as function of satu-
ration parameter μ and asymmetry in on-site potentials εv in Fig. 6 which confirms that the transmission 
decreases at higher asymmetry, i.e., εv > 0.2 and is entirely suppressed at εv ≥ 0.4.

Figure 1. Relationship between incoming |R0|2 and transmitted |T|2 wave intensities for distinct values of 
saturation parameter μ starting from μ = 0 in the top left to μ = 4 in bottom right panel and with asymmetry 
between on-site potentials εv = 0.05. Solid and dashed lines represent the right and left incidences. 
Here we considered an harmonic incoming mode with wave-number k = 0.1. Model parameters are 
V0 = −2.5, γ1 = γ2 = γ = 1, ν1 = ν2 = ν = 0.5, εv = 0.05.

https://doi.org/10.1038/s41598-019-38872-5


www.nature.com/scientificreports/

5Scientific RepoRts |          (2019) 9:1871  | https://doi.org/10.1038/s41598-019-38872-5

Different on-site cubic nonlinearities. As discussed above, it is also possible to break the lattice’s sym-
metry by choosing different cubic nonlinearities for the two sites under consideration i.e., γ1 ≠ γ2, the resulting 
effects on transmission are depicted in Fig. 7.

Comparing the plots in Figs 5 and 7, it is evident that the first (left) plot from both figures are quite similar. 
Hence, the transmission remains almost the same in both cases for small asymmetry. However, the plot on the 
right is very different in the two figures. It shows that the trend of diminishing transmission with increasing asym-
metry in on-site potentials (εv ≠ 0) does not hold in the case when asymmetry is between the cubic nonlinear 
responses (εc ≠ 0). It is clear from Fig. 7 (right) that even at a sufficiently larger asymmetry (εc), the system still 
allows significant transmission roughly for the saturation values of μ = 2.5~3.8.

The corresponding plot of transmission coefficient as function of μ and εc is plotted in Fig. 8, which confirms 
our analysis that a significant transmission indeed survives for large enough εc (Notice the scale on vertical axes 
in Figs 6 and 8).

Different on-site quintic nonlinearities. Now we consider the effect of saturation on transmission when 
the lattice symmetry is broken by different on-site quintic nonlinearity i.e., ν1 ≠ ν2. Figure 9 shows the transmis-
sion in the μ versus |T|2 plane for varying asymmetry εq in the quintic response. The corresponding plot for μ 
versus εq is given in Fig. 10.

Figure 10 confirms that when the lattice symmetry is broken by choosing different quintic responses (εq ≠ 0), 
transmission of the input signal remains pronounced for even higher asymmetry compared with the cases dis-
cussed before.

Figure 2. Transmission coefficient t(k,|T|2) as a function of transmitted wave intensity |T|2 for distinct values of 
the saturation parameter μ, and with V0 = −2.5, εv = 0.05, γ1, 2 = 1 and ν1, 2 = 0.5. Solid curves correspond to the 
right incidence and dashed curves to the left incidence, with k = 0.1.
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threefold symmetry breaking. From Fig. 6 we learn that for those parameter regimes, bulk of the trans-
mission occurs for asymmetry εv ≤ 0.2, and for saturation μ ≈ 2.5~3.5. The cases of symmetry breaking by means 
of nonlinearity Figs 8 and 10 suggest that it is possible to achieve higher transmission regimes for increased 
asymmetry levels which could be interesting to explore in the context of a diode-like transmission because, as 
discussed earlier in this paper and other studies17,18,33,34, higher asymmetry renders a better diode-like action but 
with reduced overall transmission.

Below we show the density plot of transmission coefficient as a function of |T|2 and εv (left) and a correspond-
ing plot of transmission coefficient as a function of εv and μ (right), for the case of a threefold broken symmetry 
of the one-dimensional sCQDNLS lattice.

Figure 3. Density plot of transmission coefficient as a function of k and |T|2: From μ = 0 in top left to μ = 1.5 in 
bottom right and with εv = 0.05. Other parameters are the same as those used in the previous figures.

Figure 4. Density plot of transmission coefficient as a function of k and |T|2 for varying saturation. Left Plot: 
μ = 0.5, Right Plot: μ = 3. Site dependent parameter values are V1, 2 = V0(1 ± εv) with V0 = −2.5, εv = 0.8;  
γ1, 2 = γ0(1 ± εc) with γ0 = 1, εc = 0.5; ν1, 2 = ν0(1 ± εq) with ν0 = 0.5, εq = 1.2.
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Figure 5. Density plot of transmission coefficient as function of μ and |T|2 for k = 0.1: Left: εv = 0.05 Right: 
εv = 0.2. Both plots are produced for εc = εq = 0, γ0 = 1, ν0 = 0.5 and V0 = −2.5.

Figure 6. Density plot of transmission coefficient as function of μ on horizontal axis versus εv on vertical axis. 
The plot is produced for k = 0.1, |T|2 = 5, εq = εc = 0, γ0 = 1, ν0 = 0.5 and V0 = −2.5.

Figure 7. Density plot of transmission coefficient as function of μ and |T|2 for k = 0.1. The cubic response γ1, 

2 = γ0(1 ± εc) with γ0 = 1: Left: εc = 0.05 Right: εc = 1.5. Both plots are produced for εv = εq = 0, ν0 = 0.5 and 
V0 = −2.5.
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It is clear from Fig. 11 that the threefold broken symmetry can help lift the transmission regimes up towards 
higher asymmetry. However, bulk of the transmission still occurs for saturation values around μ = 2.5~3.5.

In summary, we can conclude from the results presented in Figs 6, 8, 10 and 11 that the transmission is 
more susceptible to asymmetry when the broken translational symmetry (or asymmetry leading to nonreciprocal 

Figure 8. Density plot of transmission coefficient as function of μ on horizontal axis versus εc on vertical axis 
for k = 0.1, |T|2 = 5, εv = εq = 0, γ0 = 1, ν0 = 0.5 and V0 = −2.5.

Figure 9. Density plot of transmission coefficient as function of μ and |T|2 for k = 0.1: The quintic response 
ν1, 2 = ν0(1 ± εq) with ν0 = 0.5. Left: εq = 0.05 Right: εq = 1.5. Both plots are produced for εv = εc = 0, γ0 = 1 and 
V0 = −2.5.

Figure 10. Density plot of transmission coefficient as function of μ on horizontal axis versus εq on vertical axis 
for k = 0.1, |T|2 = 5, εv = εc = 0, γ0 = 1, ν0 = 0.5 and V0 = −2.5.
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transmission) corresponds to different on-site potentials (i.e., εv in our notation), as compared to either of the 
other two types of asymmetries (i.e., εc or εq in our notation).

Effects of Saturation on Rectification
To extend our analysis on the diode-like transmission through the nonlinear dimer, we will present some results 
for the so-called rectifying factor in this section, which will allow us to identify regions with maximal asymmetry 
in the transmission. The rectifying factor is defined as17

 =
| | − | |
| | + | |

t k T t k T
t k T t k T

( , ) ( , )
( , ) ( , )

,
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R L

R L

2 2
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where tL and tR are the transmission coefficients of the waves coming from the left and right of the nonlinear 
dimer, respectively. The rectifying factor  has a maximum value of ±1, which corresponds to perfect diode-like 
action. In what follows we will present the rectifying action for the cases when (i) asymmetry in the lattice is due 
to different on-site potentials, i.e., V1 ≠ V2 (ii) asymmetry due to different on-site cubic nonlinear response, i.e., 
γ1 ≠ γ2, (iii) asymmetry due to different on-site quintic nonlinear response, i.e., ν1 ≠ ν2. We will highlight the 
effect of saturation on rectification for these three cases and also for the threefold-asymmetry case.

Asymmetry due to different on-site potentials. Rectifying action with different on-site potentials 
under the effect of varying saturation is plotted in Fig. 12. Note that the asymmetry between on-site potentials 
remains fixed at εv = 0.2, cubic response at γ1 = γ2 = 1 and quintic response at ν1 = ν2 = 0.5. The transmission 
becomes more symmetric as the saturation coefficient increases, specially for μ > 0.4.

For the cases of μ ≤ 0.4, a diode-like action is apparent, with transmission of both right-propagating (brighter) 
and left-propagating (darker) branches. This action seems to be more pronounced for input waves with larger 
wave-numbers for saturation up to μ = 0.2. For saturation μ > 0.2 it mostly favors the asymmetric transmission of 
input waves with small wave-numbers, with the exception of a couple of faint branches exhibiting some diode-like 
action at large wave-numbers k~π at μ = 0.4. Let us denote this kind of action as “positive diode-action”, for rea-
sons which will become clear in the upcoming sections.

Furthermore, it is also apparent that the diode-action is more pronounced for larger wave-numbers, par-
ticularly for smaller saturation values as evidenced in the top panel of Fig. 12. Note, however, that even though 
a diode-like effect increases with increasing asymmetry, the overall transmission reduces significantly, as noted 
before in17,18,34.

Asymmetry due to different on-site cubic nonlinear responses. Rectifying action with different 
on-site cubic nonlinearity and under the effect of varying saturation is plotted in Fig. 13. The nonlinearity is taken 
to be different on the two dimer sites to induce the required asymmetry in the system. The asymmetry in cubic 
response is fixed at εc = 0.2. Other site-dependent parameters as ν1 = 0.5 = ν2 and V1 = −2.5 = V2. The wave fills 
the nonlinear responses as γ1, 2 = γ(1 ± εc) at the first and second dimer site respectively. Comparing results from 
Figs 12 and 13, it becomes clear that the diode-action is reversed for this case.

Asymmetry due to different on-site quintic nonlinear responses. It is important to mention that 
for the case of asymmetric on-site quintic nonlinearity with ν = 0.5, γ = 1, εq = 0.2, ν1, 2 = ν0(1 ± εq), we get the 
same rectifying action as that in the case of asymmetric cubic nonlinearity shown in Fig. 13. Therefore, we can 
conclude that, for a specific value of asymmetry between cubic response and quintic response, the rectifying 
action is similar. So it is possible to achieve a similar diode-like action for either of the cases discussed above with 
same site-dependent parameter strengths. This trend can carry on for various strengths of saturation up to μ~1. 
Therefore, due to the above reasoning and the fact that it is possible to maintain pronounced transmission at 

Figure 11. Density plot of transmission. Left: Transmission coefficient as function of |T|2 and εv for saturation 
μ = 3. Right: Transmission coefficient as a function of μ and εv produced for |T|2 = 5. Both plots are for the 
threefold broken symmetry case with εc = εq = 1 and k = 0.1 and all other parameters as before.
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Figure 12. Density plot of rectifying factor for increasing saturation from μ = 0 in top left to μ = 1 in bottom 
right panel. Plot is produced for different on-site potentials V1, 2 = V0(1 ± εv) with asymmetry εv = 0.2 and 
V0 = −2.5 and with εc = εq = 0, γ0 = 1, ν0 = 0.5.

Figure 13. Density plot of rectifying factor for increasing saturation from μ = 0 in top left to μ = 1 in bottom 
right. For asymmetric on-site cubic nonlinear response γ1, 2 = γ0(1 ± εc) with γ0 = 1 and εc = 0.2. Plots are 
produced for εv = εq = 0, ν0 = 0.5, V0 = −2.5.

https://doi.org/10.1038/s41598-019-38872-5


www.nature.com/scientificreports/

1 1Scientific RepoRts |          (2019) 9:1871  | https://doi.org/10.1038/s41598-019-38872-5

higher asymmetry, we present the rectifying plots for this case with a higher value of asymmetry between on-site 
quintic nonlinearity εq = 0.8, as shown in Fig. 14.

Note that Fig. 14 is produced for a higher asymmetry value i.e., εq = 0.8 and the corresponding diode-like 
action is visible, which remains pronounced for values of saturation up to μ .~0 4. In the limit of higher saturating, 
the pattern seems to align with the asymmetric cubic case discussed in Fig. 13.

It is also important to note that the diode-like action is reversed in comparison to the case of asymmetric 
on-site potentials, (see Fig. 12). The left-propagating (dark region) waves with large wave-numbers are transmit-
ted while right-propagating (clear region) waves with smaller wave-numbers get through. This pattern carries 
on for all saturation strengths. Let’s denote this kind of action as negative diode-action, which will be a handy 
denotation in the upcoming section.

threefold asymmetry. The threefold asymmetry case provides us with a variety of control parameters to 
be able to manipulate for the desired kind of diode-action. The asymmetry parameters related to nonlinearity 
(cubic and quintic) i.e., εq, εc compete with the asymmetry parameter εv (asymmetry in on-site potential), for the 
kind of diode-like action, discussed in previous subsections. Both εq and εc favor a negative diode-action, while 
strengthening εv helps produce a positive diode-action. Moreover, we also report that the positive action is more 
susceptible to εv as compared to εq and εc, i.e., comparatively larger values of εq and εc are required to suppress the 
positive action produced by a smaller εv value. This conclusion also confirms our results from section-IV.

Plots in Fig. 15 are produced for a fixed value of saturation μ = 0.2. The branches exhibiting the positive and 
negative diode-action are apparent which clearly demonstrate the reverse action.

propagation of a Gaussian Wave-packet
It is instructive to consider the implications of the above considerations on the transmission of a Gaussian 
wave-packet. In this section, we consider the time-dependent dynamics of a Gaussian wave-packet propagating 
in the sCQDNLS lattice. A Gaussian wave-packet is taken as the initial condition17,18

φ
σ

=




 −

−
+





B n n ik n(0) exp ( ) ,

(10)
n

0
2

2 0

where B is the amplitude and σ the width of the initial wave-packet chosen to be σ = 56 in the numerical results 
reported in this section. With the sCQDNLS dimer situated at the center, the scattering of an initial input signal 

Figure 14. Density plot of rectifying factor for distinct increasing saturation from μ = 0 in top left to μ = 1 in 
bottom right. For asymmetric on-site quintic nonlinear response ν1, 2 = ν0(1 ± εq) with ν0 = 0.5 and εq = 0.8. 
Plots are produced for εv = εc = 0, γ0 = 1, V0 = −2.5.
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constituting of a Gaussian wave-packet is given in Fig. 16 for asymmetric on-site potential. The case for both left 
and right incidences are shown.

It is evident that, due to the broken parity symmetry in this system, right incidence gets a higher transmission (see 
Fig. 16(a)) as compared to the left incidence in Fig. 16(b). The corresponding transmission coefficients are tk > 0 =  
0.576647 and = .<t 0 157794k 0 . Note that the wave-packet scattering plot in Fig. 16 is produced for asymmetric 
on-site potentials with the asymmetry εv = 0.05, saturation μ = 0.1, cubic and quintic nonlinearities at γ = 1 and 
ν = 0.5, respectively.

One can conclude from Fig. 17 that the wave-packet seems to have a much improved transmission when we 
saturate both the nonlinearities to a higher level μ = 0.5, although with a degraded rectification action. The inci-
dent wave-packet also seems to have maintained its shape after transmission through the two nonlinear layers i.e., 
the dimer. The corresponding transmission coefficients are tk > 0 = 0.861496 and = .<t 0 762887k 0 .

threefold symmetry breaking. Here, we present the results of the wave-packet dynamics when the under-
lying lattice system exhibits a threefold symmetry breaking. i.e., all three site-dependent parameters V, γ and ν are 
different for the two dimer sites, and all other parameters are the same as in the previous cases of Figs 16 and 17.

The wave-packet transmission coefficients for the case discussed in Fig. 18 are tk > 0 = 0.133193 and 
= .<t 0 669277k 0  which, together with Fig. 17, suggests that the left propagating wave-packets have a significantly 

higher transmission rate as compared to the right propagating ones. Hence the trend is reversed under the three-
fold symmetry breaking which again confirms our analysis on the reverse diode-action discussed in detail in the 
previous section. It occurs for the case with higher saturation with roughly the same difference between the left 
and right transmission coefficients as in case of Fig. 17.

summary and Conclusion
In summary, we studied the transmission properties of an infinitely long one dimensional lattice carrying a 
dimer in the center modeled by a saturable cubic-quintic discrete nonlinear Schrödinger equation. The saturated 
cubic-quintic DNLS dimer was tested for asymmetric transmission of the input signal. With three possible ways to 
break the parity symmetry, we showed that transmission is more susceptible when broken symmetry corresponds 

Figure 15. Density plot of rectifying factor for distinct (nonzero) values of three-fold asymmetries. Left: 
εq = εc = 0.7 and εv = 0.2. Right: εq = εc = 0.5 and εv = 0.8. All other parameters as before.

Figure 16. Time-dependent dynamics of a Gaussian wave-packet scattered by a sCQDNLS dimer placed at the 
center, with V0 = −2.5, γ0 = 1, μ = 0.1, ν0 = 0.5, εv = 0.05, εq = εc = 0. (a): Right incidence. (b): Left incidence.
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to different on-site potentials. We also showed that if the lattice symmetry is broken by means of different cubic/
quintic nonlinear parameters, the system supports better transmission at higher asymmetry. The rectifying action 
was computed to characterize the diode-like transmission and we reported that the rectifying action is reversed 
with regard to the transmission of right and left moving signal for the two types of symmetry breaking mecha-
nisms (on-site asymmetric potential and/or on-site asymmetric nonlinearity). Further, we unveiled that, under 
the threefold broken symmetry, the diode-like action can be tuned to be positive or negative. Finally, the dynamics 
of a Gaussian wave-packet was considered numerically for the cases of asymmetry due to on-site potentials and 
the threefold asymmetry. The wave-packet scattering analysis confirms that the diode-action is reversed under 
the threefold asymmetry case. The above results demonstrate that the simultaneous control of the asymmetries 
on the linear and nonlinear parameters of a dimer defect can allow for an efficient diode-like action is specific 
spectral regions featuring both high transmission and large rectifying factor. We believe that the phenomenology 
predicted in our work can be experimentally probed, considering that several aspects of non-Hermitian and 
high-order nonlinear contributions have been unveiled in recent experiments regarding optical pulse propagation 
on laser-induced atomic gratings15,16,19,20. Efforts along this direction would bring valuable new insights to this 
exciting subject area.
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