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satellite-based soil moisture 
provides missing link between 
summertime precipitation and 
surface temperature biases 
in CMIP5 simulations over 
conterminous United states
A. Al-Yaari  1, A. Ducharne2, F. Cheruy3, W. t. Crow4 & J.-p. Wigneron  1

past studies have shown that climate simulations have substantial warm and dry biases during the 
summer in the conterminous United states (CoNUs), particularly in the central Great plains (CGp). 
these biases have critical implications for the interpretation of climate change projections, but the 
complex overlap of multiple land-atmosphere feedback processes make them difficult to explain (and 
therefore correct). even though surface soil moisture (sM) is often cited as a key control variable in 
these processes, there are still knowledge gaps about its specific role. Here, we use recently developed 
remotely sensed sM products to analyse the link between spatial patterns of summertime sM, 
precipitation and air temperature biases over CONUS in 20 different CMIP5 simulations. We identify 
three main types of bias combinations: (i) a dry/warm bias over the CGP region, with a significant 
inter-model correlation between sM and air temperature biases (R = −0.65), (ii) a wet/cold bias in NW 
CoNUs, and (iii) a dry/cold bias in sW CoNUs. Combined with irrigation patterns, these results suggest 
that land-atmosphere feedbacks over the CGp are not only local but have a regional dimension, and 
demonstrate the added-value of large-scale sM observations for resolving the full feed-back loop 
between precipitation and temperature.

Climate models rely on coupled simulations of the ocean, land surface, atmosphere, and sea ice systems to 
better understand the Earth’s climate system and its future change1. Important examples are the climate sim-
ulations of the Coupled Model Intercomparison Project (CMIP), which have been a major contribution to the 
Intergovernmental Panel on Climate Change’s (IPCC) assessment reports up to Phase 5 (CMIP52) and the ongo-
ing Phase 6 (CMIP63). Climate models participating in the CMIP project have progressively improved in recent 
decades1,4, but they remain associated with many uncertainties and/or biases, due to residual errors in boundary 
conditions, inadequate model parameterizations and poorly known processes2,5–9. More specifically, pronounced 
systematic summer warm biases -relative to 2-m near surface air temperature (referred to as air temperature in 
the following) observations- have been found over many continental areas, including the conterminous United 
States (CONUS) and, more specifically, the CONUS Central Great Plains (CGP) region8,10–12. Since air temper-
ature lies at the centre of critical feedbacks between multiple climate system components, its bias (or error) can 
influence the overall reliability of the CMIP model simulations and future climate projections10. Previous studies 
attributed these warm land biases to multiple factors including, but not limited to: deficiencies in cloud rep-
resentation, errors in large-scale atmospheric circulation, misrepresented evaporation, and failure to capture 
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heavy rainfall events10,13–15. Nevertheless, these warm biases remain an open research problem that needs to be 
addressed to improve climate models predictions and projections3.

In most studies, surface soil moisture (SM) is considered a central variable as it controls key processes at the 
land atmosphere interface (e.g., surface heat exchanges and their partitioning, runoff generation, evaporation, 
and evaporative fraction)16–18, which are strongly involved in the generation of the warm bias e.g.15,19–25. For 
instance, according to Boé26, SM influences precipitation both directly and indirectly through a modulation of 
the atmospheric thermodynamic properties. Stéfanon et al.23 have found that SM had a strong impact on air 
temperature when analysing the summer heat waves over Western Europe. Likewise, Seneviratne et al.27 have 
demonstrated that feedbacks between the atmosphere and SM increase the summer air temperature variability in 
central and eastern Europe. LeMone et al.28 have concluded that the latent (LH) and sensible (SH) heat exchanges 
are highly influenced by SM. Furthermore, Miralles et al.29 have investigated physical processes underlying the 
heat waves 2010 in Russia and 2003 in central Europe and found that air temperature was anomalously increased 
due to progressive SM depletion.

However, to date, in spite of the hypothesized role played by SM at the land-atmosphere interface, the direct 
examination of SM’s role has been hampered by a lack of large-scale SM observations30,31. These limitations have 
recently been overcome through the availability of global SM products derived from microwave remote sens-
ing32–34. These products were first used to identify a preference for afternoon rain over dry soils, not well captured 
by climate models35. However, regarding the link between observed SM and the warm bias produced by climate 
models, the only studies so far have been limited to a few sites and to a few models e.g.15.

Here, we use two recent remotely sensed SM products to evaluate the link between SM, precipitation and air 
temperature biases found in 20 models (see Supplementary Table S1) participating in CMIP5 over the CONUS 
during the 1979–2008 period. Note that in this study the objective was not to investigate the causality but rather 
to examine– for the first time – how remotely sensed SM observations fit into the (existing) understanding of how 
the air temperature and precipitation biases are linked in the models.

We use the new SM data retrieved from L-band microwave observations from the first-dedicated SM mission 
SMOS (Soil Moisture and Ocean Salinity) satellite (SMOS-IC product version) over 2010–2016. We also used ear-
lier SM observations (1979–2008) from the first ever long-term satellite-based SM product prepared by the ESA’s 
Climate Change Initiative (CCI)36; http://www.esa-soilmoisture-cci.org/. To make the comparison to the biases 
in air temperature and precipitation more robust, we also used multiple observational datasets for both variables: 
(i) Climatic Research Unit (CRU) air temperature and precipitation; (ii) University of Delaware (i.e., “Willmott”) 
global land air temperature; and (iii) Global Precipitation Climatology Project (GPCP) land precipitation. More 
details on these datasets and their processing are provided in the Methods section.

Results
spatial link between the summer biases in temperature, precipitation and sM. Figure 1a,b 
shows that the spatial patterns of the mean air temperature bias in CMIP5 simulations are very similar for the 
CRU and Willmott air temperature observations (see scatter plots of each pair of the different variables in Fig. S1 
in the Supplementary). Most of the CMIP5 simulations (more than 2/3; see Supplementary Fig. S2 for each 
CMIP5 model separately) systematically overestimate both observational datasets, particularly over the CGP 
region as previously described by Cheruy et al.10 and Ma et al.37. However, there are two exceptions (viz. the GISS.
E2.R and MRI.AGCM3.2 H models), with low air temperature biases and different spatial patterns compared to 
the other models (Fig. S2). Note that the singularity of the GISS.E2.R model has already been noted in previous 
studies e.g.15. As for the air temperature biases, there exists a strong similarity in the spatial patterns of the sum-
mer mean bias of precipitation for both the CRU and GPCP observational datasets (Figs 1c,d and S3 for each 
CMIP5 model separately). Compared with the precipitation observations, the CMIP5 models produce excessive 
precipitation over north-eastern and north-western CONUS and a deficit of precipitation over the CGP region 
and in south-western CONUS (which is consistent with both Klein et al.38 and Lin et al.14).

Reflecting these spatial patterns of precipitation biases, normalized SM is underestimated by a majority of 
models over the CGP and eastern CONUS in the CMIP5 simulations, while overestimated in north-western 
CONUS (Fig. 1e,f and Supplementary Figs S4–5 for each CMIP5 model separately). This is consistent with the 
findings of Yuan & Quiring39 who found clear underestimation of SM by the models during summertime over 
the South Great Plains (SGP) compared to both in situ and CCI SM observations. Positive biases are more con-
sistent across models for SM than for the precipitation, particularly over mountainous areas. Some differences 
can be noted between the SM bias spatial patterns derived from the SMOS and CCI datasets. For instance, over 
eastern CONUS, the precipitation bias maps are more consistent with the CCI map (although the CCI SM biases 
are shifted to the south relative to CRU and GPCP precipitation biases). The opposite is true over south-western 
CONUS (in e.g., Arizona, southern Nevada and southern California) where SMOS-based SM provides a better 
match to the observed pattern of precipitation bias.

Interestingly, there is a good general agreement (with, again, the exception of GISS.E2.R) between areas of 
high warm bias and areas of strong precipitation and SM deficits (Figs 1a–f and S2–5 for each model separately). 
This is particularly notable in central CONUS (including the CGP). However, an area of negative bias in precip-
itation (for both CRU and GPCP) and SMOS SM in south-western CONUS (with a distinctive triangular shape) 
is not clearly associated with an overall corresponding warm bias.

In order to better characterize the spatial link between summer biases in air temperature, precipitation and 
SM, we computed bivariate maps that combine biases in SM (CMIP5 models - SMOS/CCI) and either air temper-
ature (CMIP5 models - CRU) or precipitation (CMIP5 models - GPCP), based on quantile-quantile associations 
(Fig. 2). The multi-model ensemble (Fig. 2a,b) reveals three main types of bias combinations: (i) a dry and warm 
bias (in red) mainly over the CGP, (ii) a wet and cold bias (in blue) over north-western CONUS and (iii) a dry 
and cold bias (in green) in south-western CONUS. Note that, to be more precise, the term “cold” is not really 
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appropriate and we should rather speak of “the smallest warm biases”, since a large majority of the CMIP5 models 
overestimate mean summer air temperature over the CONUS (Fig. S2). The combination of a dry and cold bias 
(green areas in Fig. 2a,b) is somewhat surprising. However, several mechanisms can be proposed to explain this. 
For example, dry soils may lead to excessive albedo or weakened thermal inertia leading to excessive nocturnal 
cooling during cloudless nights40. Conversely, a cold bias can lead to a corresponding dry bias owing to the stabi-
lization of the boundary layer – making it less prone to convection.

Figures S6–7b (Supplementary) display the same maps for each individual CMIP5 model. Despite the varia-
bility stemming from inter-model differences, these maps reveal systematic patterns structured by the east-west 
precipitation gradient and the Rocky Mountains (Fig. 3a,b), which are well-known influential factors on CONUS 
climate. Interestingly, these patterns are much less systematic when looking at the individual temperature and 
SM biases present in each of the CMIP5 models (Figs S2–5), suggesting that regional drivers of the CONUS cli-
mate have more influence on the relationship between the different types of bias than on the biases themselves. 
Figures S6–7b also show a few exceptions to the dominance of a warm and dry bias combination in the CGP. 
These exceptions notably include the two climate models (GISS.E2.R & MRI.AGCM3.2H) characterized by low 
biases in air temperature and precipitation over CONUS compared to the other models.

The bivariate maps combining the multi-model ensemble SM and precipitation biases in Fig. 2c (using GPCP 
and SMOS data) and in Fig. 2d (using GPCP and CCI data) show relatively similar spatial patterns to those 
obtained in Fig. 2a,b (see Supplementary Figs S8–9 for each model separately). In particular, the same three 
main areas can be distinguished: the CGP region associated with negative SM and precipitation biases (red), 
north-western CONUS associated with positive SM and precipitation biases (blue) and south-western CONUS 

Figure 1. Mean bias between multi-model CMIP5 and observations. (a) Multi-model mean bias air 
temperature (TAS) CMIP5- Obs (CRU). (b) Multi-model mean bias TAS CMIP5- Obs (Willmott) during the 
1978–2008 period (JJA). (c) Multi-model mean bias precipitation (Pr) CMIP5- Obs (CRU) during the 1978–
2008 period. (d) Multi-model mean bias Pr CMIP5- Obs (GPCP) during the 1978–2008 period (JJA). (e) Multi-
model mean bias soil moisture (SM) CMIP5- Obs (SMOS; 2010–2016 JJA). (f) Multi-model mean bias SM 
CMIP5- Obs (CCI) during the 1978–2008 period (JJA). Crosses on the figures indicate that at least 65% of the 
models agree on the sign of the observed bias. White regions represent pixels with percentage of forest >60%, 
strong topography, or frozen soil conditions, which were excluded from the analyses.
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Figure 2. Link between summer soil moisture, air temperature, and precipitation biases. (a) Map relating the 
SMOS SM bias and the CRU air temperature (Temp) bias for the CMIP5 multimodel ensemble. (b) Map relating 
the CCI SM bias and the CRU Temp bias for the CMIP5 multimodel ensemble. (c) Map relating the SMOS SM 
bias and the GPCP precipitation (Pr) bias for the CMIP5 multimodel ensemble. (d) Map relating the CCI SM 
bias and the GPCP Pr bias for the CMIP5 multimodel ensemble. Multimodel reflects results for the CMIP5 
ensemble mean. Note that each colour represents a 10% quantile shift (calculated with respect to the spatial 
histogram of bias results across the CONUS) in both soil moisture and air temperature/precipitation. White 
regions represent pixels with percentage of forest >60%, strong topography, or frozen soil conditions, which 
were excluded from the analyses. Each square at the angle of the legends in the right column has a 30% × 30% 
size with the % of pixels in this square.
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(green), where very different responses can be noted depending on the CMIP5 models (red, blue or green colours 
can be seen in that region for the different models).

Along the Rockies (Fig. 3a; blue areas in Fig. 2a,b), there is a cold bias that can be partly explained by the pos-
itive precipitation and SM bias (Fig. 2c,d), via exacerbated ET and/or snow albedo cooling effects. The positive 
precipitation bias over mountain areas is a classical problem in climate models41 and consistent with the cate-
gorization of the region as “atmospherically controlled” in Findell and Eltahir16. As for the association of a wet 
and warm bias (yellow areas in Figs 2 and S6–S9), it is quite rare (3 to 6% of the CONUS, depending on the bias 
association, as quantified on the right panels of Fig. 2) and found mostly in sporadic areas and for a few models 
over Midwest (northcentral CONUS). Interestingly, the number of grid cells that are warm and dry (red areas in 
Fig. 2) is very similar whether using SMOS or CCI SM products. Heterogeneous results for the different models 
are also obtained in eastern CONUS.

Regional scale analysis over the CGp. We have established a clear link between SM, precipitation and air 
temperature biases across several large CONUS regions (Figs 2 and S6–9), but the most consistent spatial patterns 
and the stronger air temperature biases have been obtained over the CGP region (103°W–89°W, 32°N–48°N, dis-
played as a red box in Figs 1, 2 and 3). Therefore, we now focus on this particular region to better quantify the link 
between the warm bias found in most models and the negative biases of precipitation and SM. Figure 4a confirms 
that a large majority of models overestimate air temperature and underestimate SM in the CGP during summer, 
with a strong negative inter-model correlation between these two biases (R = −0.65; 18 models out of 20 are in 
the upper-left quadrant), meaning that the warm bias is more pronounced when the dry bias is strong. A strong 

Figure 3. HYDRO 1 K Elevation map of the USA Source http://srtm.csi.cgiar.org/.74. Mean GPCP precipitation 
(mm/day) during the period 1979–2008 considering only JJA months (b). Map of areas equipped for irrigation 
expressed as percentage of total area56 (c). All maps are re-gridded at the 2° × 2° resolution, to match the bias maps.
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negative correlation is also found between the biases of precipitation and air temperature among the models, 
albeit with a slightly smaller correlation coefficient (R = −0.61, the same 18 models are in the upper-left quad-
rant), which is consistent with the larger variability of atmospheric variables in comparison to surface variables. 
Eventually, the strongest (positive) inter-model correlation (R = 0.87; the same 18 models are in the lower-left 
quadrant) are found between the biases in precipitation and SM, in agreement with the fact that precipitation 
exerts a strong control on SM. The same correlations are obtained when the biases are calculated with respect to 
the other observational datasets (see Supplementary Fig. S10), which only changes the offset of the scatter plots.

These correlations can arise from two different causal relationships, which are probably entangled:

 (i) a negative precipitation bias, likely caused by errors in the general circulation or a convection parameteri-
zation, is the driving force and creates a dry surface bias which, in turn, causes a warm bias. For this effect 
on air temperature, we also have two mechanisms, one is water related (low precipitation can create low 
SM directly, which reduces the cooling effect of evapotranspiration), and the other is energy related (low 
precipitation can also induce high downward shortwave radiation which will enhance both the latent and 
sensible heat fluxes, probably increasing air temperature, and decreasing SM); and

 (ii) the land surface is the main cause of the interlinked biases, as low SM reduces evapotranspiration, and 
therefore warms the lower level of atmosphere and reduces precipitation, with possible enhancement 
owing to positive SM feedback. The bivariate maps and the correlation analyses (Figs 2 and 4) reveal the 
link between the spatial patterns in the warm bias of summer air temperature produced by the majority of 
CMIP5 coupled climate models and dry SM biases, which are significantly correlated to precipitation defi-
cits. In the same region, Cheruy et al.10 have found a significant negative correlation between the warm bias 
and the evaporative fraction (EF) of the models (EF = LH/(LH + SH)). Yet the bias in EF was only qualita-
tively established against one estimate of EF with rather large uncertainty bounds. Our results show, despite 
observation uncertainties, that the CMIP5 models underestimate SM in the CGP, leading to lower values of 
EF24, which in turn increases (decreases) the sensible heat bias (latent heat) that was already initiated by: i) 
a failure of climate models to capture heavy rainfalls events associated to mesoscale convective systems14; 
(ii) an excess of surface solar radiation15,38; or iii) a failure of climate models to represent the particular type 
of convective processes (i.e., nocturnal mesoscale convective complexes) that contribute to the majority of 
summertime rainfall in the CGP42. This is in accordance with a widely accepted land-atmosphere coupling 
mechanism: deficits in precipitation induce dry conditions, thus, favouring less evaporative cooling and 
higher surface air temperature14,43–47. Eventually, at the monthly timescales, based on climatological means, 
and looking at the model biases on regional average, our results favour a positive feedback between precipi-
tation and air temperature in the CGP.

Figure 4. Cross-correlations between the mean biases of the three studied variables over the CGP region 
among the CMIP5 models. (a) Air temperature (Temp) bias (Models-CRU) vs soil moisture (SM) bias (Models-
SMOS). (b) Temp bias (Models-CRU) vs precipitation (Pr) bias (Models- GPCP). (c) Pr bias (Models-GPCP) vs 
SM bias (Models-SMOS). The inter-model correlation R and p-value are shown on each panel.
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Discussion
By analysing the spatial patterns of SM owing to large-scale satellite observations, we demonstrate a specific 
link between the warm bias and SM bias in CMIP5 models over the CGP, which “closes the loop” by proving the 
missing land surface link between precipitation and energy fluxes. This link, which has long been suspected in the 
literature19,20,22–25,38, is for the first time shown here on the basis of satellite observations at continental scale, which 
differs from past studies15 based on local-scale in situ observations. At a minimum, such satellite SM observations 
complete our understanding of the forward propagation of rainfall deficiencies through the land surface and into 
the lower atmosphere (via surface energy fluxes).

Yet, the misrepresentation of SM and related processes could also be a key shortcoming in the modelled cli-
mate by means of land-atmosphere coupling. In particular, it has been shown that irrigation has an observable 
cooling effect at local scale48–50, while its effect on precipitation is harder to ascertain. Over the CONUS, recent 
studies, based on observations, demonstrate a precipitation increase, either locally or downwind of irrigation 
hotspots50,51, and modelling studies report either increases38 or decreases52 of regional precipitation, with complex 
teleconnections53,54, when accounting for irrigation in coupled land-atmosphere models. Given that irrigation is 
overlooked by CMIP5 models, a relevant question is whether this missing surface process contributes to the warm 
and dry biases of CMIP5 models over the CGP region (red box), which includes two of the main three irrigation 
hotspots of the CONUS (Fig. 3c), i.e. the CGP stricto sensu (with withdrawals from the Ogallala aquifer) along the 
western border of the red box, and the Lower Mississippi valley along its eastern border.

In this framework, we would expect these irrigation hotspots to match regions with negative SM biases in 
Fig. 1e,f, since the CMIP5 models miss irrigation input. It tends to be the case in the Lower Mississippi valley, but 
not in the CGP. Interestingly, Kumar et al.55 assessed several SM retrievals over the CONUS for their irrigation 
detection skill. All of them, including SMOS, are based on microwave remote sensing and involved in the CCI 
product used in the present study; and their irrigation detection skill was found to be weak, although better in 
the Mississippi valley. This “apparent inability” of microwave remote sensing observations to detect irrigation 
hotspots is partly attributed to the coarse resolution of the retrievals, especially for the passive microwave ones, 
but our results are suggestive of another explanation, related to regional-scale land-atmosphere coupling over the 
(extended) CGP (red box).

We speculate that irrigation in this area may not be detected as increased SM values by satellite products, 
because it locally induces a decrease of precipitation, which feedbacks negatively onto local SM. In terms of model 
biases, the dry bias expected from missing irrigation would be offset by a positive precipitation bias (by missing 
irrigation-induced decrease of precipitation). Another explanation might be that the “extra” water provided by 
irrigation is quickly used by the vegetation and not visible at the monthly to seasonal scale. Both explanations 
remain consistent with the warm bias found over the CGP irrigation hotspots, since evaporation would miss in 
models overlooking irrigation; this missing evaporation could then contribute to the dry (for both precipitation 
and SM) and warm biases downwind of the CGP, corresponding to the red areas in the central south part of the 
red box of Fig. 2a,b.

Conclusion
This research is the first one analysing the link between spatial patterns of SM biases and those of precipitation 
and air temperature in the context of CMIP5 models over the CONUS. The results confirm that SM, as a key 
driver of the water and energy fluxes at the land/atmosphere interface, must be accounted for to better understand 
the deficiencies of climate models. In combination with previous studies, our results also support the argument 
that land-atmosphere feedbacks over the extended CGP are not only local but have a regional dimension, owing 
to the atmospheric circulation. This could explain why the strongest associations between the dry and warm 
biases (dark red in Fig. 2) are found between the irrigation hotspots, while these hotspots rather correspond to 
warm/wet bias associations (yellow-shaded areas in Fig. 2).

Further work is required to ascertain these assumptions over the CONUS, and potentially generalize them 
in other regions of strong land-atmosphere coupling21, frequently associated to hotspots of irrigation56, where 
present-day biases can cast doubt on the magnitude of climate change response7,8,44. This calls for continued and 
improved large-scale SM satellite observations on the one hand, and for numerical experiments tailored to better 
understand the role of SM and irrigation in climate models on the other hand, as planned in the framework of 
CMIP6. Two CMIP6-Endorsed Model Intercomparison Projects (MIPs) are particularly relevant, namely LUMIP 
(Land Use MIP57), and LS3MIP (Land Surface, Snow and Soil moisture MIP58), where the effect of irrigation and 
SM nudging, respectively, will be explored retrospectively and in future projections across a wide number of 
climate models.

Methods
In this study, we compared climate model outputs for 2-m near surface air temperature, precipitation, and SM to 
corresponding gridded observational data. This comparison is based on climatological means for summer (JJA) 
over CONUS and CGP, and involves correlations and simple statistics like quantile-quantile associations (spa-
tially over CONUS), and inter-model correlations (based on spatial averages over CGP).

Gridded observations. 2-m near surface air temperature data. We used two data sets based on in situ 
measurements of near surface temperature (referred to as air temperature):

 (i) the gridded time-series Climate Research Unit (CRU) air temperature dataset Version 4.259 produced by 
the Climate Research Unit at the University of East Anglia (U.K.) on a global scale (only land) with month-
ly resolution and a spatial resolution of 0.5° × 0.5°, available from 1901 to 2015; and
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 (ii) the University Of Delaware gridded air temperature data set60 provided on a global scale (only land) with 
monthly resolution and a spatial resolution of 0.5° × 0.5°, available from 1901 to 2014.

Precipitation data. As a precipitation reference, we used two different kinds of products, which provide very 
close climatological means in summer over the USA (Fig. 1c,d):

 (i) the gridded time-series Climate Research Unit (CRU) precipitation dataset Version 3.4 (Harris et al.59) 
produced by the Climate Research Unit at the University of East Anglia (U.K.) on a global scale (only land) 
with monthly resolution and a spatial resolution of 0.5° × 0.5° from 1901 to 2015. This data set is entirely 
based on rain-gauge data (11,800 worldwide); and

 (ii) the Global Precipitation Climatology Project (GPCP) precipitation datasets (Version 2.3) provided on a 
global scale with monthly resolution and spatial resolution of 2.5° × 2.5° from 1979 to present61. The GPCP 
monthly precipitation datasets are produced by merging observations from satellites, rain gauge stations, 
and sounding observations.

Soil moisture data. As SM reference, we used two satellite-derived products, both providing retrievals of surface 
SM (top 5 cm):

The most recent re-processed SMOS-IC SM product retrieved from SMOS Satellite brightness temperature 
(TB) observations. The SMOS satellite was launched in 2009 by the European Space Agency (ESA) to monitor SM 
and sea surface salinity at the global scale62,63. SMOS-IC SM was recently developed by INRA (Institut National 
de la Recherche Agronomique) in collaboration with CESBIO (Centre d’Etudes Spatiales de la BIOsphère). The 
SMOS-IC SM product differs from the operational SMOS Level 3 SM product (SMOSL3) in three main ways: (i) 
SMOS-IC is based on SMOS Level 3 TB data and it is independent from auxiliary model products, (ii) specific 
filters were introduced to select the TB data used in the SM retrievals, and (iii) a new calibration of the soil rough-
ness parameters and vegetation parameters was applied in the forward L-MEB (L-band Microwave Emission of 
the Biosphere) model. SMOS-IC provides SM (in m3/m3) for the first 5 cm centimetres of the soil and is available 
for the period 2010–2016 on a daily basis and at a spatial resolution of 25 km. More details on the SMOS-IC data 
can be found in Fernandez-Moran et al.64.

 (i) The ESA CCI combined (version 03.2) SM product was generated by combining different active and pas-
sive microwave SM retrievals from different sensors: ERS, ASCAT (Metop-A and Metop-B), SSMR, TMI, 
AMSR-E, SSM/I, SMOS, AMSR2, and WindSat34,65–67. It should be noted that this CCI version included 
more recent sensors (e.g., SMOS and AMSR2) that were not considered in the previous versions of the CCI 
SM products. Hence, a significant increase in the scientific value of the products is expected. It is worth 
noting that the SMOS SM product included in the CCI was derived using the LPRM algorithm which is 
different from the SMOS-IC products used in this study. The CCI SM product is provided as daily SM (in 
m3/m3) for the first 5 cm of the soil column and is available for the 1978–2015 period with a spatial resolu-
tion of 0.25° × 0.25°.

Both the SMOS (the version used here and earlier versions) and CCI SM retrievals have been extensively 
evaluated at both local and global scales36,63,68,69. Here, we show an example of the performance of both CCI and 
SMOS products against in situ SM observations from the Atmospheric Radiation Measurement (ARM) data-
set, which includes 19 stations from the International Soil Moisture Network (ISMN; https://ismn.geo.tuwien.
ac.at/), all situated in the CGP region. Each in situ station was independently collocated to the closest grid points 
of SMOS and CCI based on its longitude and latitude coordinates and the corresponding CCI and SMOS SM 
retrievals were compared to the ARM time series on a daily basis within the period 2010–2017. Then the statistics 
of the inter-comparison were computed based on results obtained over each single pixel for both SMOS and CCI. 
The resulting, Pearson correlation, and normalized Root-Mean-Square Error and standard deviation, are summa-
rized in a Taylor diagram70 (see Supplementary Fig. S11), showing that SMOS and CCI share fair and comparable 
performance with respect to the overall ARM dataset: most correlation values range between 0.6 and 0.8, and 
standard deviations tend to be overestimated. This error may be due to differences in sampling depth between 
in situ measurements and remote sensing products), but it is reduced by the normalization procedure aimed at 
enhancing SM comparability between remote sensing and climate models (details below).

It should be noted that there are some uncertainties in remote sensing retrieved SM originating from the 
sensor type, scales, calibration, the observation geometry, parameters/auxiliary fields used in the SM inversion 
algorithms, sampling depth mismatch between models and satellite-based SM retrievals, and/or uncertainties 
introduced by underlying assumptions, which should not be neglected when applying remote sensing observa-
tions in model evaluation.

CMIP5 simulations. We focused on so-called AMIP simulations (historical land-atmosphere simulations with 
prescribed sea surface temperatures over 1979–2008) of the CMIP5 project and selected 20 models providing 
the following three output variables: 1) TAS: 2-m near surface air temperature (in K); 2) Pr: total precipitation 
(in kg m−2 s−1); 3) mrsos: moisture in upper portion of soil column (10 cm; in kg/m2). It is often argued that SM 
variability varies with soil depth36,71, but it was not possible to extract the top 5-cm SM for a large enough number 
of models. Yet, a recent comparison of in situ and modelled SM profiles showed very similar monthly mean SM 
values at 5 and 10 cm72, while several observational studies reviewed in Gruber et al.73 reported a good correlation 
of SM measured at various depths, leading to persistent patterns of SM. Eventually, to make the 10-cm modelled 
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SM as comparable as possible to the 5-cm remotely sensed SM, we relied on both long-term averaging (JJA) and a 
normalization procedure71, as described below. More details about the 20 models used in this study can be found 
in Table S1 (Supplementary).

Processing of the data sets. Given that all data (observations and simulations) were provided in different spa-
tial resolutions, all datasets used in this study were re-gridded to a 2° × 2° resolution following Cheruy et al.10. 
The period used for this analysis is 1978–2008 for all datasets with the exception of the SMOS dataset which is 
only available from 2010 to 2016. By using SMOS in this comparison, we are making an implicit assumption of 
first-order stationarity in the SM time series (i.e., the mean in 2010–2016 should match the mean in 1979–2008). 
Since mid-latitudinal summer drying is a common climate change signal predicted by climate models, we exam-
ined if this assumption could lead to misleading conclusions. This was done by using CCI data over different peri-
ods: 1978–2008, 1987–2008, 2010–2016 (used period for SMOS) and confirming that resulting SM biases were 
consistent across these three periods (not shown here). Pixels with percentage of forest >60%, strong topography, 
or frozen soil conditions were excluded from the analyses.

For the precipitation and air temperature variables, the bias of summer air temperature (JJA) was computed 
on each 2° × 2° pixel between the simulations and the observations over the 1979–2008 period. In addition, the 
CONUS was selected in this study to avoid the negative impact of RFI (Radio Frequency Interference) on the 
SMOS SM retrievals, as other regions with comparable warm biases (i.e., Europe and India) are partially contam-
inated with RFI and there is almost no RFI over the CONUS. For SM, both the simulations and the observations 
were normalized spatially (SMn) before computing the local biases:

 1. sampling of the temporal mean and standard deviation in each 2° × 2° pixel for each dataset over 1978–
2008, 2010–2016, and 1979–2008 considering all months for CCI, SMOS-IC, and CMIP5, respectively. 
This step produces two maps of temporal mean and standard deviation for each dataset separately;

 2. sampling of the spatial mean (here referred to as M) of the temporal mean and standard deviation (here 
referred to as SD) maps produced in step 1 over the CONUS. The output of the step is presented in Table S2 
(Supplementary); and

 3. normalization of the original datasets SMi using the values computed in step 2, shown in Table S2 (Supple-
mentary), as follows:

=
−SMni SM M

SD (1)
i

Next, the normalized data produced in the previous steps were averaged considering only summer (JJA 
months) for the remotely sensed SM retrievals and the CMIP5 SM simulations. Note that the mean of the nor-
malized data is non-zero because M is calculated using all months (and spatially averaged) while the normalized 
data is computed only over JJA (and not over the full year). Finally, the difference in the overall mean of the 
normalized data between the CMIP5 models simulations and the remotely sensed SM products (SMOS-IC and 
CCI) was computed.

Data Availability
SMOS-IC SM datasets are publicly available at CATDS (Centre Aval de Traitement des Données SMOS): https://
www.catds.fr/Products/Available-products-from-CEC-SM/SMOS-IC. CCI SM datasets are freely available upon 
registration at http://www.esa-soilmoisture-cci.org/. Monthly CRU air temperature and precipitation are public-
ly available at http://www.cru.uea.ac.uk/. Monthly Willmott air temperature observations are freely available at 
https://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.html. Monthly GPCP precipitation datasets 
are freely available at https://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html. Monthly CMIP5 air temper-
ature, SM, and precipitation simulations are freely available from https://cmip.llnl.gov/cmip5/data_portal.html. 
HYDRO 1K Elevation Derivative Data are available from the U.S. Geological Survey and can be freely download-
ed from: https://lta.cr.usgs.gov/HYDRO1K.
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