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Elucidation of microstructural 
changes in leaves during 
senescence using spectral domain 
optical coherence tomography
Tulsi Anna   1, Sandeep Chakraborty1,2, Chia-Yi Cheng1, Vishal Srivastava3, Arthur Chiou1,4 & 
Wen-Chuan Kuo1,4

Leaf senescence provides a unique window to explore the age-dependent programmed degradation 
at organ label in plants. Here, spectral domain optical coherence tomography (SD-OCT) has been used 
to study in vivo senescing leaf microstructural changes in the deciduous plant Acer serrulatum Hayata. 
Hayata leaves show autumn phenology and change color from green to yellow and finally red. SD-
OCT image analysis shows distinctive features among different layers of the leaves; merging of upper 
epidermis and palisade layers form thicker layers in red leaves compared to green leaves. Moreover, 
A-scan analysis showed a significant (p < 0.001) decrease in the attenuation coefficient (for wavelength 
range: 1100–1550 nm) from green to red leaves. In addition, the B-scan analysis also showed significant 
changes in 14 texture parameters extracted from second-order spatial gray level dependence matrix 
(SGLDM). Among these parameters, a set of three features (energy, skewness, and sum variance), 
capable of quantitatively distinguishing difference in the microstructures of three different colored 
leaves, has been identified. Furthermore, classification based on k-nearest neighbors algorithm (k-
NN) was found to yield 98% sensitivity, 99% specificity, and 95.5% accuracy. Following the proposed 
technique, a portable noninvasive tool for quality control in crop management can be anticipated.

The lifespan and microstructure of leaves are crucial for the overall development of plants. Leaf growth involves 
both maintenance and senescence1. The self-maintenance activity gradually decreases during the life span, while 
the senescence activity proceeds till the abscission or death of the leaves2. Senescence in plants, corresponds to 
both degenerative and recycling process (viz. nitrogen is recycled to stems from leaves for their growth) and is a 
programmable development in leaves1,3,4. Leaf senescence, which is an organ level senescence in a plant, is man-
ifested, in general, by the changes in its color from green, to yellow. The initiation and progression of senescence 
are governed by several environmental factors such as temperature, humidity, nutrition, shading, and oxidative 
stress, etc.5. For example, during autumn phenology in deciduous plants, the initiation of senescence shows a 
spectacular change of colors from green, to yellow, orange and finally red6. Apart from these, internal factors such 
as reproductive development, hormonal changes, phytochrome levels, etc. also influence the senescence activity7. 
Further, loss of photosynthetic activity might also initiate senescence in leaves. Leaf senescence has both good 
and adverse effects on plants such as the crops yield and postharvest loss of vegetables2. Hence, understanding of 
the key factors associated with senescence will provide valuable information for agricultural sciences. In addition, 
plant leaves are easily accessible for experimental assays with reproducible life history and provide a very unique 
window for detail study of the senescence.

Till date, several traditional biochemical techniques have been used to study the changes in various chem-
ical biomarkers for leaf senescence such as chlorophyll content, proteins, lipids, and other associated acids8–11.  
However, these techniques depend on cell lysis and inapplicable for in vivo studies. In the alternative, 
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microstructural biomarkers have also been identified to study the leaf development stage8–11. Average leaf mass 
per unit area and parenchyma thickness are commonly used as microstructural biomarkers. Changes in leaf 
microstructure are closely associated with the photosynthetic activity, which usually degrades during senes-
cence12. Imaging modalities such as scanning electron microscopy (SEM)13, transmission electron microscopy 
(TEM)14 and X-ray computed tomography15 have been widely used for quantitative visualization microstructural 
biomarkers in leaves. However, these specialized techniques need detail sample preparations and also not suitable 
for in vivo applications. Complementary optical imaging platforms such as confocal and multiphoton fluores-
cence microscopy16, hyperspectral reflectance microscopy17, Fourier transform infrared spectroscopy (FTIR)18, 
and Raman spectroscopy19 etc. are valuable for non-destructive study of leaf senescence at the cellular, molecular, 
as well as microstructural level. However, though these techniques provide interesting findings, are limited by 
penetration depth and sometimes needs physical sectioning. Therefore, non-destructive and fast optical imaging 
modality with high penetration depth to monitor the microstructural changes in leaves during senescence is 
required.

Optical coherence tomography (OCT), based on low coherence interferometry, is a label-free optical tech-
nique which can provide high-speed three dimensional (3D) cross-sectional imaging with micrometer resolution 
at depth (on the order of several millimeters) in highly scattering samples20. In addition, OCT also possesses 
several advantages over other optical imaging modalities such as: miniaturization with fiber-based optics, com-
patibility with functional imaging and data reconstruction algorithm, use of infrared light sources to increase 
penetration depth by reducing light scattering and absorption in tissues21. Till date, OCT has found applications 
in numerous biomedical studies, viz. ophthalmic imaging, retinal surgery, dermatology, forensic sciences, etc. and 
non-destructive testing (NDT) since its first realization in 199120–22.

Apart from its potential biomedical applications, OCT has found little use in understanding problems in plant 
biology and agriculture. OCT has been reported to elucidate qualitatively the microstructural changes in the 
layers of fruits, seeds and other parts of plants23,24. OCT has also been applied to detect cucumber green mottle 
mosaic virus (CGMMV) in cucumber seeds, and to study microstructural changes in infected apple leaves25,26. 
Recently, spectral domain OCT (SD-OCT) has been used for in vivo monitoring of growth of Capsicum annuum 
leaf and fungal infection in leaves27. A compact SD-OCT with a spectrometer for in situ leaf quality assessment 
has also been reported28. Thus, SD-OCT and OCT, in general, have the potential to become an invaluable tool in 
agriculture and plant science.

In this study, SD-OCT has been used to obtain 3D cross-sectional images of Acer serrulatum Hayata leaves 
to illustrate and quantify the leaf microstructural changes during senescence (due to seasonal change; autumn 
phenology). Moreover, total chlorophyll content of the leaves at different stages of the developmental senescence 
has been studied. Acer serrulatum Hayata is a broadleaf deciduous tree which belongs to the species maple, and it 
shows remarkable autumn phenology. Here, we compared the microstructural changes in leaves among different 
stages of leaf development and senescence, i.e., green, yellow, and red leaves. 3D cross-sectional images and the 
corresponding attenuation coefficient (of light) showed remarkable microstructural changes among these differ-
ent colored leaves. Further, to quantify these changes, we have applied textural analysis algorithms (Spatial-gray 
level dependent matrix; SGLDM) to extract fourteen quantitative parameters to distinguish senescing leaves from 
non-senescing29,30. Our results further show lower total chlorophyll content in the senescing leaves. To the best of 
our knowledge, this is the first reported study of combining SD-OCT imaging with textural analysis algorithm in 
elucidating parametric quantification of leaf microstructure in senescence, a phenomenon of utmost importance 
from an agricultural perspective.

Results
The key results of our SD-OCT-based study of the influence of senescence in the structured layers of leaves of 
deciduous plant ‘Acer serrulatum Hayata’, are presented below in this section.

2D and 3D image analysis of senescing leaves.  In this work, three different colored Hayata leaves viz. 
green, yellow and red were chosen as three distinct stages of developmental senescence. To confirm the consist-
ency during our experiments for the three categories, all the leaves were imaged on adaxial surface. Figure 1(a) 
shows the representative 2D SD-OCT cross-sectional depth images along with the photographs of the green, 
yellow and red leaves. The photographs emphasize the topographical changes among all the three categories. In 
addition, the 2D cross-sectional images clearly show the green leaf with three distinct layers viz. cuticle, upper 
epidermis, and palisade layers, however, for yellow and red leaves distinct demarcation of upper epidermis and 
palisade layers become indistinguishable (Fig. 1(a)), resulting in a single thickened layer. Thus, this result strongly 
reflects the alteration of structured layers of leaves during the development of senescence and suggests that 
SD-OCT characterization can be potentially applied in this kind of study.

Leaves are multilayered structures with variation in absorption coefficients in different layers; neverthe-
less, “A-scan” and “B-scan” analysis was performed to obtain more detail microstructural information from the 
SD-OCT images. In OCT, A-scan is referred for depth scan (which is related to longitudinal scan); while B-scan is 
referred to sagittal, or transverse sections such as XZ, or YZ plane. The thickness between two layers of a leaf can 
be defined through the corresponding distance between the A-scan profile (amplitude scan) peaks. Normalized 
“A-scan analysis” of leaves at different senescence stages and corresponding A-scan intensity plot are shown in 
Fig. 1(b). Equal areas (~250 µm in the lateral direction) were used for A-scan analysis of all the leaves samples. A 
convolution filter was used to compensate for speckle noise in A-scan signals to avoid erroneous peak detection. 
Hundred successive A-scan signals were extracted from a 2D cross-sectional image (B-scan images), averaged 
and normalized by the maximum value. The maximum value intensity peak in the axial direction of the image 
was identified as the first peak. The peaks in the A-scan plot of the green leaves shows different layers of the leaves; 
the broadening of the second order peak in yellow and red leaves substantiates the observation in Fig. 1(a) that the 

https://doi.org/10.1038/s41598-018-38165-3


www.nature.com/scientificreports/

3Scientific Reports |          (2019) 9:1167  | https://doi.org/10.1038/s41598-018-38165-3

upper epidermis and palisade layers merged to form a thick layer in these leaves. Hence, the increase in thickness 
and merging of epidermis and palisade layers can be considered as one of the initial symptoms in the senescence 
progression. So, it might be useful to identify the leaf layer structure changes to understnad the physical status of 
the leaves during senescence.

To obtain far more valuable structural information and quantify the changes above in terms of intensity, 
attenuation coefficient was also calculated for each case (Fig. 1(c)). The attenuation coefficient is an intrinsic 
optical property of tissues that is strongly related to the OCT signals. It can be defined as the amount of light 
scatter and absorption per unit distance as light travels in a tissue or semitransparent material. For the calcula-
tion of the attenuation coefficient, the chosen area of interest was taken 10 pixels below the air-sample surface 
interface to avoid high-intensity reflections and fluctuations. For image analysis, 200 B-scan images were taken 
to obtain an averaged B-scan image; subsequently, 100 adjacent A-lines (corresponding to a lateral scan length 
of ~492 µm) were chosen from the center of this averaged B-scan image and averaged. The depth-dependent 
reflectivity or A-line scan was obtained from this averaged A-line; corresponding to an axial region of ~320 µm. 
A linear-fitting model was used to obtain the slope of the attenuation of each A-line. The calculated mean atten-
uation coefficients ± SEM (standard error of mean) for green, yellow and red leaves are: −0.78 ± 0.05 dB/µm 
(n = 12), −1.10 ± 0.06 dB/µm (n = 11), and −1.20 ± 0.03 dB/µm (n = 10), respectively (Fig. 1(c)). Our result thus 
shows a statistically significant lower attenuation coefficient for the yellow and red leaves as compared to green 
leaves. The higher value of slope corresponds to a higher attenuation of light for the same penetration depth.

Figure 2 shows the 3D, and en face (XY) oriented images of leaves at different conditions. Figures 2(a–c) show 
the 3D reconstructed images of the green, yellow and red colored leaves respectively. The selected 3D recon-
structed volume was 2 mm × 2 mm × 350 µm. From these images, distinguishable microstructural differences 
are not observed at the upper cuticle layer among the three conditions of leaves. This substantially validates the 
existence of sharp first peak as can be seen in the A-scan analysis plot (Fig. 1(b)). Further, en face sectional images 
of the green leaf at depths 115 and 135 µm, yellow leaf at 85 and 115 µm, and red leaf at 100 and 125 µm are shown 
in Figs. 2(d–f), respectively. These images, at different depths between the upper epidermis and palisade layer, 
corresponds to the second peak in the A-scan analysis plot in Fig. 1(b). The en face images clearly show the micro-
structural changes in the upper epidermis and palisade layer among green, yellow and red leaves. Our results 
thus further validate the fact that microstructural changes in upper epidermis (protects leaves from pathogens as 
well as other environmental factors), as well as stoma also contribute to the progression of senescence. To further 

Figure 1.  Two-dimensional (2D) SD-OCT image analysis. (a) Photographs of representative green, yellow 
and red leaves and the corresponding 2D SD-OCT cross-sectional images. Here, the black boxes in the leaf 
photographs are the approximate areas where the SD-OCT imaging is performed; while yellow boxes in the 
cross-sectional images are considered for the A-scan analysis and attenuation coefficients calculations. (b) 
Normalized A-scan analysis of leaves. (c) Box plot of the attenuation coefficients of light in green, yellow and red 
leaves. Median is shown as the horizontal line within the box; boundaries of the box indicate the 25th- and 75th 
-percentile, while the line extended from the box on both sides represent the extent of area where the outliers 
can be found. Data points with a normal distribution curve are also shown for each box. Student’s unpaired two-
tailed t-test statistical significance: “**”p < 0.001 for green leaves vs. other conditions; “Δ”p < 0.05 for yellow vs. 
red leaves; “n” represents the number of data points.
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quantify the changes in the microstructural features due to senescence in Hayata leaves, we adopted a texture 
analysis procedure; the results are presented below.

Texture parameter quantifications.  In this study, fourteen texture parameters were evaluated for green, 
yellow and red colored Hayata leaves. A total of 44 green, 43 yellow, and 56 red leaves were imaged in vivo 
using the SD-OCT system. In a B-scan image of 813 × 750 pixels (width × height), an ROI of 200 × 200 pixels 
sub-image was chosen to correspond to a physical area of 492 µm × 533 µm. These sub-images were then pro-
cessed using SGLDM, and each feature was extracted.

Figure 3 summarizes the changes of most significant ten texture parameters; while Supplementary Fig. S1 
shows the other four parameters as a reference. These texture parameters help to understand the microstructural 
changes among the green, yellow and red leaves. The mathematical expression and their significance are suc-
cinctly summarized in Supplementary Table S1. From Fig. 3, it is easily discernable that apart from the texture 
parameters inertia and inverse difference moment which can only distinguish between green and red leaves, the 
other parameters significantly distinguish the green leaves from yellow and red leaves. However, inertia can also 
differentiate (with p < 0.001) yellow and red leaves. Most interestingly, the texture parameters energy, skewness 
and sum variance can successfully quantify the microstructural differences among all the leaves with different 
colors. The parameter energy decreased to ~22% (with p < 0.05) and ~34% (with p < 0.001) for yellow and red 
leaves vs. green leaves respectively; while the energy for red leaves decreased by ~14% (with p < 0.05) against the 
yellow leaves. Skewness increased by ~50% (with p < 0.001) and ~63% (with p < 0.001) for yellow and red leaves 
as compared with green leaves respectively (Fig. 3); also a ~10% (with p < 0.05) increment of skewness was also 
observed for red leaves in comparison with yellow leaves. Further, the texture parameter sum variance showed 
an increase of ~30% (with p < 0.001) and ~40% (with p < 0.001) for yellow and red leaves in comparison with 
green leaves while it showed a ~10% (with p < 0.05) change between yellow and red leaves. Hence, quantitative 
evaluation of textural features can help us to distinguish the young and healthy leaves from the senescing leaves.

Furthermore, to validate the capability of SGLDM model to differentiate between green, yellow and red leaves, 
the widely used classifier k-nearest neighbors algorithm (k-NN), a non-parametric technique, was chosen. In 
k-NN classification, the input consists of the k closest training examples in the feature space; while the out-
put comprises the class membership. An object is classified by a majority vote of its neighbors, with the object 
assigned to the class most prevalent amongst its k-nearest neighbors. The accuracy of the classifier is determined 
by the area under the receiver operating characteristics (ROC). Figure 4 shows the ROC for the textural features 
(energy, inverse difference moment, skewness, and sum variance) to distinguish the three different colored leaves 
simultaneously. The calculated sensitivity, specificity, and accuracy of the applied textural analysis procedure were 
~98%, ~99%, and ~95.5%, respectively, for the selected features. These values suggest that SD-OCT imaging, in 

Figure 2.  Three-dimensional (3D) and en face SD-OCT images of the green, yellow and red colored leaves. 
(a–c) Show the pseudocolored 3D (2 mm × 2 mm × 350 µm) reconstructed images of the green, yellow and red 
colored Hayata leaves. En face images (shown in gray color) are at (d) 115 and 135 µm depths in green leaf; (e) 
85 and 115 µm depths in yellow leaf; and (f) 100 and 125 µm depths in red leaf. Scale bar: 500 µm.
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conjunction with SGLDM textural analysis, have a strong potential to quantitatively classify different stages of 
senescence in leaves.

As discussed previously, morphological changes are also accompanied by the changes in the chlorophyll con-
tent of the senescing leaves. Thus, to validate our findings using SD-OCT with chlorophyll contents in the leaves, 
the absorbance curves of the total pigment extracts of the three different colored leaves in acetone were recorded 
(Fig. 5(a)). Subsequently, following Bruinsma’s protocol, the total chlorophyll concentration of the leaves were 
determined31,32. The detail of the sample preparation can be found in the “Materials and methods” section. Our 
results showed that the total chlorophyll concentrations (in µg/ml) of the yellow and red leaves are significantly 

Figure 3.  Box plots for the comparison of texture parameters using spatial gray-level dependence matrix 
(SGLDM). The horizontal line within the box indicates the median, boundaries of the box indicate the 25th- 
and 75th -percentile, and the line extended form the box in both sides represent the extent of the area where 
the outliers can be found. Data point distribution with a solid curve (to show normal data distribution) is also 
shown for each box. Textural parameters, viz. energy, inertia, inverse difference moment, correlation, skewness, 
sum variance, sum average, sum entropy, and information measure of correlation 1 and 2 among the green, 
yellow and red leaves, extracted from the SD-OCT images of the three different colored leaves are shown. 
Y-axis for each parameter are shown in arbitrary units (A.U.) as it was obtained from pixel gray level values. 
Student’s unpaired two-tailed t-test statistical significance: “*”p < 0.05; “**”p < 0.001 for green leaves vs. other 
conditions; “Δ”p < 0.05; “ΔΔ”p < 0.001 for yellow vs. red leaves; “n” represents the number of data points.
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decreased (p < 0.001) compared to the green leaves by ~65.29% and ~79.80% respectively; further, the chloro-
phyll content decreases by ~41.77% (p < 0.001) for red leaves compared to yellow leaves (Fig. 5(b)). These find-
ings further confirm that the total chlorophyll content of senescing leaves at different developmental stages varies 
significantly and can be correlated with the changes in the microstructural changes in the leaves.

Discussions
We have investigated the changes in microstructural features associated with the senescence (due to autumn 
phenology) of leaves using SD-OCT. The A- and B- scan (Fig. 1) and 3D SD-OCT (Fig. 2) images for differ-
ent conditions of leaves provide the optical visualization of qualitative changes in microstructural features; fur-
ther determination of the attenuation coefficient of light (Fig. 1(c)) and utilization of texture analysis algorithm 

Figure 4.  The receiver operating characteristics (ROC) curve to show the accuracy of the k-NN classifier. ROC 
curve for the significant texture features (energy, inverse difference moment, skewness, and sum variance) for 
the classification of green, yellow and red leaves are shown. The area under the curve (AUC) is 0.98.

Figure 5.  Total chlorophyll content determination. (a) Absorbance curves of the extracts of green, yellow, 
and red Hyata leaves in 99% acetone. The plot in the inbox shows the enlarged view of the absorption peaks 
(identified as the region of yellow and red leaves in the 630–700 nm wavelength range). (b) Box plot of the total 
chlorophyll contents in the three different colored leaves. Horizontal line within the box indicates the median, 
the boundaries of the box shows the 25th- and 75th- percentile; while the extended line from the sides of the 
box indicate the extent of area where the outliers can be found. Student’s unpaired two-tailed t-test statistical 
significance: “**”p < 0.001 for green leaves vs. other conditions; “ΔΔ”p < 0.001 for yellow vs. red leaves; “n” 
represents the number of data points.
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(Fig. 3) help to quantify those changes. In addition, the chlorophyll content of the different stages of the leaves 
(Fig. 5) was also evaluated.

Senescence is considered as the final stage of leaf development and strongly reflects the process towards death. 
Thus, studying the structural features changes during this process will have a profound impact in agricultural and 
allied sciences. Senescence is associated with the down-regulation of photosynthesis apparatus and corresponds 
to an alteration of layered structural changes in leaves1,10,12. Our study using SD-OCT also shows prominent 
changes in the layered organization and total chlorophyll content of the Hayata leaves. For the red and yellow 
leaves, the upper epidermis and palisade layers merged and a thick layer is observed which is distinctly absent 
in green leaves (Fig. 1(b)). Similar findings also can be found in leaves affected by pathogen attacks, which leads 
to senescence9,33. Thus, it can be hypothesized that senescence due to pathogen attacks and autumn phenol-
ogy might have similar structural alterations. Calculation of the attenuation coefficient from A-scan images also 
shows the distinct structural changes among green vs. yellow and red leaves (Fig. 1(c)). Higher attenuation coeffi-
cient for green leaves as compared with the other leaves shows the intact layered structure corresponding to their 
healthy status. This is the first reported validation of layered structural changes in senescing leaves due to the 
seasonal variation in autumn.

To further substantiate these observations, textural parameters for the green and senescing leaves were eval-
uated. Our results show that energy, skewness and sum variance can significantly distinguish the three kinds of 
Hayata leave samples (green, yellow, and red) chosen in this study. Energy defines the intensity homogeneity in an 
image, reflecting pixel-pair repetitions in an image plane. Thus the lower value of energy reflects structural asym-
metry. On the other hand, skewness defines the imbalance between the gray levels among pixels and their mean 
values. Thus, higher skewness also corresponds to the asymmetric structure. Sum variance, which is a measure 
of heterogeneity, defines the sum distribution of pixel gray level values around their mean. This feature was also 
reflected by the texture parameter inverse difference moment. Our results show that energy decreases while skew-
ness and sum variance increases from green to red leaves (Fig. 3), thus corroborating the conclusion that in leaf 
senescence, the leaf microstructure becomes more asymmetrical and/or heterogeneous compared with those in 
young and healthy conditions. Furthermore, inverse difference moment change also reflects a similar conclusion 
for green and red leaves (Fig. 3).

In addition to microstructural studies with SD-OCT, total chlorophyll content, an important physiological 
parameter associated with senescence, changes statistically significantly with the advanced stages of senescence 
(Fig. 5). Existing literatures also show the change in chlorophyll content and its correlation with leaf structure 
(leaf thickness, leaf mass area, and leaf mass density) alterations34. However, these parameters, which are generally 
considered for leaf structure, are macroscopic. On the other hand, our approach of SD-OCT can provide informa-
tion of leaf microstructure at submicron resolution non-invasively. In addition, our finding also corroborates well 
with existing literature where it has also been shown that lower chlorophyll content and leaf structure changes 
associates well with senescence12,34. Thus, we can view our findings in the light that SD-OCT structural analysis 
along with total chlorophyll content might serve as complementary to each other in the understanding of the 
progression of senescence.

Senescence is a progressive developmental process which terminates with the death of the organ (viz. leaf), 
or the plant as a whole. It starts with the early stages of development, and the intermediate stage of the process 
is highly undetermined4. In this study, we have chosen three distinct major time points (as reflected by green, 
yellow and red colored leaves) of leaf senescence in developmental context to correlate our experimental results 
with the progression of the senescence in Hayata leaves. Here, the yellow color leaves are chosen as a represent-
ative intermediate stage between the healthy green leaves and the senescing red colored leaves, a stage showing 
the peak of the senescence. This undetermined nature of senescence stages apart from terminate one, can also 
be observed in the results of textural features for the three different colored leaves (Figs. 3 and S1). For the green 
and red leaves, all the parameters can significantly distinguish these two end-point stages (Fig. 3). However, the 
ROC curve analysis showed that the features skewness, energy, and sum variance could successfully categorize 
the selected different stages of senescence in leaves simultaneously with high accuracy, specificity and sensitivity 
(Fig. 4). Our approach is thus capable of quantitatively discriminating senescing leaves from healthy leaves due 
to autumn phenology.

Conclusions
SD-OCT is a highly robust, non-destructive and informative technique that has, till date, limited application 
in plant science. Moreover, this study is the first of its kind in applying textural analysis algorithm to analyze 
SD-OCT images to quantify the microstructural changes involved in the senescence of leaves. SD-OCT tech-
niques, equipped with near-infrared (NIR) light source, provide higher penetration in highly scattering samples 
such as leaves with little or no phototoxicity. Acer serrulatum Hayata plants have been widely planted in Taiwan as 
a part of the pollution control measure in cities which provides a strong motivation for this study. Our approach 
can complement traditional approaches to study this kind of problems. In field studies, such as in agriculture, a 
leaf can be easily sacrificed without affecting the yield of crops, and our approach can be utilized to predict the 
health of the crops. Furthermore, senescence and death in leaves are active development strategies that contrib-
ute to the survival of the plant. The work presented here thus can, in future, be implemented to tackle basic and 
practical problems in plant physiology and pathology, such as senescence and death in leaves caused by different 
agents (pathogen attack, pollution etc.).
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Materials and Methods
Leaf sample preparation.  In this study, leaves were collected fresh (on the day of experiment) from an 
Acer serrulatum Hayata tree grown in the campus of National Yang-Ming University, Taipei, Taiwan during the 
months from September to late November. Leaves were plucked from three selected trees to maintain the similar 
conditions at a particular time of the day (sunny days preferred). We chose three different colorations (green, 
yellow and red) of leaves signifying different stages of senescence. Care was taken to avoid any leaves infected by 
pathogens. A small section of the leaf was cut and mounted on a glass slide for SD-OCT imaging.

To obtain the chlorophyll absorbance curves of the leaves, small pieces (1 cm × 1 cm) leaf tissues were cut and 
homogenized with 1 ml of 99% acetone in a pestle. To remove the remaining debris, the homogenate is filtered 
using centrifugation at 1000 g for 5 mins. The chlorophyll absorbance curves were immediately determined using 
DU 800 spectrophotometer (Beckman coulter, Fullerton, Germany).

Experimental set up of SD-OCT.  The schematic of the experimental set up of the SD-OCT system is 
shown in Fig. 6. The detail of the system can be found elsewhere35. In short, a broadband (wavelength range: 
650–1800 nm) supercontinuum fiber laser (SuperK Extreme, NKT Photonics, Denmark) was used as an illumina-
tion source in the present system. Using an appropriate dichroic mirror (DM) and color filter (CF) set, the desired 
wavelength band of 1100–1550 nm (center wavelength: 1275 nm, full-width half maximum (FWHM): 240 nm) 
was chosen for our experimental measurements. This desired light was then incident into a fiber-optic based 
low coherence Michelson interferometer. A 50/50 fiber coupler was used to direct the light to the sample and 
reference arms of the interferometer. 2D galvo scanners (61710PS1XY2-S4, Cambridge Technology, U.S.A.) with 
scan lens (LSM03, EFL = 36 mm, NA = 0.05547) were used to scan the leaves samples. A 2 mm × 2 mm scanning 
range was used. The interference signal was recorded using a spectrometer (COBRA SWIR C-1155-1395-GL2, 
Wasatch Photonics, USA) with a 2048 pixels line scan CMOS sensor (GL2048L-10A-ENC-STD-210, Sensors 
Unlimited Inc., U.S.A.). With the present system configuration, images with 1024 × 1000 pixels could be achieved 
with maximum A-line scan rate of 76 Ks−1. However, for our experimental measurements, the acquisition time 
of each 2D image (B-scan) was 37.25 ms. Total 813 A-scans were used to produce one 2D image, and 1800 images 
were obtained to make one 3D image. Correspondingly; acquisition time of one 3D image was 67 s. The axial and 
lateral resolutions of the system at the sample surface were approximately 7 and 9 µm respectively. System control 
and signal acquisition were achieved using LabView software.

Texture analysis of B-scan SD-OCT images.  Texture analysis, comprising of a set of mathematical rela-
tions to quantify the variation of gray level in an image, was applied to characterize different micro-features in the 
intensity variations in the acquired 2D-images. Textures represent the spatial distribution of intensity in terms 
of pixels’ gray levels in a region; and hence a change in the spatial distribution of intensity directly reflects the 
change in texture of a sample. Several statistical approaches have been proposed till date to define textural param-
eters29,30,36. In this work, Gray-level co-occurrence matrix (GLCM), also known as spatial gray-level dependence 
matrix (SGLDM), was used to obtain Haralick’s textural features30. In SGLDM, co-occurrence matrices are con-
structed to obtain the changes in gray level in the region of interest (ROI). Here, the ROI was selected manually, 
and MATLAB-based analysis (MATLAB 2015b) was applied to obtain the 14 selected textural features37, summa-
rized and defined in Supplementary Table S1.

Statistical analysis.  Student’s unpaired two-tailed t-test was performed to evaluate the significance of dif-
ference among different data points at different stages of leaves senescence. Null hypothesis was rejected for ‘p’ 
values lower than 0.05.

Figure 6.  A schematic of SD-OCT set up. DM: Dichroic mirror; CF: Color filter; CL: Collimating Lens; RM: 
Reference mirror; SL: Scan lens; DAQ card: Data acquisition card.
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