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A Human iPSC-derived 3D platform 
using primary brain cancer cells 
to study drug development and 
personalized medicine
Simon Plummer1, Stephanie Wallace1, Graeme Ball  2, Roslyn Lloyd3, Paula Schiapparelli4, 
Alfredo Quiñones-Hinojosa4, Thomas Hartung  5,6 & David pamies  5,7

A high throughput histology (microTMA) platform was applied for testing drugs against tumors in a 
novel 3D heterotypic glioblastoma brain sphere (gBS) model consisting of glioblastoma tumor cells, 
iPSC-derived neurons, glial cells and astrocytes grown in a spheroid. The differential responses of gBS 
tumors and normal neuronal cells to sustained treatments with anti-cancer drugs temozolomide (TMZ) 
and doxorubicin (DOX) were investigated. gBS were exposed to TMZ or DOX over a 7-day period. 
Untreated gBS tumors increased in size over a 4-week culture period, however, there was no increase in 
the number of normal neuronal cells. TMZ (100 uM) and DOX (0.3 uM) treatments caused ~30% (P~0.07) 
and ~80% (P < 0.001) decreases in the size of the tumors, respectively. Neither treatment altered the 
number of normal neuronal cells in the model. The anti-tumor effects of TMZ and DOX were mediated in 
part by selective induction of apoptosis. This platform provides a novel approach for screening new anti-
glioblastoma agents and evaluating different treatment options for a given patient.

Drug development costs are high and the process is inefficient1. Drug companies aim to produce drugs to treat 
chronic and complex diseases with a high safety margin. This process involves trials with large patient sample 
sizes, long follow-up of patients and complex analyses2. The cost per drug is estimated at $1.2–1.3 billion dollars3, 
and the total development time is approximately 8 years4. In addition, only a small percentage of products reach 
the market after clinical testing, making it difficult to produce much needed new treatments for cancer patients1.

Preclinical drug development uses animal testing, and ~15 million animals per year are used worldwide 
in experimentation or to supply the biomedical industry5. The lack of correlation between animal models and 
human diseases indicates that animals are a suboptimal model to study human physiology, contributing to the 
high failure rate in drug development6–8. New approaches that rely on molecular pathways of human toxicity have 
been proposed to overcome drug development inefficiencies9,10. The development of new primary human cell 
culture technologies such as 3D culture, microfluidics and microfabrication in combination with human induced 
pluripotent stem cell (iPSC) derived models promise to generate more relevant human physiological systems for 
drug testing11. ‘Human on a chip’ systems containing several organotypic models linked together with microflu-
idic perfusion are promising but there are challenges to applying this approach in high throughput12. Spheroid 
models from primary human tissues offer a solution in this regard because they can be produced in large num-
bers with high uniformity and thus offer an opportunity for implementation of drug testing at an earlier stage in 
preclinical development13.

Performing high-throughput testing of 3D models is challenging due to difficulties associated with staining 
and imaging throughout the tissues caused by lack of antibody penetration and fluorescence light scatter and 
quenching14,15. To address this issue, we have developed a spheroid tissue microarray (microTMA) technology 
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which facilitates multiplex staining and high-throughput histology analysis of spheroids16. The advantage of this 
technology is that it provides a platform for automated multiplex immunostaining of a broad spectrum of effi-
cacy/toxicity end points and thus can be tailored for testing new therapies17.

Our laboratory previously reported a reproducible iPSC human-derived 3D organotypic culture, BrainSpheres 
(BS), that displays several characteristics of the central nervous system (CNS): BS are composed of different neu-
ronal phenotypes, astrocytes and oligodendrocytes and have shown myelin axonal wrapping and spontaneous 
electrophysiological activity18. Moreover, they have been shown to be a reliable tool for neurotoxicology19. In this 
study, we have for the first time incorporated cells from the most devastating brain cancer (glioblastoma) from 
primary brain tumor tissue from our patients into the BS. This allows the study of tumor pathophysiology and 
drug response in a physiological environment. Glioblastoma is an aggressive brain tumor with a poor prognosis 
(12–14 months) due in part to its invasive nature20,21; hence, there is a pressing need to develop new therapies to 
combat this currently incurable disease. The existing therapy for glioblastoma involves surgery followed by radia-
tion and temozolomide (TMZ) treatment22. To address the issue of drug resistance due to O6-alkylguanine-DNA 
alkyltransferase mediated DNA repair, recent clinical studies have explored more prolonged TMZ treatments on 
the basis that the enzyme is irreversibly inactivated during O6-alkylguanine removal and thus can be depleted by 
prolonged TMZ treatment22,23. We also chose to test doxorubicin in this context because there are several reports 
showing that doxorubicin is a potent anti-cancer agent in glioblastoma cell lines and in vivo models providing a 
rationale for exploring this agent clinically24–27. Using our microTMA technology combined with image analysis, 
we have been able to track the evolution and treatment of glioblastoma over time. A unique feature of this system 
is its ability to assess both on-target and off-target effects of drugs as our model incorporates both primary brain 
tumor cells from our patients and normal neuronal cells (neurons, astrocytes, glial cells).

Results
Characterisation of the gBS spheroid model. We measured the number of glioblastoma cells and nor-
mal neuronal cells over a 4-week period from 3 to 7 weeks after the gBS spheroids were first formed (week 0). The 
number of glioblastoma cells increased in a time-dependent fashion from 3 to 7 weeks (Fig. 1A,a–f and B). By 
contrast, neuronal cells did not increase in number over this time course, which concurs with their postmitotic 
differentiation state (Fig. 1B).The histological characteristics of the gBS glioblastoma tumors were consistent with 
those observed in xenograft tumors with the same glioblstoma cell line in that they showed high cellularity with 
a spherical morphology (Figs 1A,a–f and 2C,a,b).

We also found staining for the neuronal (Tuj1 and NF200), astrocyte (GFAP and vimentin) and oligoden-
drocyte (O1) markers consistent with the presence of these normal brain cell types in the gBS (Fig. 1C,a–i). 
Interestingly O1 (oligodendrocyte marker) and vimentin (astrocyte marker) were also expressed in glioblastoma 
tumor cells (Fig. 1C,e,f and h,i, respectively).

Effect of Temozolomide (TMZ) treatment. gBS spheroids were exposed to TMZ (10,100 uM) over a 
7-day period from the start of week 4 after spheroid formation. TMZ treatment (100 uM) caused a ~30% (p = 0.07) 
reduction in the total number of tumor cells (relative to control) in the gBS spheroids (Fig. 2A,a–f and B).  
By contrast TMZ had no effect on the total number of normal cells in the spheroids (Fig. 2B).These results are 
consistent with TMZ treatment in vivo. We tested two cycles of daily intraperitoneal administration of TMZ 
(100 mg/Kg, 7 days per cycle) in mouse xenograft tumors derived from the 965 glioblastoma cell line. We found 
that TMZ produced shrinkage of subcutaneous tumors (Fig. 2C,c,d).

Effect of Doxorubicin (DOX) treatment. gBS spheroids were exposed to DOX (0.025–0.3 uM) over a 
7-day period from the start of week 4 after spheroid formation. Exposure of BS and gBS to DOX (0.025–0.5 uM) 
caused a dose-dependent reduction in cell viability in both types of spheroids. However, the gBS were more sen-
sitive to the cytotoxic effects of DOX compared to the BS (Fig. 3A).

Exposure to DOX (0.025–0.1 uM) had little or no effect on the size of the glioblastoma tumors, however, the 
0.3 uM concentration caused a marked ~80% reduction (p < 0.001) in the size of the tumors relative to the normal 
neuronal cells (Fig. 3B).

Mechanism(s) of anti-cancer activity. To assess mechanism(s) of glioblastoma cell death/reduction we 
measured the percentages of cleaved-caspase-3-positive and Ki67-positive glioblastoma and normal neuronal 
cells in the gBS spheroids. DOX treatment caused a marked (~10–60%) dose-dependent increase in the number 
of cleaved caspase-3-positive glioblastoma cells (Fig. 3C,a–e and D). In contrast, this treatment only caused a 
small (~1–10%) increase in the number of cleaved-caspase-3-positive normal neuronal cells (Fig. 3D).

DOX treatment also caused a significant (P < 0.001) increase in the number of Ki67-positive glioblastoma cells 
at the low doses (0.025–0.1 uM), but this returned almost to control levels at the 0.3 uM dose (Fig. 3E,a–e and F).  
DOX treatment also caused slight increases in the number of Ki67-positive normal neuronal cells at the 0.05 and 
0.3 uM concentrations (Fig. 3F).

Automated analysis of microTMA slides. Tumor size and normal neuronal cell number data generated 
using the Polaris/Inform system was comparable to that generated from microTMA images collected manu-
ally, (Fig. 4a,d). However, the time for the image acquisition process was reduced from approximately 2 hours to 
approximately 5 minutes which made it feasible to scan and analyse multiple slides in a single run.

As our microTMA analysis approach was based on analysing images from single 6-micron-sections through 
the microTMA (96 spheroids), we validated the approach by repeating the same analysis on three different paral-
lel sections from different levels of the same microTMA. These tests showed that regardless of the section depth, 
the results obtained were similar indicating that it was possible to get representative data from a single microTMA 
section (Fig. 4a–f).
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Discussion
Testing of anti-glioblastoma drugs in human organoid cultures is challenging due to a lack of relevant 
human-derived brain tumor models and difficulties associated with measuring endpoints that predict drug effi-
cacy. Moreover, there is a lack of tools in the clinical setting to predict tumor responses and help guide the chemo-
therapy treatment options for a given patient. To address these issues, we have developed a human glioblastoma 
spheroid microphysiological system (gBS) containing normal human neuronal cells and primary human glioblas-
toma cells from our patients grown together in a heterotypic spheroid model. We also developed a technology for 
high-throughput histological analysis of spheroids and tested an existing glioblastoma therapy, i.e. TMZ, and an 
experimental therapy, i.e. DOX, for anti-tumor efficacy in the model.

Significant challenges with cancer drug efficacy include the variability of the response to drug treatment and 
the acquisition of resistance. For TMZ this is due in part to the genotype/phenotype of the tumor in regards 
to DNA repair enzymes28,29. New targets that modulate the expression of these enzymes and tumor invasion/
migration have recently been discovered30–35. As we have shown, it is possible to grow glioblastomas in a 
human-relevant brain model; our approach offers a way to study anti-cancer drug response heterogeneity more 
rapidly than the current in vivo approaches36. By modelling the prolonged treatment of TMZ used previously in 
our nude mouse study in our gBS system, we have been able to demonstrate efficacy in the gBS similar to that 
observed in vivo. Given that there are publicly available libraries of glioblastoma patient-derived orthotopic xen-
ograft (PDOX) cell lines36–38, we envision the creation of a more efficient discovery platform for new therapies, 
which ultimately offers a personalized approach by matching patients to therapies that are more likely to work 
clinically.

We found that TMZ and DOX treatments caused a decrease in the size of the gBS with little or no effect on 
the number of normal neuronal cells. Hence, our preliminary results indicate that the model can predict clinical 

Figure 1. Growth of glioblastoma tumors in the gBS model. Tumour cell growth was monitored by segmenting 
tumour cells in the GFP channel so that we could measure tumour and normal neuronal cell numbers inside the 
spheroids independently. Panel (A) shows the growth of glioblastoma cells and non-tumor (normal) cells in the 
gBS spheroids over time (4–7 weeks). a–c H&Es (x10) show the glioblastoma cells (‘pink’ eosinophylic cells) and 
normal neuronal cells (lighter pink, less eosinophylic) in the gBS spheroids at different times after seeding the 
cultures: a - 4 weeks; b - 5 weeks; c - 7 weeks; d–f are higher powered (x25) images of the same spheroid sections 
shown in the top panels. Panel (B) box plots of image analysis data showing total number of glioblastoma cells 
and total number of normal neuronal cells in the gBS over the time course (3–7 weeks) expressed as the total 
numbers of cells in the spheroid section. Box plots show the median (black horizontal line) and the upper and 
lower quartiles (ends of the boxes). Open circles show outliers >1.5 times the interquartile range away from 
the upper and lower quartiles. **Significantly different from 4 wk P < 0.001, n = 20; ***significantly different 
from 4 wk P < 0.00001, n = 20. Panel (C) Shows representative H&E and GFP/Tuj1, GFAP/O1 and Vimentin/
NF200 dual IF staining photomicrographs of untreated gBS (parallel sections): a, H&E; b GFP(red)/Tuj1(green) 
IF staining at low power (x20); c GFP/Tuj1 IF staining at high power (x63); d, H&E; e, GFAP (red)/O1 (green) 
IF staining at low power (x20); f, GFAP/O1 IF staining at high power (x63); g, H&E; h, NF200 (red)/vimentin 
(green) IF staining at low power (x20); i, NF200/vimentin IF staining at high power (x63). Blue staining is DAPI 
(nuclear counterstain).
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efficacy, supporting its value in the preclinical evaluation of glioblastoma therapies. Our findings suggest that the 
mechanism(s) of anti-tumor action was mediated in part by selective induction of apoptosis in the glioblastoma 
cells relative to the normal neuronal cells.

The observation that DOX may possess anti-glioblastoma efficacy is in agreement with recent reports that 
showed an albumin-conjugated form of DOX (aldoxorubicin), which crosses the blood brain barrier better than 
DOX, was more effective than DOX in a nude mouse glioblastoma model and caused remissions of the glio-
blastoma in patients treated with this experimental therapy39–41. DOX has previously been shown to be effective 
at killing glioblastoma cells in a non-heterotypic glioblastoma model42. To our knowledge, this is the first time 
that DOX has been found to selectively kill glioblastoma cells in the context of a heterotypic model containing 
normal neuronal cells. In future studies it may be possible to model the effects of the blood brain barrier on 
the efficacy of anti-cancer drugs through the addition of endothelial cells to the gBS model to investigate the 
bioavailability of anti-glioblastoma drugs in the brain. Unlike tumors in vivo, the gBS spheroids lack a capillary 
blood supply, possibly compromising the penetration of drug into the model system. However, recent MALDI 
imaging mass spectrometry studies with water-soluble anti-cancer drugs have shown that there is penetration of 
the drug throughout tumor spheroids of 200–500 microns diameter within 6–12 hr43,44. Hence it seems unlikely 
that this would be a significant confounding factor in the gBS spheroids, which have a diameter of approximately 
350microns18.

Other investigators have reported promising results using 3D models which recapitulate clinical scenarios 
better than 2D systems32,45–47. However, this is the first study where the effects of drug treatments have been 
examined in both glioblastoma and normal neuronal cells. This model is advantageous because it enables the 
assessment of drug effects on glioblastoma in a microenvironment more representative of the clinical situation, 
facilitating assessment of clinically relevant end-points such as the on-target and off-target effects of drugs and 
tumor invasion into normal brain tissue.It also opens up possibilities for personalized medicine with the ability to 
study each patient’s response to therapy in a “mini brain” model.

Figure 2. Effect of temozolomide (TMZ) treatment (10 and 100 uM) on the size of glioblastomas in vitro 
(gBS) and in vivo (nude mouse xenografts). Image analysis in the spheroid sections was performed by 
segmentation of tumour cells in the GFP channel in order to quantify their number relative to that of normal 
neuronal cells which were GFP negative (see materials and methods section 4.8 for details). Panel (A) a - H&E 
control; b - H&E 10 uM TZ; c - H&E 100 uM TMZ (glioblastomas are eosinophylic ‘pink’ cells); d–f show dual 
immunofluorescence (IF) stain of GFP (red) and cleaved caspase (green) with hoechst (blue) counterstain for 
control, 10 uM TMZ and 100 uM TZ, respectively. Panel (B) shows the total number of normal neuronal cells 
(N) and the total number of glioblastoma cells (T) in the spheroid sections.Box plots show the median (black 
horizontal line) and the upper and lower quartiles (ends of the boxes); whiskers show maximum and minimum 
values; open circles show outliers >1.5 times the interquartile range away from the upper and lower quartiles, 
n = 12. Panel (C): a, b show H&E stained sections of an untreated 965 xenograft tumor; c,d show H&E stained 
sections of a 965 xenograft tumor taken from a mouse treated with TMZ (100 μg/Kg)- see materials and 
methods section for details of the TMZ treatment(s).
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Figure 3. Effects of doxorubicin (DOX) treatment(s) on cell viability, tumor size and caspase or Ki67 
expression in glioblastoma and non-tumor (normal) spheroid tissues. Cleaved caspase 3 and Ki67 expression in 
tumour cells were measured by first segmentation in the GFP channel followed by thresholding in the caspase/
ki67 channel facilitating the measurement of these end-points (both expressed as percentages of caspase/Ki67 
positive cells relative to total cells) differentially in tumour cells and normal neuronal cells (see materials and 
methods section 4.8). Panel (A) shows effects of DOX treatments (0.025–0.5 uM) on cell viability (relative to 
control) as measured by the resazurin assay. Results are means ± SD, n = 3. Panel (B) shows effects of DOX 
treatment (0.025–0.3 uM) on the total number of non-tumor (normal neuronal) cells and the total number 
of glioblastoma cells in the gBS spheroid sections. Values are expressed as percentages of the total numbers of 
cells (normal + tumour) in the spheroid sections. Panel (C) shows effects of DOX treatment (0.025–0.3 uM) 
on the number of cleaved caspase 3 positive glioblastoma cells and non-tumor (normal neuronal) cells in 
representative dual immunofluorescence (GFP/cleaved caspase 3) stained gBS sections from the microTMA: a - 
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Our microTMA is an efficient way of multiplexing anti-tumor measurements in the same experiment. In this 
example, we measured the effects of the drugs on apoptosis and cell proliferation biomarkers in parallel sections. 
The microTMA facilitates the measurement of multiple endpoints on a single slide as, unlike whole-mount prepa-
rations, there are no limitations with regard to the use of repeated antigen retrieval cycles that are required for 
performing multiplexed immunofluorescence staining48. This enables measurement of complex drug responses 
involving multiple end-points at the pathway level. Ultimately this will lead to a better understanding of how a 
drug works and potentially provide informative biomarkers that translate to the clinic.

In conclusion, the work presented here indicates that the combination of iPSC, 3D culture and multiplexed 
high-throughput histology provides a novel platform for both cancer drug discovery and personalized medicine, 
as well as offering an alternative to animal in vivo studies.

Material and Methods
Chemicals. Doxorubicin (44583-1MG) and temozolomide (T-2577-25MG) were supplied by (Sigma). Stocks 
of 172 uM and 51.5 uM, respectively, were prepared in DMSO Hybri-Max (Sigma).

Patient samples and Glioblastoma cells. Patient samples of glioma tissues were obtained at the Johns 
Hopkins Hospital; informed patient consent was acquired from patients and all methods were carried under 
the approval of the Institutional Review Board of Johns Hopkins University. All experiments were performed in 
accordance with relevant guidelines and regulations. Human brain tumor cell lines were derived from intraoper-
ative tissue samples from patients treated surgically for newly diagnosed glioblastoma without prior treatment. 
The 965 cell line used in this study was cultured in media consisting of Dulbecco’s Modified Eagle Medium: 
Nutrient Mixture F-12, B27 serum free supplement (Gibco), 20 ng/mL epidermal growth factor (EGF), and 20 ng/
ml fibroblast-derived growth factor (FGF) as previously reported.

Neural Progenitor cell (NPC) production. NPCs were kindly provided by Professor Hongjun Song’s 
lab within our joint NIH NCATS project18. NPCs were derived from C1 (CRL-2097) fibroblasts purchased 
from ATCC. Differentiation from iPSC to NPC has been previously described49. Cells were grown in 175 mm2 
poly-l-ornithine and laminin-coated flasks. NPCs were expanded using KnockOut DMEM/F12, Glutamax, EGF 
and bFGF) as previously described18. Half of the media was changed every day. Cultures were maintained at 37 °C 
in an atmosphere of 5% CO2. NPCs from passage 20 to 25 were used for this study.

Tumor-Brain Spheres differentiation. BS were generated as previously described18. In order to incorpo-
rate glioblastoma cells into the BS, the protocol was slightly modified as follows: NPCs were grown (as above) in 
175 mm2 poly-l-ornithine and laminin-coated flasks. When NPCs were at 90% confluency, 7 × 105 glioblastoma 
cells were plated on top of the NPCs. After 24 hours the cells were detached mechanically using a cell scraper 
(Sarstedt). The mixture of cells was pipetted repeatedly to disaggregate cell clumps. A density of 2 × 106 cells per 
well were plated on a non-coated 6 plate-well. Cells were grown in differentiation medium (Neurobasal® elec-
tro Medium (Gibco) supplemented with 5% B-27® Electrophysiology (Gibco), 1% Glutamax (Gibco), 0.01 μg/
ml human recombinant GDNF (Gemini), 0.01 μg/ml human recombinant BDNF (Gemini). Cultures were kept 
at 37 °C in an atmosphere of 5% CO2 under constant gyratory shaking (88 rpm, 19 mm orbit) for up to 7 weeks, 
Fig. 1 Supplementary Data.

Cell viability. BS, Glioblastoma Spheres (GS) and Glioblastoma Brain Spheres (gBS) were cultured in dif-
ferentiation media for 4 weeks. After 4 weeks culture the spheroids were treated for 7 days with different con-
centrations of temozolomide (TMZ) (10,100 uM) or doxorubicin (DOX) (0.025, 0.05, 0.1, 0.3 and 0.5 uM). The 
concentration range of TMZ and DOX were chosen based on clinical data of the concentrations of drug in cere-
brospinal fluid (CSF) and plasma (peak plasma concentration), respectively50,51. The drug or vehicle treatments 
were performed by mixing the drug/vehicle solution with fresh differentiation media and then changing the 
media. Fresh media containing drug/vehicle was added on day 1, day 3, day 5 and day 7. After exposure to the 
drugs cell viability was determined using the resazurin assay52 as follows: Resazurin (100 μl of 2 mg/ml stock) in 
phosphate buffered saline (PBS) was added directly to the 6-well plates (2 ml/well). The plate was incubated for 
3 h at 37 °C, 5% CO2. Afterwards, 100 μl from each well was transferred to a 96-well plate and the fluorescence of 
resorufin was measured at 530 nm/590 nm (excitation/emission) in a multi-well fluorometric reader CytoFluor 
series 4000 (PerSeptive Biosystems, Inc). Resazurin is reduced into fluorescent resorufin (blue colour) by redox 
reactions only in viable cells. A one-way ANOVA test with post-hoc Bonferroni test was performed to assess 
statistical significance of the resazurin data.

control; b - 0.025 uM DOX; c - 0.05 uM DOX; d - 0.1 uM DOX; e - 0.3 uM DOX. Panel (D) shows the number of 
cleaved caspase 3 positive tumour (glioblastoma) cells and non-tumour cells in the spheroid sections expressed 
as a percentage of the total cells in the spheroid section. Values are expressed as percentages of the total numbers 
of glioblastoma or normal neuronal cells in the spheroid sections. Panel (E) shows effects of doxorubicin (DOX) 
treatment (0.025–0.3 uM) on the number of Ki67 positive glioblastoma cells and neuronal cells in representative 
dual immunofluorescence (GFP/Ki67) stained gBS sections from the microTMA: a - control; b - 0.025 uM 
DOX; c - 0.05 uM DOX; d - 0.1 uM DOX; e - 0.3 uM DOX. Panel (F) shows the number of Ki67 positive tumor 
cells and normal cells in the spheroid sections. Values are expressed as percentages of the total numbers of cells 
(normal + tumour) in the spheroid sections. Box plots show the median (black horizontal line) and the upper 
and lower quartiles (ends of the boxes); n = 32. Open circles show outliers >1.5 times the interquartile range 
away from the upper and lower quartiles. ***Significantly different from control p < 0.0001 by t test, n = 32.
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Construction of a spheroid tissue microarray (microTMA). To facilitate high-throughput histology 
analysis of gBS, paraformaldehyde (4%) fixed spheroids from each drug treatment were systematically organised 
in a microTMA using a previously published method (MicroMatrices international patent application No. PCT/
GB2016/053907 publication number WO 2017/174955), (Fig. 5A). Spheroids for each treatment were selected 

Figure 4. Measurement of the effect of doxorubicin (DOX) treatment (0.025–0.3 uM) on the number of 
glioblastoma cells made in three different microTMAsections of the same array. (a–c) Manual image acquisition 
(Zeiss LSM confocal); (d–f) automated image acquisition and analysis (Perkin Elmer Polaris/Inform software). 
Values are expressed as percentages of the total numbers of glioblastoma cells in the spheroid sections relative to 
the total number of glioblastoma and normal neuronal cells. ***Significantly different from control p < 0.0001 
by t test, n = 16.
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randomly from a pool of approximately 500 spheroids as illustrated in Fig. 1 Supplementary Data. Briefly, fixed 
spheroids were loaded into the wells of a 2% agarose mold containing 96 wells and sealed using molten 0.7% 
agarose. We embedded 16–32 spheroids per treatment in the microTMA mold. The agarose mold containing 
spheroids was dehydrated for a minimum of 12 hr in 70% ethanol and then the microTMA mold was processed 
to paraffin wax in a tissue processor (Thermo Citadel 1000). Following wax embedding the microTMA block 
was sectioned (6 uM sections) using a microtome (Reichert Jung) onto glass microscope slides (VWR Superfrost 
Plus).

High-throughput histology and immunostaining analysis of gliobastomaBrainSpheres 
(gBS). MicroTMA slides were dewaxed in Histoclear and then heat induced epitope retrieval (HIER) was 
performed using citrate buffer solution pH6 (Vector labs).Parallel sections were stained in haematoxylin and 

Figure 5. Construction and image analysis of a spheroid tissue microarray (microTMA). Fixed spheroids 
were embedded in a microTMA mold prior to paraffin embedding and sectioning on a microtome. TMA 
sections were then immunofluorescence stained and imaged using confocal scanning followed by dearraying 
of the spheroid images and image analysis (see material and methods section 4.8). (A) Schematic showing 
construction and processing of the microTMA for high-throughput histology and image analysis of 3D 
spheroid cultures. (B) Image analysis process to quantify tumor size and the number of cleaved caspase 3 or 
Ki67 positive tumor cells or normal neuronal cells. a dual immunofluorescence stained section showing GFP 
positive cells (red) and Ki67 positive cells (green), blue cells (DAPI) are normal (non-tumor cells); b - spectral 
unmixing and removal of autofluorescence; c, d - segmentation in the red channel to define tumor and normal 
cells/areas; e–h: segmentation in the green channel to define Ki67 or caspase positive cells, which are then 
counted in the tumor- and normal-cell regions.
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eosin or by immunostaining. Dual immunofluorescence (IF) staining using anti-green fluorescent protein (GFP) 
together with anti-Ki67, anti-cleaved-caspase-3, anti-beta Tubulin III (Tuj1)-antibodies was performed as follows: 
microTMA slides were dewaxed (Histoclear), dehydrated through graded ethanols (70%-100%) and subjected to 
HIER in pH 6.0 citrate buffer for 20 minutes at 121 °C in an antigen retriever (Prestige Medical). After HIER, the 
slides were washed in distilled water, and mounted in PBS on a Shandon disposable immunostaining chamber 
according to the manufacturer’s instructions. Blocking buffer (1% BSA (Sigma A7906-100G), 0.2% Triton X100 
(VWR #3063324), 3% normal goat serum (Sigma G9023-10 ml) in PBS) was added to the chamber and the slides 
incubated for 2 hours at RT. Anti-GFP (Abcam #13770), anti-Ki67 (Abcam # 15580), anti-cleaved caspase 3 (Cell 
signalling #9661S) or anti-Tuj1 (Abcam #78078) primary antibodies at 1:500, 1:1000, 1:100 or 1:2000 dilutions 
(PBS/0.1% BSA, 0.5% normal goat serum, 0.2% Triton), respectively, of the stock including a primary antibody 
negative control (wash buffer alone) were then added to the chambers and the slides incubated at RT for 1 hr. 
Slides were washed in wash buffer (0.1% BSA, 0.2% Triton, 0.5% normal goat serum in PBS). A mixture of sec-
ondary antibodies, goat anti-rabbit Alexa fluor 488 (Life Technologies # A11034) and goat anti-chicken Alexa 
fluor 568 (Life Technologies # A11031) diluted 1:500 in wash buffer and Hoechst 33342 (Sigma #B2261) (1 mg/
ml) diluted 1:1000 in wash buffer, was added to the chamber and the slides incubated for 2 hours at RT. The slides 
were then washed and mounted using antifade mountant (Vectashield, Vector Laboratories # H-1000). Dual 
IF-stained slides were imaged using a Zeiss 710 LSM confocal microscope.

Image analysis. A custom Image J algorithm automatically processed each dual IF stained spheroid 
image across the microTMA to calculate (1) the total number of tumor cells (GFP-positive) as a percentage of 
the total number of tumor and non-tumor (neuronal) cells in each spheroid section; (2) the total number of 
Ki67 or caspase 3 positive tumor cells as a percentage of total tumor cells and (3) the total number of Ki67- or 
caspase-3-positive neuronal cells as a percentage of the total number of neuronal cells. The algorithm works by 
viewing the pixel intensities (grey scale) for each fluorescence channel (e.g. red, green or blue) in sequence and 
identifying cells with pixel intensities above threshold. The location (coordinates) of the cells is first identified 
in the blue channel (Hoechst 33342) in a blurred image (Difference of Gaussian), identifying the centre point of 
each nucleus. The algorithm then classifies/segments the cells as either tumor (above threshold red channel) or 
non-tumor (below threshold red channel) and subsequently Ki67+ or cleaved-caspase-3+ (above threshold green 
channel) or Ki67− or cleaved-caspase-3− (below threshold green channel). The algorithm measures average inten-
sity about the centre of the nucleus, within the radius of the cell area (~10 microns). A minimum of 12 spheroid 
sections per treatment were analysed and in most cases 32 spheroid sections per treatment were analysed. We 
also tested whether or not analysing a single microTMA slide would generate representative data for the whole 
array. We analysed sections from the same microTMA block at different levels in the gBS spheroids and found 
that the data were comparable regardless of the microTMA section analysed indicating that the analysis of a single 
microTMA slide/section generates data that is representative of the whole microTMA (see results section Fig. 4).

Automated Scanning and Multispectral Image analysis of microTMA slides. As the manual image 
acquisition process on the Zeiss LSM 710 confocal (above) was laborious we explored the possibility of automat-
ing the process using a PerkinElmer Vectra Polaris scanner (Vectra Polaris software version 1.0.6). A whole slide 
scan was performed at 20x, then a modified version of the ‘TMA’ function in Phenochart software (version 1.0.8 
plus additional code) was used to find smaller spots than standard and assign coordinates to each spot on the 
microTMA.These were then imaged multispectrally at 20x to enable auto-fluorescence removal and un-mixing 
of fluorophores for score/quantitation48. The images were analysed in Inform image analysis software (version 
2.4.1) to quantify tumor size and the number of cleaved caspase 3 positive or Ki67 positive tumor cells and normal 
neuronal cells in parallel sections of the microTMA, (Fig. 5B).
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