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prognostic nomogram of hypoxia-
related genes predicting overall 
survival of colorectal cancer–
Analysis of tCGA database
Joon-Hyop Lee  1, sohee Jung  2, Won seo park3, eun Kyung Choe4, eunyoung Kim5, 
Rumi shin6, seung Chul Heo6, Jae Hyun Lee7, Kwangsoo Kim2 & Young Jun Chai6

Hypoxia-related gene (HRG) expression is associated with survival outcomes of colorectal cancer 
(CRC). our aim was developing a nomogram predicting CRC overall survival (os) with HRGs and 
clinicopathological factors. the Cancer Genome Atlas (tCGA) database was used as discovery cohort 
and two Gene Expression Omnibus databases (GSE39582 and GSE41258) served as validation cohorts. 
A genetic risk score model prognosticating os was developed using mRNA expression level of HRGs. 
Nomogram predicting os was developed using genetic risk score model and clinicopathological 
variables. the genetic risk score model included four HRGs (HSPA1L, PUM1, UBE2D2, and HSP27) and 
successfully prognosticated os of discovery and two validation cohorts (p < 0.001 for TCGA discovery 
set, p < 0.003 for the GSE39582 and p = 0.042 for the GSE41258 datasets). Nomogram included 
genetic risk score, age, and tNM stage. Harrell’s concordance indexes of the nomogram were higher 
than those of TNM stage alone in the discovery set (0.77 vs. 0.69, p < 0.001), GSE39582 (0.65 vs. 0.63, 
p < 0.001), and GSE41258 datasets (0.78 vs. 0.77, p < 0.001). Our nomogram successfully predicted 
os of CRC patients. the mRNA expression level of the HRGs might be useful as an ancillary marker for 
prognosticating CRC outcome.

Globally, colorectal cancer (CRC) is the second most common cause of cancer related mortality and the fourth 
most frequently diagnosed malignancy1. Treatment plans and clinical outcomes of CRC are primarily based on 
well documented conventional clinicopathologic risks and prognostic factors such as age, tumor stage, diet, alco-
hol consumption or smoking etc2,3. With the recent progress in genetic profiling including microsatellite insta-
bility, molecular signature, and oncogene analysis, new prognostic data for treatment of CRC have now become 
more diverse4,5.

Hypoxic tumor microenvironments are associated with poor outcomes and survival6,7. Hypoxic foci are 
formed when cancer cell metabolic requirements surpass the intravascular oxygen availability of a tumor. Genes 
whose expression changes are triggered under such conditions are referred to as hypoxia-related genes (HRG)7. 
Their prognostic abilities on outcome of major malignancies such as breast or gastric cancer have been well doc-
umented8,9. Prolific research has been conducted on the prognostic and predictive values of molecular profiles 
associated with hypoxia and CRC survival outcomes7,10–12.

Although the role of HRG expression on outcome prediction in CRC has been demonstrated, most studies 
lack systematic methodology and focus primarily on separate gene expression and its correlation with CRC out-
comes regardless of the clinical setting13–17. The aim of this study was to formulate a nomogram to predict overall 
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survival (OS) of CRC using a genetic risk score which is based on the mRNA expression level of HRGs, as well as 
clinicopathological variables.

Results
Baseline characteristics. The discovery TCGA cohort consisted of 355 patients who were diagnosed with 
CRC at a mean age of 64.5 years and followed-up for a median and mean interval of 22 months (0–148 months) 
and 31 months, respectively. The validation GSE39582 cohort consisted of 557 patients who were diagnosed at 
a mean age of 66.8 years and followed-up for a median and mean interval of 52 months (0–201 months) and 57 
months, respectively. The validation GSE41258 cohort included 185 patients who were diagnosed at a mean age 
of 63.5 years and followed-up for a median and mean interval of 66 months (0–203 months) and 68 months, 
respectively (Table 1).

Genetic risk score model construction. Among the 325 publications searched, 53 articles relevant to 
CRC gene-expression in hypoxic conditions were reviewed. One hundred and eighty-six genes were selected from 
the reviewed articles (Fig. 1). Twenty-nine HRGs were significantly associated with OS by log-rank test, and their 
relationship with OS was further investigated by univariate Cox regression, which demonstrated 16 genes to be 
associated with OS (Fig. 2).

Pairwise Pearson correlation coefficients among the 16 genes revealed two gene groups that were closely 
related amongst each other among which the one with the highest hazard ratio (HR) was selected; EPOR and 
TGFB1 groups (HR for EPOR, 1.2608, was higher), and MMP23B, MMP14, MMP17, MMP19, NNMT, TGFB1, 
UBE2E2 cluster (MMP23B had the highest HR of 1.4766). And other genes that were not closely associated 
among each other (UBE2K, HSPA1L, HSP27, MMP10, SOX2, UBE2D2, PUM1) were included in the stepwise Cox 
regression analysis, resulting in the following genetic risk score model:

Genetic risk score = 0.520*HSPA1L −1.156*PUM1 −1.239*UBE2D2 + 0.309*HSP27 (Fig. 3).

prognostic value of genetic risk score. The genetic risk score was categorized at the optimal cutoff point 
(high risk vs. low risk) based on the receiver operating characteristics (ROC) curve. The prognostic ability of 
the genetic risk score model was demonstrated by the significant difference between the survival curves of the 
high risk and low risk group observed in both discovery (TCGA) and validation (GSE39582, GSE41258) cohorts 
(p < 0.001, p = 0.003 and p = 0.042) (Fig. 4).

Incorporating clinical factors to predict cancer survival. The genetic risk score (high risk vs. low 
risk) was associated with OS in the univariate analysis (p < 0.001). After statistical adjustment for other variables 
with multivariate Cox analysis, the genetic risk score, TNM stage, and age were independently prognostic of OS 
(Table 2).

A set of prognostic models for OS was constructed by combining the genetic risk score (high risk vs. low risk), 
TNM stage, and age into the multivariate Cox regression model.

In the TCGA discovery set, Harrell’s concordance index (C-index) for the model which included TNM stage 
and genetic risk score was higher than that of TNM stage alone (0.75 vs. 0.69, p < 0.001). C-index for the model 
including age, TNM stage, and genetic risk score was higher than that of the model which included TNM stage 
and genetic risk score (0.77 vs. 0.75, p < 0.001).

In the GSE39582 validation set, C-index for the model which included TNM stage and genetic risk score was 
higher than that of TNM stage alone (0.65 vs. 0.63, p < 0.001). C-index for the model which included age, TNM 

Discovery cohort Validation cohort Validation cohort

TCGA (n = 355) GSE39582 (n = 557) GSE41258 (n = 185

Characteristic n (%) Characteristic n (%) Characteristic n (%)

Age at diagnosis Age at diagnosis Age at diagnosis

Mean (SD) 64.5 (13.3) Mean (SD) 66.8 (13.3) Mean (SD) 63.5 (14.0)

AJCC TNM stage AJCC TNM stage AJCC TNM stage

I 56 (15.8) I 31 (5.6) I 28 (15.1)

II 135 (38.0) II 262 (47.0) II 50 (27.0)

III 112 (31.5) III 204 (36.6) III 49 (26.5)

IV 52 (14.7) IV 60 (10.8) IV 58 (31.4)

Survival event Survival event Survival event

Dead 78 (22.0) Dead 190 (34.1) Dead 102 (55.1)

Alive 277 (78.0) Alive 367 (65.9) Alive 83 (44.9)

Median follow-up time, months 
(range)

Median follow-up time, months 
(range)

Median follow-up time, months 
(range)

22 (0–148) 52 (0–201) 66 (0–203)

Median time to survival event, 
months (range)

Median time to survival event, 
months (range)

Median time to survival event, 
months (range)

17 (1–100) 31 (0–183) 34 (0–196)

Table 1. Patient characteristics of datasets. TCGA: The cancer genome atlas; GEO: gene expression omnibus; 
SD: standard deviation; AJCC: American Joint Committee on Cancer.
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stage, and genetic risk score was higher than that of the model which included TNM stage and genetic risk score 
(0.70 vs. 0.65, p < 0.001).

In the GSE41258 validation set, C-index for the model which included TNM stage and genetic risk score was 
higher than that of TNM stage alone (0.78 vs. 0.77, p < 0.001). C-index for the model which included age, TNM 
stage, and genetic risk score was same as that of the model which included TNM stage and genetic risk score (0.78 
for both).

Nomogram including genetic risk score and clinical attributes. Based on the C-index values, a nom-
ogram integrating the genetic risk score (high risk vs. low risk), age, and TNM stage was constructed (Fig. 5). 
Total points were calculated by adding the points of the genetic score, age, and TNM stage. The calibration curve 
for predicting 3 and 5-year OS indicated that the nomogram-predicted survival closely corresponded with actual 
survival outcomes. The 3-year nomogram’s area under curve (AUC) was 0.82 in the TCGA discovery set, 0.72 in 
the GSE39582 and 0.83 in the GSE41258 cohort. The 5-year nomogram’s AUC was 0.78 in the TCGA cohort, 0.71 
in the GSE39582 and 0.82 in the GSE41258 cohort. (Fig. 6).

Discussion
This study is the first to construct a nomogram of CRC OS that encompasses both clinical attributes and effect 
of HRGs quantified by a risk score system. Our genetic risk score and nomogram’s CRC prognostic ability was 
proven to be superior to conventional TNM stage for predicting prognosis in both the discovery TCGA cohort 
and the validation GSE39582 and GSE41258 datasets.

Hypoxia is a common feature in malignancy that promotes invasive and metastatic tumor behavior18. 
Expression of HRG is involved in cellular processes such as differentiation, angiogenesis, survival, migration, 
and metastasis19. In breast cancer, analysis of HRGs has been proposed as a tool for developing novel therapeutic 
strategies with molecular signatures20. The prognostic ability of HRGs is reported in many other malignancies, 
including gastric cancer, leukemia, and CRC8,21,22.

Our genetic risk scoring model was based upon a combination of HSPAL1L, PUM1, UBE2D2, and HSP gene 
mRNA expressions that were selected from among 186 HRGs to quantitatively predict the prognosis of CRC. The 
heat-shock 70-kDa protein-1-like (HSPA1L) gene is pivotal in tumor niche condition-induced HIF-1α activation 
and cellular prion protein (PrPC) regulation and leads to CRC proliferation23. The ubiquitin conjugating enzymes 
E2 (UBE2) gene family prevents HIF1α and 2α degradation by proteasome systems, and UBE2 inhibitors act as 
antitumor agents24. Abnormal pumilio RNA binding family member 1 (PUM1) gene expression is closely related 
to carcinogenesis and chromosomal mutations25, and heat shock protein 27 (HSP27) expression has a protec-
tive effect on hypoxic injury related umbilical cord blood-derived mesenchymal stem cell apoptosis26. Although 
the most researched HRG is the HIF (hypoxia-inducible factor) gene family which is important in mediating 
response to hypoxia at the cellular level27,28, the TCGA database indicated that mRNA expression levels of the 
HIF1A, HIF1B, HIF2A, and HIF3A genes were not statistically associated with OS and DFS (data not shown).

Figure 1. Gene selection flow chart.
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There are many published nomograms designed to predict the outcome of CRC29. A Chinese group developed 
a nomogram on CRC OS and recurrence-free survival for stage I~III patients30, and a French group targeted 
metastatic stage IV CRC patients who were refractory to chemotherapy31. The C indexes of these studies were 
0.80 and 0.7, respectively. However, there is no single nomogram that encompasses the long-term OS outcome of 
all clinical stages of CRC. Ours is the first to included basic clinical variables integrated with a genetic risk score 
model of selected HRGs across all CRC stages.

Figure 2. Twenty-nine hypoxia-related genes which were significantly associated with OS by log-rank test. 
Among them, 16 genes were associated with overall survival in univariate analysis and are highlighted in bold.

Figure 3. Genetic risk score model developed with 4 hypoxia-related genes.
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Figure 4. Kaplan-Meier plot of the genetic risk score (high risk vs. low risk, threshold: median score) for (a) 
TCGA discovery set, (b) GSE39582 validation set, and (c) GSE41258 validation set.

Univariate analysis Multivariate analysis

Variables Hazard Ratio (95% CI) P value Variables Hazard Ratio (95% CI) P value

Genetic risk score 
(High risk vs. low risk) 4.221 (2.536–7.026) <0.001 Genetic risk score 

(High risk vs. low risk) 3.402 (2.873–3.93) <0.001

Age 1.025 (1.007–1.044) 0.006 Age 1.029 (1.009–1.049) 0.004

Male gender 1.264 (0.805–1.985) 0.307 Male gender 1.062 (0.598–1.527) 0.798

AJCC TNM stage <0.001 AJCC TNM stage <0.001

I 1.000 (reference) I 1.000 (reference)

II 1.450 (0.547–3.845) II 1.057 (0.066–2.048)

III 2.820 (1.090–7.293) III 2.082 (1.115–3.049)

IV 6.511 (2.461–17.225) IV 5.733 (4.739–6.726)

KRAS mutation 0.797 (0.505–1.257) 0.325 KRAS mutation 0.805 (0.31–1.3) 0.389

BRAF mutation 1.257 (0.692–2.285) 0.464 BRAF mutation 1.327 (0.504–2.151) 0.508

MSI-high 0.800 (0.422–1.515) 0.481 MSI-high 0.759 (−0.106–1.6) 0.526

Table 2. Univariate and multivariate Cox-regression results of factors related to overall survival. AJCC: 
American Joint Committee on Cancer; MSI: microsatellite instability.

Figure 5. Nomogram predicting 3- and 5-year overall survival of colorectal cancer patients.
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The strength of this study was that we established validation sets of heterogenous patients from the GSE39582 
and GSE41258 dataset to validate the generalizability of our genetic risk score model and nomogram. We believe 
this approach has important clinical implications because we validated the prognostic ability of the genetic risk 
score model and nomograms using mRNA data produced through different platforms. Discovery TCGA data 
was produced by RNA sequencing using the Illumina HiSeq. 2000 mRNA-Seq and the validation sets (GSE39582 
and GSE41258) mRNA expression profiles were acquired by the Affymetrix microarray. Similar comparison of 
mRNA gene expression through different platforms in the literature further strengthens the generalizability of 
our results32,33.

There are several limitations to our study. One is the short follow-up period of the discovery set patients. 
The median follow-up period of the discovery set, which the gene risk model and nomogram was built on, was 
22 months. To address the issue of the short follow-up duration, we formulated a nomogram based on both the 
3-year and 5-year survival rates to better fit the median follow-up period. Another limitation is that mRNA gene 
expression values are not readily available especially in clinical settings due to the high cost of fresh tissue storage 
and processing. However, its applicability may become wider when costs decrease and mRNA expression can be 
stably obtained through formalin-fixed paraffin-embedded tissue. The final limitation is the inability to adjust 
for confounders pertaining to lifestyle factors, such as diet or smoking, operative extent and treatment modality. 
We could not account for these factors because TCGA and GEO databases do not provide information on them.

In conclusion, our study is the first to construct a nomogram for all stages of CRC OS encompassing both 
clinical and genetic variables related to HRGs. Our genetic risk score and nomogram demonstrated superior 

Figure 6. Calibration curve for nomogram-predicting (a) 3-year and (b) 5-year overall survival. The X-axis 
is nomogram-predicted survival probability and the Y-axis is observed survival probability respectively. 
Red, green and blue solid lines represent the performance of the nomogram relative to the 45-degree line, 
indicating perfect prediction. Receiver operating characteristic curves assessing the discriminating ability of the 
nomogram in predicting (c) 3-year and (d) 5-year overall survival.
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prognostic ability for CRC OS in all of the TCGA discovery and two external validation sets compared to conven-
tional TNM staging. Considering the effect HRGs have on survival outcomes of CRC patients, our results may 
be applicable in the clinical setting in the near future. A more precise 5-year OS nomogram could be obtained 
by expanding the record duration of the discovery dataset patients with additional follow-up and subsequent 
modifying of our present results.

Methods
Data sources and processing. Gene mRNA expression data and related clinical information of CRC 
patients in the TCGA project (discovery cohort) were obtained from the CBioPortal (http://www.cbioportal.
org). The mRNA-Seq data from TCGA was produced using the Illumina HiSeq 2000 platform and processed 
by the RNAseqV2 pipeline, which uses MapSplice for alignment and RSEM for quantification. To validate the 
prognostic potential of the genetic risk score, two independent datasets were obtained through the GEO database 
(GSE39582, GSE41258) (validation cohort, http://www.ncbi.nlm.nih.gov/geo/). Keywords “colorectal cancer” 
and “gene expression” were used for searching. Datasets satisfying the following criteria were considered: (1) 
gene expression profile data, (2) tissue samples from primary colorectal adenocarcinoma, and (3) availability of 
patient survival data. The GSE39582 and GSE41285 datasets, containing the largest and the second largest sam-
ples among those satisfying our criteria, were used for validation34,35. Gene expression profiles of the dataset were 
determined using the Affymetrix U133 Plus 2.0 chip. GSE39582 contained log2 signal intensity values and the 
gene expression levels of the TCGA and GSE41258 dataset were transformed to log2 scale. The median duration 
of record length (henceforth mentioned as follow-up period) was described in months. Information about CRC 
stage of both datasets was assessed according to the TNM stages specified by the 8th edition of the American Joint 
Committee on Cancer36. To prevent the clinical data from becoming too specific the sub-stages were not assigned.

Genetic risk score model construction. A qualitative review of literature related to CRC was conducted 
through the PubMed/MEDLINE database, using the following advanced search combination: (Colon OR Rectum 
OR Colorectal) AND (Cancer OR Neoplasm) AND Hypoxia AND Gene. Articles with relevant titles were fully 
reviewed for information about genes analyzed in hypoxic conditions to assess the outcome of CRC. Based on 
the literature, we selected appropriate genes for further analysis and construction of a genetic risk score. Among 
closely correlated genes (Pearson correlation coefficient r > 0.4), those with highest univariate predictive power 
(defined by HR per 1 standard deviation change) were selected to avoid potential collinearity37,38. To build the 
genetic risk score model, genes whose expression levels were significantly associated with OS were further 
selected through stepwise Cox regression analysis39. In the stepwise procedure, p < 0.05 was used as entry cri-
terion and p > 0.1 as removal criterion40. The prognostic value of the genetic risk score model was assessed with 
both discovery and validation cohorts. The optimal cut-off point for the genetic risk score was determined based 
on ROC curve analysis. Hypoxia-related activities of the selected genes were confirmed using the gene ontology 
database (http://www.geneontology.org/).

Incorporating clinical factors to predict cancer survival. To evaluate the prognostic value of the 
genetic risk score in the context of other clinical variables, univariate and multivariate Cox analyses for OS were 
performed, including the genetic risk score and the conventional clinicopathologic variables (age, gender, TNM 
stage, KRAS mutation, BRAF mutation, and microsatellite instability). The discriminating ability of the multi-
variate Cox regression model was evaluated using the C-index41 of 1 indicating perfect discrimination and of 0.5 
indicating random guess.

Nomogram construction. A nomogram was constructed to predict 3- and 5-year CRC OS by combining 
the results of the genetic risk score model with clinical attributes. The predictive accuracy of the nomogram was 
assessed by calibration plot42,43. Time-dependent sensitivities and specificities of the nomogram were evaluated 
by AUC for both 3-year and 5-year OS ROC curve44. All statistical analyses were performed using R statisti-
cal software (version 3.4.1)45. Nomogram and calibration plots were generated with the rms package46 and the 
time-dependent ROC curve analysis was conducted with the timeROC package47 of R software. Comparisons of 
C-index between the nomogram and American Joint Committee on Cancer staging systems were performed with 
the Hmisc package48 of R software. Null hypotheses of no difference were rejected if p-values were less than 0.05.

Data Availability
The data that support the findings of this study are available from the Cancer Genome Atlas (TCGA, http://can-
cergenome.nih.gov/) COADREAD project and Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/
geo/), accession number GSE39582 and GSE41258.
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